
M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 11-25, 1999.
 Springer-Verlag Berlin Heidelberg 1999

CPAM, A Protocol for Software Composition

Laurence Melloul, Dorothea Beringer, Neal Sample, Gio Wiederhold

Computer Science Department, Stanford University
Gates Computer Science building 4A, Stanford, CA 94305, USA

{melloul, beringer, nsample, gio}@db.stanford.edu
http://www-db.stanford.edu/CHAIMS

Abstract. Software composition is critical for building large-scale applications.
In this paper, we consider the composition of components that are methods
offered by heterogeneous, autonomous and distributed computational software
modules made available by external sources. The objective is to compose these
methods and build new applications while preserving the autonomy of the
software modules. This would decrease the time and cost needed for producing
and maintaining the added functionality. In the following, we describe a high-
level protocol that enables software composition. CPAM, CHAIMS Protocol
for Autonomous Megamodules, may be used on top of various distribution
systems. It offers additional features for supporting module heterogeneity and
preserving module autonomy, and also implements several optimization
concepts such as cost estimation of methods and partial extraction of results.

1 Introduction

CPAM, the CHAIMS Protocol for Autonomous Megamodules, is a high-level
protocol for realizing software composition. CPAM has been defined in the context of
the CHAIMS (Compiling High-level Access Interfaces for Multi-site Software) [1]
research project at Stanford University in order to build extensive applications by
composing large, heterogeneous, autonomous, and distributed software modules.

Software modules are large if they are computation intensive (computation time
may range from seconds in the case of information requests, to days in the case of
simulations) or/and data intensive (the amount of data can not be neglected during
transmissions). They are heterogeneous if they are written in different languages (e.g.,
C++, Java), use different distribution protocols (e.g., CORBA [2], RMI [3], DCE [4],
DCOM [5]), or run on diverse platforms (e.g., Windows NT, Sun Solaris, HP-UX).
Modules are autonomous if they are developed and maintained independently of one
another, and independently of the composer who composes them. Finally, software
modules are distributed when they are not located on the same server and may be used
by more than one client. We will call modules with these characteristics
megamodules, and the methods they offer services.

In this paper, we focus on the composition of megamodules for two reasons:

• service providers being independent and geographically distant, software modules
are autonomous and most likely heterogeneous and distributed,

• because of cost-effectiveness, composition is critical when services are large.

mailto:gio}@db.stanford.edu
http://www-db.stanford.edu/CHAIMS

12 Laurence Melloul et al.

Megamodule composition consists of remotely invoking the services of the
composed megamodules in order to produce new services. Composition differs from
integration in the sense that it preserves megamodule autonomy. Naturally, the
assumption is that megamodule providers are eager to offer their services. This is a
reasonable assumption if we consider the business interest that would derive from the
use of services, such as a payment of fees or the cut of customer service costs.

Composition of megamodules is becoming crucial for the software Industry. As
business competition and software complexity increase, companies have to shorten
their software cycle (development, testing, and maintenance) while offering ever
more functionality. Because of high software development or integration costs, they
are being forced to build large-scale applications by reusing external services and
composing them. Global information systems such as the Web and global business
environments such as electronic commerce foreshadow a software development
environment where developers would access and reuse services offered on the Web,
combine them, and produce new services which, in turn, would be accessed through
the Web.

Existing distribution protocols such as CORBA, RMI, DCE, or DCOM allow users
to compose software with different legacy codes but using CORBA, RMI, DCE, or
DCOM as just the distribution protocol underneath. The Horus protocol [6] composes
heterogeneous protocols in order to add functionality at the protocol level only. The
ERPs, Enterprise Resource Planning systems, such as SAP R/3, BAAN IV, and
PeopleSoft, integrate heterogeneous and initially independent systems but do not
preserve software autonomy. None of these systems simultaneously supports
heterogeneity and preserves software autonomy during the process of composition in
a distributed environment.

CPAM has been defined for accomplishing megamodule composition. In the
following, we describe how CPAM supports megamodule heterogeneity (section 2),
how it preserves megamodule autonomy (section 3), and how it enables optimized
composition of large-scale services (section 4). We finally explain how to use CPAM,
and provide an illustration of a client doing composition in compliance with the
CPAM protocol (section 5).

2 CPAM Supports Megamodule Heterogeneity

Composition of heterogeneous and distributed software modules has several
constraints: it has to support heterogeneous data transmission between megamodules
as well as the diverse distribution protocols used by megamodules.

2.1 Data Heterogeneity

In order for megamodules to exchange information, data need to be in a common
format (a separate research project is exploring ways to map different ontologies [7]).
Also, data has to be machine and architecture independent (16 bit architecture versus
32 bit architecture for instance), and transferred between megamodules regardless of
the distribution protocol at either end (source or destination). For these reasons, the

 CPAM, A Protocol for Software Composition 13

current version of CPAM requires data to be ASN.1 structures encoded using BER
rules [8]. With ASN.1/BER-encoding rules:

1. Simple data types as well as complex data types can be represented as ASN.1
structures,

2. Data can be encoded in a binary format that is interpreted on any machine where
ASN.1 libraries are installed,

3. Data can be transported through any distribution system.

It has not been possible to use other definition languages such as CORBA Interface
Definition Language or Java classes to define data types because these definitions
respectively require that the same CORBA ORB or the RMI distribution protocol be
supported at both ends of the transmission.

Fig. 1. Data transfer, Opaque data

2.2 Opaque Data

Because ASN.1 data blocks are encoded in binary format, we refer to them as BLOBs
(Binary Large OBjects). BLOBs being opaque, they are not readable by CPAM. A
client doing composition only (the client gets and transmits the data, with no
computation in between) does not need to interpret the data it receives from a
megamodule, or sends to another megamodule. Therefore, as shown in Fig. 1, before
being transported, data is encoded in the source megamodule; it is then sent to the
client where it remains a BLOB, and gets decoded only when it reaches the
destination megamodule.

A client that would have the knowledge of the megamodule definition language
could convert the blobs into their corresponding data types, and read them. It would
then become its responsibility to encode the data before sending it to another
megamodule.

2.3 Distribution Protocol Heterogeneity

Both data transportation and client-server bindings are dependent on the distribution
system used. CPAM is a high-level protocol that is implemented on top of existing

Source megamodule

Data gets encoded

Client

Data remains encoded

Destination megamodule

Data gets decoded

14 Laurence Melloul et al.

distribution protocols. Since its specifications may be implemented on top of more
than one distribution protocol within the composed application, CPAM has to support
data transmissions and client-server connections across different distribution systems.

We mentioned that encoded ASN.1 data could be transferred between the client
and the megamodules independently of the distribution protocols used at both ends.
Regarding client-server connections, CPAM assumes that the client is able to
simultaneously support the various distribution systems of the servers it wishes to talk
to. The CHAIMS architecture, along with the CHAIMS compiler [9], enables the
generation of such a client. This process is described in next section. Currently, in the
context of CHAIMS, a client can simultaneously support the following protocols:
CORBA, RMI, local C++ and local Java (local qualifying a server which is not
remote).

Fig. 2. The CHAIMS architecture

2.4 The CHAIMS Architecture

Figure 2 describes the CHAIMS architecture. In CHAIMS, the client program is the
megaprogram and the compiled client program is the CSRT (Client Side Run Time).
Also, server information repositories are currently merged into one unique CHAIMS
repository.

The distribution protocol used during a specific communication between the client
and a remote server is the one of the server itself, and must be supported by the client.
In the context of CHAIMS, the composer writes a simple megaprogram in CLAM
(CHAIMS Language for Autonomous Megamodules) [10], a composition only

 CPAM, A Protocol for Software Composition 15

language. This program contains the sequence of invocations to the megamodules the
composer wishes to compose (an example of megaprogram is given in section 5.3).
The CHAIMS compiler parses the megaprogram and generates the whole client code
necessary to simultaneously bind to the various servers (CSRT). Server specifications
such as the required distribution protocol are contained in the CHAIMS repository
and are accessible to the CHAIMS compiler.

Both the client and the servers have to follow CPAM specifications. As it is noted
in Fig. 2, megamodules that are not CPAM compliant need to be wrapped. The
process of wrapping is described in section 5.2.

3 CPAM Preserves Megamodule Autonomy

Besides being heterogeneous and distributed, megamodules are autonomous. They are
developed and maintained independently from the composer who therefore has no
control over them. How can the composer be aware of all services offered by
megamodules, and of the latest versions of these services without compromising
megamodule autonomy? Also, how do the connections between the client and the
server take place? Which of the client or the server controls the connection? After
specifying these two points, we will briefly described several consistency rules that
will ensure offered services are not updated by the server without the client being
aware of it.

3.1 Information Repository

Composition can not be achieved without knowing what services are offered and how
to use them. The composer could refer to an application user's guide to know what the
purposes of the services available are. He/she could also refer to the application
programmer's guide to get the implementation details about the services. Nonetheless,
the composer would only get static information such as service description and
method input/output parameter names and types. Megamodules being autonomous
and distributed, make it compulsory to also retain dynamic information about the
services, such as the name of the machines where the services to be composed are
located.

CPAM requires that the necessary megamodule information, both static and
dynamic, be gathered into one information repository. Each megamodule provider is
responsible for making such a repository available to external users, and for keeping
the information up-to-date. It is also the megamodule provider's responsibility to
actually offer the services and the quality it advertises.

Information Repository Content. The information repository has to include the
following information:

1. Logical name of the service (i.e., megamodule), along with the machine location
and the distribution protocol used, in order for the client to bind to the server,

16 Laurence Melloul et al.

2. Names of the services offered (top-level methods), along with the names and
nature (input or output) of their parameters, in order for the client to make
invocations or preset parameters before invocation.

Scope of Parameter Names. The scope of parameter names is not restricted to the
method where the parameters are used, but rather to the whole megamodule. For
megamodules offering more than one method, this implies that if two distinct methods
have the same parameter name in their list of parameters, any value preset for this
parameter will apply to any use of this parameter in the megamodule. CPAM enlarges
the scope of parameter names in order to offer the possibility of presetting all
parameters of a megamodule using one call only in the client, hence minimizing data
flow (see section 4.2).

3.2 Establishing and Terminating a Connection with a Megamodule

Another issue when composing autonomous megamodules is the ownership of the
connection between a client and a server. Autonomous servers do not know when a
client wishes to initiate or terminate a connection. In CPAM, clients are responsible
for making a connection to a megamodule and terminating it. Nonetheless, servers
must be able to handle simultaneous requests from various clients, and must be started
before such requests arrive. Certain distribution protocols like CORBA include an
internal timer that stops a server execution process if no invocations occur after a set
time period, and instantly starts it when a new invocation arrives.

CPAM defines two primitives in order for a client to establish or terminate a
connection to a megamodule. These are SETUP and TERMINATEALL. SETUP tells
the megamodule that a client wants to connect to it; TERMINATEALL notifies the
megamodule that the client will no longer use its services (the megamodule kills any
ongoing invocations initiated by this client). If for any reason a client does not
terminate a connection to a megamodule, we can assume the megamodule itself will
do it after a time-out, and a new SETUP will be required from the client before any
future invocation.

3.3 Consistency

Megamodules being autonomous, they can update services without clients or
composers being aware of the modifications brought to the services. The best way a
client becomes aware of updates in the server is still under investigation (one option
could be to have such changes mentioned in the repository). Nevertheless, it should
not be the responsibility of the megamodule provider to directly notify clients and
composers of service changes since we do want to preserve megamodule autonomy.

Once the composer knows what modifications were brought to the services, he/she
can accordingly upgrade the client program. In CHAIMS, the composer upgrades the
megaprogram, which the CHAIMS compiler recompiles in order to generate the
updated client program.

It is the responsibility of the service provider not to update the server while there
are still clients connected to it. The server must first ask clients to disconnect or wait
for their disconnection before upgrading megamodules.

 CPAM, A Protocol for Software Composition 17

The information repository and the connection and consistency rules ensure that
server autonomy is preserved and that clients are able to use offered services.

4 CPAM Enables Efficient Composition of Large-Scale Services

CPAM makes it possible to compose services offered by heterogeneous, distributed
and autonomous megamodules. Services being large, an even more interesting
objective for a client would be to efficiently compose these services. CPAM enables
efficient composition in the following two ways:

• Invocation sequence optimization
• Data flow minimization between megamodules [11].

4.1 Invocation Sequence Optimization

Because the invocation cost of a large service is a priori high and services are
distributed, a random composition of services could be very expensive. The
invocation sequence has to be optimized. CPAM has defined its own invocation
structure in order to allow parallelism and easy invocation monitoring. Such
capabilities, added to the possibility of estimating a method cost prior to its
invocation, enable optimization of the invocation sequence in the client.

Invocation Structure in CPAM. A traditional procedure call consists of invoking a
method and getting its results back in a synchronous way: the calling client waits
during the procedure call, and the overall structure of the client program remains
simple. In contrast, an asynchronous call avoids client waits but makes the client
program more complex, as has to be multithreaded. CPAM splits the traditional call
statement into four synchronous remote procedure calls that make the overall call
behave asynchronously while keeping the client program sequential and simple.
These procedure calls have also enabled the implementation of interesting
optimization concepts in CPAM, such as partial extraction and progress monitoring.

The four procedure calls are INVOKE, EXAMINE, EXTRACT, and
TERMINATE:

1. INVOKE starts the execution of a method applied to a set of input parameters. Not
every input parameter of the method has to be specified as the megamodule takes
client-specific values or general hard-coded default values for missing parameters
(see hierarchical setting of parameters, section 4.2). An INVOKE call returns an
invocation identifier, which is used in all subsequent operations on this invocation
(EXAMINE, EXTRACT, and TERMINATE).

2. The client checks if the results of an INVOKE call are ready using the EXAMINE
primitive. EXAMINE returns two pieces of information: an invocation status and
an invocation progress. The invocation status can be any of DONE, NOT_DONE,
PARTIAL, or ERROR. If it is either PARTIAL or DONE, then respectively part or
all of the results of the invocation are ready and can be extracted by the client.
Invocation progress’ semantics is megamodule specific. For instance, progress
information could be quantitative and describe the degree of completion of an

18 Laurence Melloul et al.

INVOKE call, or qualitative (e.g., specify the degree of resolution a first round of
image processing would give).

3. The results of an INVOKE call are retrieved using the EXTRACT primitive. Only
the parameters specified as input are extracted, and only when the client wishes to
extract results, can it do so. CPAM does not prevent a client from repeatedly
extracting an identical or a different subset of results.

4. TERMINATE is used to tell a megamodule that the client is no longer interested in
a specific invocation. TERMINATE is necessary because the server has no other
way to know whether an invocation will be referred to by the client in the future. In
case the client is no longer interested in an invocation's results, TERMINATE
makes it possible for the server to abort an ongoing execution. In case the
invocation has generated persistent changes in the server, it is the responsibility of
the megamodule to preserve consistency.

Parallelism and Invocation Monitoring. The benefits of having the call statement
split into the four primitives mentioned above are parallelism, simplicity, and easy
invocation monitoring:

• Parallelism: thanks to the separation between INVOKE and EXTRACT in the
procedure call, the methods of different megamodules can be executed in parallel,
even if they are synchronous, the only restrictions being data flow dependencies.
The client program initiates as many invocations as desired and begins collecting
results when it needs them. Figure 3 illustrates the parallelism that can be induced
on synchronous calls using CPAM. Similar parallelism could also be obtained with
asynchronous methods.

Fig. 3. Split of the procedure call in CPAM and parallelism on synchronous calls

• Simplicity: the client program using CPAM consists of sequential invocations of
CPAM primitives, and is simple. It does not have to manage any callbacks of

 CPAM, A Protocol for Software Composition 19

asynchronous calls from the servers (the client is the one which initiates all the
calls to the servers, including the ones for getting invocation results).

• Easy invocation monitoring:

− Progress monitoring: a client can check a method execution progress
(EXAMINE), and abort a method execution (TERMINATE). Consider the
case where a client has the choice between megamodules offering the same
service and arbitrarily chooses one of them for invocation. EXAMINE allows
the client to confirm or revoke its choice, perhaps even ending an invocation
if another one seems more promising.

− Partial extraction: a client can extract a subset of the results of a method.
CPAM also allows progressive extraction: the client can incrementally
extract results. This is feasible if the megamodule makes a result available as
soon as its computation is completed (and before the computation of the next
result is), or becomes significantly “more accurate.” Incremental extraction
could also be used for terminating an invocation as soon as its results are
satisfying, or conversely for verifying the adequacy of large method
invocations and maybe terminating them as soon as results are not satisfying.

− Ongoing processes: separating method invocation from result extraction and
method termination enables clients to monitor ongoing processes (processes
that continuously compute or complete results, such as weather services).

With very few primitives to learn, the composer can write simple client programs,
still benefiting from parallelism and easy invocation monitoring. CPAM offers one
more functionality in order to optimize the invocation sequence in the client program:
invocation cost estimation.

Cost Estimation. Estimating the cost of a method prior to its invocation augments the
probability of making the right invocation at the right time. This is enabled in CPAM
through the ESTIMATE primitive. Due to the autonomy of megamodules, the client
has no knowledge of or influence over the availability of resources. The ESTIMATE
primitive, which is provided by the server itself, is the only way a client can get the
most accurate method performance and cost information.

A client asks a megamodule for a method cost estimation and then decides whether
or not to make the invocation based upon the estimate received. ESTIMATE is very
valuable in the case of identical or similar large services offered by more than one
megamodule. Indeed, for expensive methods offered by several megamodules, it
could be very fruitful to first get an estimate of the invocation cost before choosing
one of the methods. Of course, there is no guarantee on the estimate received (we can
assume that a service invocation which is not in concordance with the estimate
previously provided to a client will not be reused by the client).

Cost estimates are treated in CPAM as fees (amount of money to pay to use a
service, in electronic commerce for instance), time (time of a method execution)
and/or data volume (amount of data resulting from a method invocation). Since the
last two factors are highly run-time dependent, their estimation should be at run-time,
as close as possible to the time the method could be invoked. Other application-
specific parameters like server location, quality of service, and accuracy of estimate
could be added to the output estimate list in the server (and in the information
repository), without changing CPAM specifications.

20 Laurence Melloul et al.

Parallelism, invocation estimates and invocation examinations are very helpful
functions of CPAM which, when combined, give enough information and flexibility
to get an optimized sequence of invocations at run-time. Megamodule code should
return pertinent information with the ESTIMATE and EXAMINE primitives in order
for a client to completely benefit from CPAM through consistent estimation and
control.

Another factor for optimized composition concerns data flow between
megamodules.

4.2 Data Flow Minimization between Megamodules

Partial extraction enables clients to reduce the amount of data returned by an
invocation. CPAM also makes it possible to avoid parameter redundancy when
calling INVOKE thanks to parameter presetting and hierarchical setting of
parameters.

Presetting Parameters. CPAM’s SETPARAM primitive sets method parameters and
global variables before a method is invoked. For a client which invokes a method with
the same parameter value several times consecutively, or invokes several methods
which have a common subset of parameter names with the same values, it becomes
cost-effective to not transmit the same parameter values repeatedly. Let us recall that
megamodules are very likely to be data intensive. Also, in the case of methods which
have a very large number of parameters, only a few of which are modified at each call
(very common in statistical simulations), the SETPARAM primitive becomes very
advantageous. Finally, presetting parameters is useful for setting a specific context
before estimating the cost of a method.

GETPARAM, the primitive dual, returns client specific settings or default values of
the parameters and global variable names specified in its input parameter list.

Hierarchical Setting of Parameters. CPAM establishes a hierarchical setting of
parameters within megamodules (see Fig. 4). A parameter's default value (most likely
hard-coded) defines the first level of parameter settings within the megamodule. The
second level is the client specific setting (set by SETPARAM). The third level
corresponds to the invocation specific setting (parameter value provided through one
specific invocation, by INVOKE). Invocation specific settings override client specific
settings for the time of the invocation, and client specific settings override general
default values for the time of the connection. When a method is invoked, the
megamodule takes the invocation specific settings for all parameters for which the
invocation supplies values; for all other parameters, the megamodule takes the client
specific settings if they exist, and the megamodule general default values otherwise.
For this reason, CPAM requires that megamodules provide default values for all
parameters or global variables they contain.

 CPAM, A Protocol for Software Composition 21

Fig. 4. Hierarchical setting of parameters

In conclusion, a client does not need to specify all input data or global variables
used in a method in order to invoke that method, nor does it need to repeatedly
transmit the same data for all method invocations which use the same parameters’
values. Also, a client need not retrieve all available results. This reduces the amount
of data transferred between megamodules.

Megamodules being large and distributed, invocation sequence optimization and
data flow minimization are necessary for efficient composition.

5 How to Use CPAM

We have so far discussed the various CPAM primitives necessary to do composition.
Still, we have not yet described the primitives’ syntax nor the constraints a composer
would have to follow in order to write a correct client program. Another point would
concern the service provider: what does he/she need to do in order to convert a
module which is not CPAM compliant to a CPAM compliant megamodule that
supports CPAM specifications?

CPAM primitives’ syntax is fully described and can be found under the CHAIMS
Web site at http://www-db.stanford.edu/CHAIMS. In this section, we describe the
primitive ordering constraints, the CHAIMS wrapper templates, and provide a client
program example which complies with CPAM, and is written in CLAM.

22 Laurence Melloul et al.

5.1 Primitives Ordering Constraints

CPAM primitives cannot be called in any arbitrary order, but they only have to follow
two constraints:

• All primitives apart from SETUP must be preceded by a connection to the
megamodule through a call to SETUP (which has not yet been terminated by
TERMINATEALL),

• The invocation referred to by EXAMINE, EXTRACT, or TERMINATE must be
preceded by an INVOKE call (which has not yet been terminated by
TERMINATE).

Figure 5 summarizes CPAM primitives and the ordering relations.

Fig. 5. Primitives in CPAM and invocation ordering

5.2 The CHAIMS Wrapper

In case a server does not comply with CPAM specifications, it has to be wrapped in
order to use the CPAM protocol. The CHAIMS wrapper templates allow a
megamodule to become CPAM compliant with a minimum of additional work.

The CHAIMS wrapper templates are currently implemented as a C++ or Java
object which serves as a middleman between the network and non-CPAM compliant
servers. They implement CPAM specifications in the following way:
1. Mapping of methods [12] [13] and parameters: the wrapper maps methods

specified in the information repository to one or more methods of the legacy
module. It also maps parameters to ASN.1 data structures, preserving default
values assigned in the legacy modules (or adding them if they were not assigned).

2. Threading of invocations: to ensure parallelism and respect asynchrony in the
legacy code, the CHAIMS wrapper spawns a new thread for each invocation.

 CPAM, A Protocol for Software Composition 23

3. Generation of internal data structures to handle client invocations and
connections, and support hierarchical setting of parameters: each call to SETUP
generates the necessary data structures to store client and invocation related
information in the wrapper. Such information includes client-specific preset values,
and the status, progress and results for each invocation. The generated data
structures are deleted when a call to TERMINATEALL occurs.

4. Implementation of the ESTIMATE primitive for cost estimation: for each method
whose cost estimation is not provided by the server, the ESTIMATE primitive by
default returns an average of the costs of the previous calls of that method. It could
also include dynamic information about the server and the network, such as
machine server load, network traffic, etc.

5. Implementation of the EXAMINE primitive for invocation monitoring: by default,
only the status field is returned. For the progress information to be set in the
wrapper, the server has to give significant information.

6. Implementation of all other CPAM primitives: SETUP, GET/SETPARAM,
INVOKE, EXTRACT, TERMINATE, and TERMINATEALL.

The current CHAIMS wrapper templates automatically generate the code to ensure
points 2 to 6. Only requirement 1 needs manual coding (except for BER-
encoding/decoding, which is automatically done by ASN.1 libraries).

5.3 Example of a Client Using CPAM

A successful utilization of CPAM for realizing composition is the Transportation
example implemented within the CHAIMS system. The example consists in finding
the best way for transporting goods between two cities. The composer uses services
from five heterogeneous and autonomous megamodules. The client program is written
in CLAM, and the CSRT generated through the CHAIMS compiler is in compliance
with CPAM. A second example is under implementation. It computes the best design
model for an aircraft system, and includes optimization functionality as cost
estimation, incremental result extraction and invocation progress examination.

Below is given a simplified version of the Transportation megaprogram (Fig. 6).
Heterogeneity and distribution characteristics of the composed megamodules are
specified as follows: locality (Remote or Local), language, and protocol.

6 Conclusion

CPAM is a high-level protocol for composing megamodules. It supports
heterogeneity especially by transferring data as encoded ASN.1 structures, and
preserves megamodule autonomy by collecting service information from an
information repository, and by subsequently using the generic invocation primitive of
CPAM in order to INVOKE services.

Most importantly, CPAM enables efficient composition of large-scale services by
optimizing the invocation sequence (parallelism, invocation monitoring, cost
estimation), and minimizing data flow between megamodules (presetting of
parameters, hierarchical setting of parameters, partial extraction). As CPAM is
currently focused on composition, it does not provide support for recovery or security.

24 Laurence Melloul et al.

These services could be obtained by orthogonal systems or by integrating CPAM into
a larger protocol.

Transportationdemo
BEGINCHAIMS
io = SETUP ("io") // Remote, Java, CORBA ORBACUS
math = SETUP ("MathMM") // Local, Java
am = SETUP ("AirMM") // Remote, C++, CORBA ORBIX
gm = SETUP ("GroundMM") // Remote, C++, CORBA ORBIX
ri = SETUP ("RouteInfoMM") // Remote, C++, CORBA ORBIX

// Get type and default value of the city pair parameter
(cp_var = CityPair) = ri.GETPARAM()

// Ask the user to confirm/modify the source and destination cities
ioask = io.INVOKE ("ask", label = "which cities", data = cp_var)
WHILE (ioask.EXAMINE() != DONE) {}
(cities_var = Cities) = ioask.EXTRACT()

// Compute costs of the route by air, and by ground, in parallel
acost = am.INVOKE ("GetAirTravelCost", CityPair = cities_var)
gcost = gm.INVOKE ("GetGdTravelCost", CityPair = cities_var)

// Make other invocations (e.g., Check weather)
….

// Extract the two cost results
WHILE (acost.EXAMINE() != DONE) {}
(ac_var = Cost) = acost.EXTRACT()
WHILE (gcost.EXAMINE() != DONE) {}
(gc_var = Cost) = gcost.EXTRACT()

// Compare the two costs
lt = math.INVOKE ("LessThan", value1 = ac_var, value2 = gc_var)
WHILE (lt.EXAMINE() != DONE) {}
(lt_bool = Result) = lt_ih.EXTRACT()

// Display the smallest cost
IF (lt_bool == TRUE) THEN
{ iowrite = io.INVOKE ("write", data = ac_var) }
ELSE
{ iowrite = io.INVOKE ("write", data = gc_var) }

am.TERMINATE()
ri.TERMINATE()
gm.TERMINATE()
io.TERMINATE()
math.TERMINATE()
ENDCHAIMS

Fig. 6. CLAM megaprogram to calculate the best route between two cities

In the future, we plan to enable even more optimization through automated
scheduling of composed services that use the CPAM protocol within the CHAIMS
system. Automation, while not disabling optimizations that are based on domain
expertise, will discharge the composer from parallelism or lower level scheduling
tasks. In a large-scale and distributed environment, resources are likely to be

 CPAM, A Protocol for Software Composition 25

relocated, and their available capacity depends on aggregate usage. Invocation
scheduling and data flow optimization need to take into account such constraints. The
CPAM protocol can give sufficient information to the compiler or the client program
for enabling automated scheduling of composed software at compile-time, and more
significantly, at run-time.

References

1. G. Wiederhold, P. Wegner and S. Ceri: "Towards Megaprogramming: A Paradigm for
Component-Based Programming"; Communications of the ACM, 1992(11): p89-99

2. J. Siegel: "CORBA fundamentals and programming"; Wiley New York, 1996
3. C. Szyperski: "Component Software: Beyond Object-Oriented Programming"; Addison-

Wesley and ACM-Press New York, 1997
4. W. Rosenberry, D. Kenney and G. Fisher: "Understanding DCE"; OReilly, 1994
5. D. Platt: "The Essence of COM and ActiveX"; Prentice-Hall, 1997
6. R. Van Renesse and K. Birman: "Protocol Composition in Horus"; TR95-1505, 1995
7. J. Jannink, S. Pichai, D. Verheijen and G. Wiederhold: "Encapsulation and Composition of

Ontologies"; submitted
8. "Information Processing -- Open Systems Interconnection -- Specification of Abstract

Syntax Notation One" and "Specification of Basic Encoding Rules for Abstract Syntax
Notation One", International Organization for Standardization and International
Electrotechnical Committee, International Standards 8824 and 8825, 1987

9. L. Perrochon, G. Wiederhold and R. Burback: "A compiler for Composition: CHAIMS";
Fifth International Symposium on Assessment of Software Tools and Technologies (SAST
`97), Pittsburgh, June 3-5, 1997

10. N. Sample, D. Beringer, L. Melloul and G. Wiederhold: “CLAM: Composition Language
for Autonomous Megamodules”; Third Int'l Conference on Coordination Models and
Languages, COORD'99, Amsterdam, April 26-28, 1999

11. D. Beringer, C. Tornabene, P. Jain and G. Wiederhold: "A Language and System for
Composing Autonomous, Heterogeneous and Distributed Megamodules"; DEXA
International Workshop on Large-Scale Software Composition, August 28, 1998, Vienna
Austria

12. Birell, A.D. and B.J. Nelso: "Implementing Remote Procedure Calls"; ACM Transactions
on Computer Systems, 1984. 2(1): p. 39-59

13. ISO, "ISO Remote Procedure Call Specification", ISO/IEC CD 11578 N6561, 1991

	1 Introduction
	2 CPAM Supports Megamodule Heterogeneity
	3 CPAM Preserves Megamodule Autonomy
	4 CPAM Enables Efficient Composition of Large-Scale Services
	5 How to Use CPAM
	6 Conclusion
	References

