

Scheduling Under Uncertainty:
Planning for the Ubiquitous Grid

Neal Sample Pedram Keyani Gio Wiederhold

Computer Science Department
Stanford University, Stanford CA 94305
{nsample, pkeyani, gio}@cs.stanford.edu

Abstract. Computational Grid projects are ushering in an environment where
clients make use of resources and services that are far too expensive for single
clients to manage or maintain. Clients compose a megaprogram with services
offered by outside organizations. However, the benefits of this paradigm come
with a loss of control over job execution with added uncertainty about job
completion. Current techniques for scheduling distributed services do not
simultaneously account for autonomous service providers whose performance,
reliability, and cost are not controlled by the service user. We propose an
approach to scheduling that compensates for this uncertainty. Our approach
builds initial schedules based on cost estimates from service providers and
during program execution monitors job progress to determine if future
deadlines will be met. This approach enables early hazard detection and
facilitates schedule repairs to compensate for delays.

1 Introduction

Advances in the speed and reliability of computer networks in combination with
distribution protocols (such as CORBA and Java RMI) allow clients to abstract away
heterogeneities in the network, platform, language, etc., and make use of distributed
services and resources that were previously unavailable. Remote services and
resources can be utilized as if they were locally available. There are still
complications that arise from geographic distance, security concerns, service
autonomy, and compensation. In order to complete the abstraction to transparently
use remote services and resources, it is necessary to have a mechanism to deal with the
uncertainties introduced by scheduling services not under local control.

The development of Grid computing has enabled a model where organizations can
develop services and charge a fee for their use to clients. Fee-based computing models
are gaining success in both cooperative and commercial computing environments
[3,5,7,8,11]. In these grids, service providers charge fees or trade resources for the use
of their service. The value of the service offered is a combination of the software
itself and the execution of the software. This is an attractive opportunity for service
providers because they can amortize their development and maintenance costs and
share these expenses with clients, while protecting their proprietary interests in the

service. Also, under the CHAIMS model, service updates can be performed in a
central location and not need to be propagated to end-users.

Clients also gain from this model in that they can access services that they don�t
have to develop or maintain [12]. Many clients do not have the resources to develop
sophisticated software or purchase the high-end machinery necessary to accomplish
their tasks. For example, suppose a small university�s genomic research lab had a
digitized DNA sequence from which they wanted to isolate a certain gene. Instead of
developing the necessary software �in house� they hire a service provider that has the
computational power and appropriate genomic software to analyze their data and give
them the result they seek. Contracting for the service has the same result as
purchasing the computational hardware and proprietary software, but at a fraction of
the cost. In an open market, valuable software services may have multiple service
providers competing for the same pool of customers. A natural pricing structure would
evolve based on the time to completion and the surety of the service providers. (Surety
is the probability that a job will finish execution within a deadline window forecast by
the service provider.) Quick executing services with a high surety would of course be
more valuable than the same services that have longer running times or a low surety.
A customer�s choice of service providers would depend on what value they place on
time, cost, and surety, simultaneously. Until now, schedulers have treated the remote
service problem as a multivariate optimization involving only two variables: cost and
time [2,4,13]. We extend the worldview by accounting for the uncertainty introduced
when services are not under the client�s control.

Access to an array of services provides many opportunities for service composition.
The ability to compose services is an especially powerful tool for multi-disciplinary
projects where no single client has expertise in all sub-problem areas [12]. By
allowing for composition of existing modules, researchers can devote less effort to
software development and more time to central research questions. But there is a
pitfall: distributed services are not under the control of the client. This means that
estimates for job completion time may be inaccurate and clients cannot control
resource allocation to recover from hazards. An inaccurate estimate in the completion
time of single service is undesirable; in a program comprised of multiple services this
can quickly become untenable.

The main research problem we address in this paper is the decreased level of
scheduling surety that comes from composing a program from multiple distributed
services [12,14]. By making programs composed of distributed services more
reliable, these compositions become an increasingly viable solution for a wide range
of problems, and become an appropriate solution for a larger class of clients.

At a finer resolution, the goal of this project is to take a program composed of
multiple services and complete it within a soft deadline and cost budget, while
guaranteeing a client-specified minimum level of surety. The scheduling process
begins with the selection of an initial schedule based on service provider estimates for
completion time and fee [35]. The initial schedule is driven by dependencies (data,
control, etc.) between service invocations and estimates from service providers. At
runtime, job monitoring detects misbehaving services that can jeopardize the
completion of the entire program. During the monitoring phase, surety is recalculated
whenever progress is made (or not made, but time has advanced). If surety drops

below the minimum threshold determined by the client, the scheduler takes action to
recover from the delay and increase surety to an acceptable level. Any measures taken
require finding alternative schedules for the remainder of the program that restore
surety without exceeding the program�s budget. Monitoring coupled with reactive
rescheduling is key to providing clients with the surety of distributed job completion,
as they would expect from a program running solely on local resources.

Systems such as CHAIMS (Compiling High-level Access Interfaces for Multi-site
Software) allow clients to abstract away heterogeneity and service autonomy while
simultaneously compensating for pitfalls associated with both [15]. We focus on
scheduling with CHAIMS because its preferred development language (CLAM �
Composition Language for Autonomous Megamodules) provides key language
primitives that enable dynamic scheduling with the possibility of recovery from
hazards. CLAM contains a primitive to get estimates of the job completion time and
cost from a service provider (ESTIMATE), and a primitive to examine job progress
from a service provider (EXAMINE)[16]. These two capabilities used in concert
allow for scheduling a program with more confidence in execution time. Other
coordination languages such as MANIFOLD are appropriate for this type of
composition, but lack the EXAMINE and ESTIMATE primitives found in CLAM
[17,18].

The current supported runtime system for CHAIMS is known CPAM (CHAIMS
Protocol for Autonomous Megamodules) [19]. The protocol removes the barriers
imposed by different programming languages and distribution protocols, while
providing support for the scheduling primitives in CLAM. Programs written in
CLAM are known as megaprograms, though the class of programs is known by
myriad names in other scheduling literature (ensembles, compositions, grid programs,
workflows, etc.) [5,19,22,23]. Within CHAIMS, megaprograms are composed from
megamodules. Megamodules are what we have referred to simply as services; they are
assumed to possibly come from multiple programming languages, distinct hosts, and
have different native distribution protocols [16].

An initial objective of CHAIMS was to simply develop a language and runtime
support for the programs composed from distributed modules. The focus of this work
is to add a dynamic scheduler to the system that can deal with the issues that arise in
an unreliable environment. We build on their prior efforts because the language and
runtime support overlap well with the requirements of runtime testing and surety
monitoring. However, our work is broadly applicable to any system where estimates
may be gathered a priori and where clients may monitor runtime progress.

Current distributed service scheduling research has not presented a complete
solution that incorporates uncertainty. Most distributed computation schedules assume
a cooperative environment where delays are rare, and that initial estimates come from
oracles. The foundation of this work is that distributed systems (in practice) are rife
with uncertainty that affects the reliability of schedules generated a priori. Section 2
discusses the characteristics of autonomous service providers and the attributes central
to the scheduling task. Section 3 gives a brief description of CHAIMS and how it
enables composition and coordination of distributed services. Section 4 explains the
scheduling techniques and job monitoring that we advocate. Section 5 covers related
work and explains how our techniques may be leveraged in distributed architectures

other than CHAIMS. This research has opened further questions, detailed in section
6.

2 Autonomous Service Providers

The Internet has made distributed services a reality and opened up a completely new
scheduling problem area to explore [1,4,21,24,25]. Without careful consideration, as
computations are moved farther and farther from client control, it is increasingly likely
that hazards will slow or halt progress. These hazards may arise from hardware or
software failures, to power outages, to resource mismanagement by a service provider.
Additionally, in competitive markets, service providers try to maximize profits. A
greedy service provider could mistakenly take on more jobs than it can handle and
delay the finishing time of all jobs. Alternately, an unscrupulous service provider
might stop the execution of a low-paying job, however unfair it may seem, for more
lucrative jobs that arise. Running into delays for a single service can be costly, but
when programs are composed from multiple distributed services, delays in one service
can have an undesirable cascade effect that destroys scheduling commitments for the
entire client program. One aid to avoid such problems comes in the form of contracts
[11, 34]. In the simplest contracts, clients use initial estimates of job completion time
to bind service providers. This still does not guarantee that service providers will be
able to meet the deadline of their contract. As such, it is also necessary to monitor job
progress during execution to determine if the contract will be met (and to react swiftly
and appropriately to recover if it is not).

In this uncertain environment it is necessary to leverage contracts to motivate
clients and service providers to meet their mutual obligations. At its core, the contract
enables two parties who do not trust each other to enter into a mutually beneficial
agreement. While contracts are a tool to promote accountability, they do not enforce
it. In this paper we do not discuss contracts negotiation or enforcement, as they are
implementation details that each distribution model must decide on. However, more
information on contracts and negotiations within distributed systems can be found in
[2,20,23]. We expect contracts to consider:

• Cost � what a service provider will charge for the service.
• Completion time - the estimated length of time to complete the job.
• Variance - the amount of time before or after the completion time that the job

may finish. (It is assumed no service provider can be completely accurate in
job estimation.) Variance may be presented symmetrically or asymmetrically.
In this paper, we assume symmetric variance in the examples, but provide
equations to handle asymmetric variance.

• Late fee � a credit the service provider returns to the client per unit of time that
the job is not finished after completion time plus variance.

• Cancellation fee - a set amount that the service provider will return to the
client if the client breaks the contract. This value may be zero, but is of utility
to both client and service provider.

• Reservation � an amount the client pays after negotiating the contract to hold
resources until it exercises the contract and invokes the service. This

reservation fee guarantees that the client will be given access to the service
provider�s resources, and confidence that the client can have some control over
job start time. Reservations are a complicated issue themselves, and are further
discussed in [11,23]. We assume �American options�, which allow a client to
start a service at any point until expiry.

This distributed computational model for accessing services closely parallels
traditional economical models. Significant detail on how grid computing relates to
(and can leverage) various economic mechanisms can also be found in [2,4,11,23].
We do not make assumptions about the trading or cash economies that will lubricate
the grid; we simply examine the general considerations that economic factors place on
scheduling under uncertainty.

3 CHAIMS

Technological advancements and social change have made grid computing a feasible
option for computation. We have chosen the CHAIMS platform as a test bed for our
investigations for the reasons mentioned in section 1. Specifically, we leverage its
compositional programming language (CLAM) and the runtime support system
(CPAM) to enable composition and coordination of distributed services. In the future
we expect to plug our scheduler into other compositional and grid platforms. In this
section, we give more detail about CHAIMS.

3.1 CLAM

CLAM is a declarative language intended for large-scale module composition that
lacks constructs for complicated computation [16]. Motivating the absence of
computational primitives in CLAM was a desire to create a simple language for non-
programmer domain experts to accomplish their desired tasks [19]. The premise rests
on the idea that there is a collection of service providers who will offer some services
that may be used with other distributed services, or perhaps with modules locally
controlled by domain experts.

CLAM is designed for a large-scale environment where parallelism is important.
Unlike many languages for distributed or parallel computing (e.g., HPF (High
Performance Fortran) [26]), CLAM does not specify what resources a service
invocation uses. This permits service instances to be scheduled identically, regardless
of the capabilities and resources of the service�s backing system. Breaking free from
resource specification enables freedom in choosing service providers at runtime,
rather than compile time, thus selecting providers based on costs at runtime. This late
binding time is similar to the tactic introduced in [11,13].

While CLAM is simply a declarative compositional language, it makes heavy use
of the coordination capabilities supported by CPAM to achieve good performance.
CPAM enables asynchronous service invocation and parallel execution. The key
facilities that CPAM offers are the ability to get estimates on job completion and to
examine job progress during service execution. These two CPAM capabilities are
mirrored in the ESTIMATE and EXAMINE primitives of CLAM. Further discussion

in Section 4 will show how ESTIMATE and EXAMINE provide the capabilities for
building an intelligent scheduler. Note that enabling these primitives in any distributed
framework provides a generic framework for scheduling under uncertainty.

3.2 CPAM

CPAM is a generic high-level protocol for remote service invocation. CPAM
compensates for language and platform differences by representing data as ASN.1
structures [19]. Data is transmitted from clients to services (and between services)
opaquely, with no alteration possible during transit. Services must be wrapped to
unpack data type locally. CPAM has been implemented above many transport
protocols such as DCOM, Java RMI and CORBA. There is also a �native� transport
mechanism for CPAM.

CPAM breaks service invocation into a multi-step process to enable asynchrony
and parallelism. The steps of invocation are SETUP, SETPARAM (parameter
setting), ESTIMATE (garner cost estimates), INVOKE, EXAMINE (monitor
progress), EXTRACT and TERMINATE [16]. An extended discussion of each is
available in [16]. These functions are exposed to programmers in CLAM. However,
with an automated scheduler, ESTIMATE and EXAMINE are not required in the
language, just as part of the runtime. ESTIMATE and EXAMINE are necessary for
scheduling because they allow the construction of an initial schedule and allow for
monitoring during runtime. Calling ESTIMATE from a service provider returns an
estimate of job completion time and a variance related to that value. Because the
runtime of a service is often dependent on its input, SETPARAM is used to give the
service provider enough information to make an informed estimate. Once a service is
executing, EXAMINE can be called to view the progress of the job. The ultimate goal
is to deprecate the EXAMINE and EXTRACT primitive in CLAM by leveraging them
in a scheduler built directly on top of CPAM. Runtime support provided by mature
grid implementations such as Legion are also appropriate [27,28].

4 Scheduling in an Uncertain Environment

In order to deal with an uncertain environment it is necessary to consider surety when
scheduling. A surety threshold is set before a program is started, and is monitored
throughout the execution lifetime of the program. When progress information
indicates that the surety threshold has been breached, dynamic repair and rescheduling
operations are triggered. As mentioned previously, the scheduler will make use of the
ESTIMATE and EXAMINE capabilities to build initial schedules and to monitor
progress.

Estimate

CPM/PERT

Finish

Execute

Monitor Reschedule

Fig. 1. The scheduling process

Before scheduling can start, the client determines a budget for the program. A budget
is made up of (1) the deadline that the program must be finished by, (2) the amount of
consideration (money, credits, bartered resources, etc. depending on the economic
model) that can be spent on the program execution, and (3) the minimum level of
surety that must be met by the scheduler. Individual clients determine the amount of
time and consideration available for a specific program�s execution. The surety is a
limit on the risk the client will tolerate in meeting their budget. Once the constraints of
the budget are determined, the client can select to optimize or balance these three
budgetary concerns (time, cost, surety). Figure 1 shows a simplified view of the
scheduling process; steps not central to this work are omitted. We will discuss each of
these steps in detail. In this section, we present an overview of the process steps.

First, estimates are collected for each service from potentially many service
providers and used in the program to build possible schedules. In our current naïve
implementation, we exhaustively enumerate all schedules and select one from the pool
of best choices. Before discussing which schedules are �best�, we will clarify our
underlying schedule evaluation techniques.

Once a candidate schedule is created, the shortest expected running time of that
schedule can be determined using CPM (Critical Path Method)[29]. With this
information it is trivial to test whether a schedule meets the minimum time and budget
criteria, however nothing is known at this point about surety. The longest path (in
terms of expected execution time) in the program determines the runtime of the
program. This longest path is called the �critical path� because any delay along the
critical path will affect the running time of the entire program. To determine surety it
is necessary to extend the CPM analysis to a probabilistic PERT (Program Evaluation
and Review Techniques) analysis [29,30,31]. PERT extends CPM by accounting for
the uncertainty in each estimated service duration to compute the surety of the entire
program. We will discuss our use of PERT in significant detail in the next section.

Once a schedule is selected and contracts are finalized, the scheduler may invoke
any ready services in the program. As services execute, their progress is monitored to
ensure that completion times are met; if the overall surety of program completion
drops below the predetermined threshold, the scheduler begins the repair and
reschedule phase. In the repair phase there are many options. New service providers
may be found to replace the service module that is delaying overall progress. Or other
services along the critical path may be substituted for alternative services that have

shorter runtimes (though at an increased cost). Once repair and rescheduling is
complete, the scheduler returns to monitoring the execution.

4.1 Simple Planning

The first step in scheduling is program analysis to discover any dependencies among
component services and construct a dependency graph for the workflow. The very
simple program in Figure 2 shows implicit data dependencies between services. For
instance, service3 takes A and B as input. A and B are outputs of service1 and
service2, respectively. These dependencies are mapped into the workflow of
Figure 3 where nodes represent services and dependencies are shown as arcs between
nodes with the arrow pointing to the dependent node. These workflows consist of
paths that are created by dependencies between nodes. Once the dependencies are
mapped, the scheduler requests bids from service providers in order to fill in cost
values for the proposed schedule.

The scheduler contacts a repository or directory service that returns a list of service
providers that perform a specific service. Based on this list, the scheduler contacts the
service providers and requests bids. The bid request is based on the service needed,
the expected start time for the service, and information about the size and complexity
of the input parameters to the service. For some services, the inputs cannot be known
at runtime because they are the outputs of other services; in these cases information
about the size and complexity of parameters is currently based on heuristics that the
Service provider uses to make best estimates. Service providers collate this
information and calculate a possible bid. The client receives a collection of bids and
will either accept one or more bids for the schedule, or attempt to renegotiate with the
service providers [2,20,23]. The deciding factor in which bids are accepted is based
on the Pareto optimality [32] of the �best� schedules. For a bid to be Pareto optimal,
there can be no other bid with an absolute advantage in terms of price, time and
surety. The Pareto curve in this case is weighted by the optimization strategy
presented by the client, for instance in soft real-time applications surety will have a
high weighting. All decisions are based simultaneously on cost, time, and surety.

Using CPM gives the scheduler the critical path and the expected runtime of the

// begin program
A = service1();
B = service2();
C = service3(A,B);
D = service4(C);
E = service5(C);
// end of program

 STAR T

serv ice1

serv ice3

serv ice4

serv ice2

serv ice5

F IN ISH

 Fig. 2. Sample program Fig. 3. Dependency graph of sample program

program. This information allows the schedule to select candidate schedules that meet
the client�s budget and to further optimize and refine the schedule. For instance, CPM
indicates positions of �slack� in the schedule, where cheaper, longer running processes
may be used because they�re not along the critical path [29]. By choosing slower
services in these non-critical paths, the scheduler can possibly decrease the overall
cost of the program, thus saving resources that may be necessary for repairs at a later
time. The total price cost for all services executed plus the cost of any reservations not
kept is the total cost of the program.

 The PERT method extends CPM to account for uncertainty of individual
service completion times and determines the probability of completing a complete
program by an expected time [29]. PERT analysis forms the basis for our
rescheduling decisions. To perform the initial analysis, the scheduler uses three time
estimates for each service: most likely(m), optimistic(a) and pessimistic(b) completion
times. �Optimistic� and �pessimistic� times are derived from the expected time
coupled with the variance. With this information, the expected duration ie of a single

service can be determined by a weighted combination of the most likely duration im

and the midpoint of the distribution
2

)(ii ba + for each service i:

3
2

2 ii
i

i

bam
e

++
= (1)

There is a spread of about 6 standard deviations from ia to ib thus:

6
ii

i
ab −=σ (2)

Activity durations are independent; hence the sum of the independent random
expected functions ie is normally distributed. From the expected completion time
and standard deviation of each service on the critical path, we construct the expected
completion time and standard deviation of the entire program as:

�= iee and �= 2
iprogram σσ (3)

for all services i on the critical path. With this we can calculate the probability that
the program completion time T is less than the deadline of time t. This

)(tTprob ≤ represents the surety level of the program completing execution by its
deadline, t. We specify the completion time as:

programxet σ∗+= giving us
program

etx
σ

−= (4)

which is used to express the surety of the program as:

�
�
�

�

�
�
�

� −≤−=≤
programprogram

eteTtTprob
σσ

)((5)

This is the same as the probability of a random variable from N(0, 1) distribution

being less than or equal to
program

et
σ

− .

Using CPM and PERT, the scheduler can evaluate the bids that form the final
schedules. What follows now is an example of the complete repair and scheduling
activity.

In this example, Table 1 shows a set of bids produced for the sample program in
Figure 2. In some cases, multiple service providers bid for a service, giving the
scheduler some flexibility. In the case of service3, only one service provider has
replied with a bid, thus it will have to be used.

Table 1. Bids received for each service

Service Cost Time
service1 8 8 +/- 2

9 10 +/- 1
11 6 +/- 0

service2 10 5 +/- 2
12 4 +/- 1

service3 5 6 +/- 0
service4 15 2 +/- 0

10 4 +/- 2
service5 20 1 +/- 0

10 2 +/- 2
5 3 +/- 1

After all bids have been received, the scheduler searches for an optimal schedule,

 START

service1

service3

service4

service2

service5

FINISH

8 ± 2 5 ± 2

6 ± 0

3 ± 14 ± 2

 Fig. 4. Sample Schedule Fig. 5. Probability distribution of original program
schedule

based on the client�s budget. Assume the client has given a deadline of 20 units of
time, a budget of ¥65 and a minimum surety requirement of 90%. (We use the �¥�
symbol simply to distinguish the cost numbers from the time numbers, and make no
implication about any particular specie or economic model.) The bids from table 1
are used to construct the schedule in Figure 4. In Figure 4, the critical path to consist
of nodes service1, service3, and service4. By application of CPM, this
schedule has an expected finishing time of 18, an earliest finishing time of 14, and
latest finishing time of 22 assuming no hazards. The total budget estimated for this
program is ¥38, allowing a reserve of ¥27, which can be used to repair the schedule in
case of delay or hazard. Figure 5 shows the probability distribution of this program�s
completion time. The surety for the program is determined via PERT to be 98.31%, an
acceptable level (≥90%). Please note that these values for cost, time, and surety are
from an a priori analysis based solely on service provider estimates. In the next
section, we explain surety based monitoring and repair strategy.

4.2 Monitoring and Repairing Schedules

Once the initial planning stage is complete and contracts have been drawn, execution
starts. For our running example, we assign this start time a convenient value of
time=0. The schedule for our example (shown in Figure 4) is very �tight� in terms of
cost. There are alternative assignments of service instances that would give a lower
overall cost. This trades off with overall runtime of the schedule to some extent, but
the tradeoff is considered acceptable because the schedule does not fall below the
surety threshold.

Of course delays along the critical path are likely to be the most damaging since
they extend the run time of the entire program. Constant monitoring is required to
ensure that single delays do not affect the entire program. However, delays not in the
critical path can also impact surety. We illustrate this case next.

At time=0, service1 and service2 begin execution. Imagine that we monitor
progress at each time integer interval. At time=1, time=2, and time=3, the scheduler
observes no anomalies. However, at time=4, a hazard is detected.

According to the expected schedule, at time=4, service2 should be 80%
completed. Imagine that the scheduler observes that service2 is only 50%
complete. Based on this information, the scheduler projects that the service2 will
complete at time=11, thus altering the critical path to include service2 instead of
service1. This potential delay changes the expected running time of the program,
which subsequently lowers the surety of the overall execution to 14.44%, which is an
unacceptable level (< 90%).

To counter this delay, the scheduler first contacts all service providers to get new
bids. (It is interesting to note that in our model as system conditions change, initial
estimates become moot. This is especially true when scheduling long-running
services.) The scheduler determines that the most effective strategy is to accept a bid
to attempt to finish service2 at an earlier time. At time=4, a bid for an instance of
service2 that will cost ¥10 and complete in 5 units of time (with a variance of 2 (5±2))
is found and accepted. Immediately, this second service provider for service2 begins
work in parallel with the delayed instance. This repair strategy has increased the surety

of the complete program, but we now expect the program to finish somewhere
between time=15 and time=23 with a mean expectation of time=19. This repair
increases the surety to 85.56%, and reduces the reserve budget to ¥17. A surety of
85.56% is below the threshold. This schedule requires further repair.

After the delay is caught and an alternative found, the surety remains below the
90% threshold. To further increase surety, it is necessary to select a node along the
critical path and either find alternate service providers that can perform the same
service in less time, or contract with multiple service providers to execute the same
service in parallel, thus increasing the probability that at least one of them will deliver
results in time. The method used to increase surety depends on how much budget is
left over, and if alternative service providers can be found with the required
performance capabilities. In this example, assume that we discover another service
provider that offers service4 for ¥10 with a completion time of 3, and variance of
2. Using this service provider increases overall surety to 95.83%, which is above the
threshold for this execution.

Surety represents the risk of a client program not meeting its deadline that the client
will accept. Monitoring job execution at runtime allows our CHAIMS scheduler to
compare current surety to the limit established by the client. Falling below the surety
threshold triggers the scheduler to repair or reschedule to counteract the effects of
hazard. This is achieved primarily by finding alternative or duplicate services increase
surety. If surety is set too high (e.g., 100%) or the budget too low, the space of
acceptable schedules is radically reduced, and the likelihood of successful schedules
decreases as well.

4.3 Initial Results

Initial results are promising but difficult to quantify. The prototype scheduler
generates Pareto optimal schedules and selects a schedule based on the client-
specified criteria. However, this does not address the central performance question:
how effective is the scheduler at working around delays and hazards? Our initial
evaluation strategy was to simulate network conditions and service providers and
allow the scheduler to make its best attempt at scheduling a set of randomly generated
programs. Various delays plagued the scheduler during simulation, and we determined
a metric for comparison. Using dynamic programming, we simulated all schedules and
compared the optimal overall costs and completion times to our scheduler�s
performance.

This analysis technique does not produce meaningful results. For instance, we
tested a program in which its last required service would become permanently
unavailable shortly after its execution began. It turns out that the �ideal� schedule is
counter-intuitive and would not be selected by any rational scheduler. For instance, if
a schedule had only very long running, inexpensive services, then it would fail
because it exceeded its time budget long before reaching the final service that was
designed to go offline. In those cases, the schedule that had no chance to finish on
time wasted less of the client�s resources during a futile attempt to solve the problem.
This edge case shows the extreme flaw in straightforward quantitative analysis: if a
schedule cannot be completed, the worst scheduling policies are rewarded. In this

particular case, a scheduler that constantly returned �failure to find any satisfying
schedules� would performance best. We are exploring alternative ways to quantify our
results.

5 Related Work

There is significant work in the area of scheduling, though the missing ingredient to
move from laboratory conditions to real world systems has been surety. Our approach
differs from previous research operating under closed world assumptions where a) a
priori estimates are provided by infallible oracles, or b) a priori estimates of cost will
be valid at time=n, where n is potentially far in the future after the estimate was given.
Finally, we see scheduling techniques for time and cost simultaneously, and repair
strategies under the oracular estimates assumption, but we have not seen these
techniques in conjunction with surety analysis.

5.1 Mariposa

Mariposa is a scheduler for operations over large distributed databases. Entities
negotiate with each other for services such as queries, data transmission, and storage
[11,13]. Entities act through agents to process their requests. A key assumption is that
estimates will be met, without exception. This assumption only holds if a central
administrator manages all entities and the administrator ensures that each entity
behaves properly. Our scheduler could provide Mariposa the intelligence to handle
issues that arise when there is no resource overseer, as expected in a truly distributed
environment.

5.2 NOW (Networks of Workstations)

The premise of NoW [33] is that collections of desktops working together have a
much better price-performance ratio than mainframes and supercomputers of the same
power. Applications considered highly suitable for NoW range from cooperative file
caching to parallel computing within a network. Specific projects such as POPCORN
[5] seek to take concepts of NoW and extend them to work on the entire Internet.
POPCORN is providing programmers with a virtual parallel computer by utilizing
processors that participate in this system. POPCORN is based on the notion of a
market where buyers and sellers come together and barter for resources.

POPCORN assumes that nodes will fail, and that it is easier to repeat work on
backup nodes if a worker misses a deadline. Our scheduling system could account for
this uncertainty by monitoring job progress and rapidly migrating computation to
alternative nodes if delays are detected.

5.3 Grid Computing

Many computational grid projects are being developed simultaneously (ecogrid,
DataGrid, power grid, etc.) [9,10,22]. Contributions to this field are coming from
many different projects, each with tailored goals for grid computing. An overarching
goal is to allow for resource sharing and services spread over large geographic,
political, and economic distances. Projects like the European DataGrid currently focus
significant attention on developing a network infrastructure that supports the rapid
transport of multi-PetaByte datasets between different locations [1].

Other projects such as Globus provides tools to bridge the gap between
heterogeneous grid participants [6]. Globus provides a low level toolkit to handle
issues of network communication, authentication and data access. These tools can be
used to create high-level services such as intelligent schedulers that can be inserted
into a computational grid. Thus, Globus makes it possible to insert our scheduler into
a grid infrastructure and provide surety to clients. The resulting increase in schedule
dependability will extend the power and use of grid computing.

5.4 ePert and Extensions

This work extends workflow management systems to include time management
[30,31]. ePert determines internal deadlines in the workflow and monitors progress at
run-time. If deadlines are not met, alternate schedules are chosen. However, these
alternative schedules must be known at runtime, and fully available during execution
time. ePert extends the PERT method to include with it alternate execution paths a
process can take. These extensions allow for some level of pro-active scheduling by
detecting time failures and recovering from them. Our scheduling techniques can
contribute dynamic components to their work. However, the closed-world assumptions
are more likely to hold with workflow schedulers since there is often a strong
command and control structure responsible for the workflow (e.g., workflows within a
single corporation).

6 Future Work

This project has produced tools that allow us to develop and test advanced scheduling
techniques. We are currently working on two parallel tracks. First, we are testing
various scheduling heuristics that should improve our repair tactics. Second, we are
investigating techniques to quantify performance of our scheduler. We have
considered various multivariate analysis evaluation metrics but since they neglect the
notion of surety in their cost models, reasonable and rational schedules have
demonstrably poor performance compared to the most irrational schedulers in certain
cases. We reiterate that the usefulness of our scheduler is not limited to the CHAIMS
system, but we are eager to fulfill this claim by inserting our scheduler into a standard
grid component.

7 Conclusions

We present a scheduling technique that uses surety to overcome much of the
uncertainty naturally present in distributed computing environments. We take a
program composed of multiple distributed services and complete it within a client-
specified soft deadline by guaranteeing that a minimum level of surety is maintained
throughout the program execution. The scheduling tactics demonstrated here make
initial schedules, monitor runtime progress, and then repair the schedule if surety
drops below a threshold value. This work is broadly applicable to systems whose
distributed nature is impacted by uncertainty.

References
1. F. Berman, High Performance Schedulers in Building a Computational Grid, I. Foster and

C. Kesselman, editors, Morgan Kaufmann, 1998.
2. R. Buyya, J. Giddy, D. Abramson, �An Evaluation of Economy-based Resource Trading and

Scheduling on Computational Power Grids for Parameter Sweep Applications,� The Second
Workshop on Active Middleware Services (AMS 2000), August 1, 2000.

3. S. Lohr, �I.B.M. Making a Commitment to Next Phase of the Internet� New York Times
2001, http://www.nytimes.com/2001/08/02/technology/02BLUE.html.

4. D. Marinescu, L. Bölöni, R. Hao, and K. Jun, �An Alternative Model for Scheduling on a
Computational Grid,� Proceedings of ISCIS'98, the Thirteenth International Symposium on
Computer and Information Sciences, Antalya, pp. 473-480, IOP Press, 1998.

5. N. Nisan, S. London, O. Regev, and N. Camiel, �Globally distributed computation over the
internet-the popcorn project,� In Proceedings for the 18th Int�l Conference on Distributed
Computing Systems, 1998.

6. I. Foster and C. Kesselman, �Globus: A Metacomputing Infrastructure Toolkit,�
Proceedings of the Workshop on Environments and Tools for Parallel Scientific Computing,
SIAM, Lyon, France, Aug. 1996.

7. Juno, �Juno Announces Virtual Supercomputer Project,� Juno Press Release, February 1,
2001), http://www.juno.com/corp/news/supercomputer.html.

8. United Devices �Edge Distributed Computing with the MetaProcessor(TM) Platform,�
White paper, 2001, https://www.ud.com/customers/met.pdf.asp.

9. UDDI, Technical White Paper, September 6, 2000
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf.

10.C. Kurt, �UDDI Version 2.0 Operator's Specification�, UDDI Open Draft Specification 8,
June 2001 (Draft K) , http://www.uddi.org/pubs/Operators-V2.00-Open-20010608.pdf

11. M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah, and C. Staelin.
�An economic paradigm for query processing and data migration in Mariposa,� In
Proceedings of the Third International Conference on Parallel and Distributed Information
Systems, Austin, TX, September 1994.

12. Carl Bartlett, Neal Sample, and Matt Haines "Pipeline Expansion in Coordinated
Applications", 1999 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'99), Las Vegas, Nevada, June 28 - July 1, 1999.

13. J.Sidell, �Performance of Adaptive Query Processing in the Mariposa Distributed Database
Management System,� unpublished manuscript, June 1997.

14. W. K. Shih, J. W. S. Liu, and J. Y. Chung. �Algorithms for scheduling imprecise
computations with timing constraints,� In Proc. IEEE Real-Time Systems Symposium,
1989.

15. G. Wiederhold, P. Wegner, S. Ceri, �Towards Megaprogramming�, CACM, Nov.1992.

16. N. Sample, D. Beringer, L. Melloul and G. Wiederhold, "CLAM: Composition Language
for Autonomous Megamodules," 3rd Int'l Conference on Coordination Models and
Languages, Amsterdam, Apr. 1999.

17. F. Seredynski, P. Bouvry, and F. Arbab, �Parallel and distributed evolutionary computation
with Manifold,� In V. Malyshkin, editor, Proceedings of PaCT-97, volume 1277 of Lecture
Notes in Computer Science, pages 94--108. Springer-Verlag, September 1997.

18. F. Arbab, �The IWIM Model for Coordination of Concurrent Activities,� First International
Conference on Coordination Models, Languages and Applications (Coordination'96),
Cesena, Italy, April 15-17 1996. (Also appears in LNCS 1061, Springer-Verlag, pp. 3456.)

19. L. Melloul, D. Beringer, N. Sample and G. Wiederhold, �CPAM, A Protocol for Software
Composition," CAiSE'99, Heidelberg, Germany, June 1999 (Springer LNCS).

20. A. Garvey, K. Decker, and V. Lesser, �A Negotiation-based Interface Between a Real-time
Scheduler and a Decision-Maker,� Tech. Rep. 94-08, U. of Massachusetts Department of
Computer Science, March 1994.

21. A. Garvey and V. Lesser. �Design-to-time scheduling with uncertainty,� CS Technical
Report 95--03, University of Massachusetts, 1995.

22. F. Berman, �High-performance schedulers,� The Grid: Blueprint for a New Computing
Infrastructure, 1999.

23. R. Buyya, J. Giddy, D. Abramson, �A Case for Economy Grid Architecture for Service-
Oriented Grid Computing,� 10th IEEE International Heterogeneous Computing Workshop
(HCW 2001), In conjunction with IPDPS 2001, San Francisco, CA, April 2001.

24. A. Geppert, M. Kradolfer, and D. Tombros. �Market-Based Workflow Management,� Int'l
Journal on Cooperative Information Systems (IJCIS), 7(4):297--314, December 1998.

25. M.J. Atallah et al, "Models and Algorithms for Coscheduling Compute-Intensive Tasks on
a Network of Workstations," Journal of Parallel and Distributed Computing, Vol. 16, 1992.

26. High Performance Fortran Forum (HPFF), "HPF Language Specification", Version 2.0,
January 31, 1997.

27. A. Grimshaw and W. Wulf. �Legion - a View from 50,000 Feet,� Proc. 5th IEEE Symp. on
High Performance Distributed Computing, pp. 89-99, IEEE Press, 1996.

28. N. Sample, C. Bartlett, M. Haines, �Mars: Runtime Support for Coordinated Applications,�
Proceedings of the ACM Symposium on Applied Computing, San Antonio, TX, February
28- March 2, 1999.

29. P. Lawrence, editor, Workflow handbook 1997, John Wiley 1997.
30. H. Pozewaunig, J. Eder, and W. Liebhart. �ePERT: Extending PERT for Workflow

Management Systems,� In First EastEuropean Symposium on Advances in Database and
Information Systems ADBIS ' 97, St. Petersburg, Russia, September 1997.

31. J. Eder, E. Panagos, H. Pezewaunig, and M. Rabinovich, �Time Management in Workflow
Systems,� In 3rd Int. Conf. on Business Information Systems, 1999.

32. J. Doyle, �Reasoned assumptions and Pareto optimality,� Proc. Ninth International Joint
Conference on Artificial Intelligence, 1985.

33. T. Anderson, D. Culler, and D. Patterson, �A Case for Networks of Workstations: NOW,�
IEEE Micro, February 1995.

34. R. G. Smith, �The CONTRACT NET: A formalism for the control of distributed problem
solving,� In Proceedings of the 5th Intl. Joint Conference on Artificial Intelligence (IJCAI-
77), Cambridge, MA, 1977.

35. R. Balzer and K. Narayanaswamy, �Mechanisms for generic process support,� In Proc. First
ACM SIGSOFT Symp. Foundations Software Engineering, pages 21--32. ACM Software
Engineering Notes, Vol. 18(5), December 1993

