

Managing Complex and Varied Data with the IndexFabricTM

Neal Sample1,2, Brian Cooper1,2, Michael Franklin1,3, Gísli Hjaltason1, Moshe Shadmon1 and Levy Cohen1

1RightOrder Inc.
3850 N. First St.

San Jose, CA 95134 USA

2Department of Computer Science
Stanford University

Stanford, CA 94305 USA

3Computer Science Division
University of California

Berkeley, CA 94720 USA

{nsample,cooperb}@db.stanford.edu, franklin@cs.berkeley.edu,
{gislih,moshes,levyc}@rightorder.com

Abstract

Emerging networked applications present significant

challenges for traditional data management techniques
for two reasons. First, they are based on data encoded in
XML, LDAP directories, etc. that typically have complex
inter-relationships. Second, the dynamic nature of
networked applications and the need to integrate data
from multiple sources results in data that is semi- or
irregularly structured. The IndexFabric has been
developed to meet both these challenges. In this
demonstration, we show how the IndexFabric efficiently
encodes and indexes very large collections of irregular,
semistructured, and complex data.

1. Introduction

Java, XML, and the multi-tier architecture for
distributed enterprise applications have made the promise
of scalability, adaptability, interoperability, and time to
market a reality for enterprise computing. The benefits are
well known, and this model is quickly becoming a
standard. By and large, however, such systems still rely
on legacy technologies for data management. These
legacy technologies depend on a certain level of
predictability, structure, control, and centralization and do
not respond well to change and variable structure. As
such there is a mismatch between the highly fluid
properties of modern applications and the inflexible data
repositories used to store and organize the crucial data
around which these applications are built.

2. Managing Complex Relationships

Networked applications encompass a wide variety of
data items, and these items must be related together in
order to answer questions asked by users. For example,
in a product catalog, it is not enough to find a single
product item; users also want to know specifications for

the product, information about the manufacturer,
information about vendors, and so on. Relational
databases store different entities separately, and then use
joins to reconstruct relationships among them at query
time. The reconstruction of complex objects such as
XML documents or LDAP hierarchies can require
numerous “self-joins”. This reconstruction process is
typically quite expensive, and limits the performance of
existing systems.

The IndexFabric solves this problem by maintaining
data relationships explicitly in an elegant, efficient
structure [1,2]. This means that the relationships can be
queried and navigated quickly and efficiently. In the
IndexFabric, data relationships are explicitly materialized
as self-describing entries. This approach supports query
formulation and interactive discovery, as the application
or user can browse the self-describing structure to
determine the relationships that exist among data items.

The IndexFabric represents relationships as
designated strings. A designator is a special character or
string of characters that has semantic meaning. Data
items are tagged with an appropriate designator before
being inserted into the IndexFabric. For example, a
hardware supplier might assign the designator T to “item
type,” D to “dimensions” and P to “price.” Then, a
particular item such as a drill can be represented as the
keys “T Drill [242]”, “D 11in x 5 in x 7 in [242]”, “P $64
[242]”; this encodes that item 242 is a drill, with
dimensions of 11in x 5 in x 7 in, and which costs $64.

 Relationships are then explicitly encoded into
strings by concatenating designated items. This flexible
approach allows data with varied relationships to be
stored uniformly in a single structure. For example, to
represent the fact that an item “T drill bit [789]” is to be
used with another item “T drill [988],” the application can
create the key “T drill [988] T drill bit [789].” And insert
it into the IndexFabric. To search for drill bits for a
particular drill, we can search for keys prefixed by “T

drill [988] T drill bit.” Similarly, a user could discover
what types of information are associated with a particular
item by using that item as a prefix search key for a range
query. For example, a search for keys prefixed by “T drill
[988]” returns everything related to that drill item, either
returning the designators describing related item types, or
returning the related items themselves.

3. Balancing Access to Unbalanced Data

Arbitrarily complex relationships can be represented
as designated strings, but such strings can become quite
long and without special treatment, the costs of
management and search could detract from the
advantages of the relationship index. Thus, we have
developed a system for efficiently storing and querying
long relationships in a balanced and predictable fashion.

Our approach uses a novel, block-based
implementation of the PATRICIA trie [5]. The
PATRICIA trie incurs a fixed cost per key so it scales
gracefully while handling long and composite keys.
PATRICIA tries, however, are notoriously poor as disk-
resident structures. There are two reasons for this. First,
n-ary PATRICIA tries are not easily split into block-size
pieces leading to poor block utilization, even in bulk-
loaded structures. Second, unlike B-tree variants, the
shape of a PATRICIA trie depends exclusively on the
input dataset. This means that paths through the index
may become imbalanced and yield unpredictably many
I/Os, even for a single query.

The IndexFabric includes a method for balancing
PATRICIA tries to yield predictable, balanced access,
while remaining efficient. We refer to the basic
unbalanced PATRICIA trie as the “vertical index.” Each
block in this vertical index can be represented by the
longest common prefix of the strings indexed by the
block. These prefix strings can be placed into another
PATRICIA and parceled out into blocks. This new layer
no longer refers to data items, but rather refers to blocks.
This process is repeated until there is a PATRICIA that
can fit in a single “root block.” We show an example of
the structure in Figure 1.

Searches begin at the root block and proceed
horizontally by reading a single block at each layer,
finally entering the vertical index and reaching the data.
This balancing structure guarantees predictable search
cost and also ameliorates the cost of sub-optimal block
utilization. With a block out-degree of about a thousand
pointers (given an 8k block size), about a billion keys can
be referenced in 3 layers. The upper two layers are less
than 10 MB, which easily fit in memory.

 Given these features of the IndexFabric, storing
keys that represent long and complex relationships is no
longer a daunting task. Since each long key adds a
constant overhead to the index, relationships may be
arbitrarily complex and yet have bounded storage cost.

Searching the relationship index is a bounded operation
over a small index, due to the aggressive compression of
the PATRICIA tries at each level.

 This storage approach also facilitates relationship
discovery. When generating long keys to represent
relationships, closely related elements will have a
common prefix. Because the core of the index is a
PATRICIA trie, these related elements would be clustered
in the index around that common prefix. Thus, when an
interesting prefix is located with a single lookup, all
encoded related information may be discovered at the
same time.

 Layer 2 Layer 1 Layer 0

In this demonstration, we will show the techniques used
to represent relationships as long keys. We will also show
how those long keys behave within a demonstration
version of the index. Further information about the
technology can be found in [1,2,3,4].

References

[1] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and M.
Shadmon. A fast index for semistructured data. In
Proceedings VLDB, September 2001, pp 341-350.

[2] Brian Cooper and Moshe Shadmon. The Index Fabric:
Technical Overview. Technical Report, 2000. Available at
http://www.rightorder.com/technology/overview.pdf.

[3] B. Cooper, N. Sample, and M. Shadmon. A parallel
index for semistructured data. ACM Symposium on
Applied Computing 2002, to appear.

[4] B. Cooper, et al. Extensible Data Management in the
Middle-Tier. Research Issues in Data Engineering
(RIDE 2002), Feb. 2002, to appear.

[5] D. R. Morrison. PATRICIA - Practical Algorithm to
Retrieve Information Coded in Alphanumeric. Jrnl. of the
ACM, 15(4) pp514-534, Oct 1968.

Figure 1. Index Fabric Data Structure

	Introduction
	Managing Complex Relationships
	Balancing Access to Unbalanced Data
	References

