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Abstract.  Computational Grid projects are ushering in an environment where 
clients make use of resources and services that are far too expensive for single 
clients to manage or maintain. Clients compose a megaprogram with services 
offered by outside organizations.  However, the benefits of this paradigm come 
with a loss of control over job execution with added uncertainty about job 
completion.  Current techniques for scheduling distributed services do not 
simultaneously account for autonomous service providers whose performance, 
reliability, and cost are not controlled by the service user.  We propose an 
approach to scheduling that compensates for this uncertainty.  Our approach 
builds initial schedules based on cost estimates from service providers and 
during program execution monitors job progress to determine if future 
deadlines will be met.  This approach enables early hazard detection and 
facilitates schedule repairs to compensate for delays. 

1 Introduction  

Advances in the speed and reliability of computer networks in combination with 
distribution protocols (such as CORBA and Java RMI) allow clients to abstract away 
heterogeneities in the network, platform, language, etc., and make use of distributed 
services and resources that were previously unavailable.  Remote services and 
resources can be utilized as if they were locally available.  There are still 
complications that arise from geographic distance, security concerns, service 
autonomy, and compensation.  In order to complete the abstraction to transparently 
use remote services and resources, it is necessary to have a mechanism to deal with the 
uncertainties introduced by scheduling services not under local control. 

The development of Grid computing has enabled a model where organizations can 
develop services and charge a fee for their use to clients. Fee-based computing models 
are gaining success in both cooperative and commercial computing environments 
[3,5,7,8,11]. In these grids, service providers charge fees or trade resources for the use 
of their service.  The value of the service offered is a combination of the software 
itself and the execution of the software.  This is an attractive opportunity for service 
providers because they can amortize their development and maintenance costs and 
share these expenses with clients, while protecting their proprietary interests in the 



 

 

service. Also, under the CHAIMS model, service updates can be performed in a 
central location and not need to be propagated to end-users. 

Clients also gain from this model in that they can access services that they don�t 
have to develop or maintain [12].  Many clients do not have the resources to develop 
sophisticated software or purchase the high-end machinery necessary to accomplish 
their tasks.  For example, suppose a small university�s genomic research lab had a 
digitized DNA sequence from which they wanted to isolate a certain gene.  Instead of 
developing the necessary software �in house� they hire a service provider that has the 
computational power and appropriate genomic software to analyze their data and give 
them the result they seek.  Contracting for the service has the same result as 
purchasing the computational hardware and proprietary software, but at a fraction of 
the cost.  In an open market, valuable software services may have multiple service 
providers competing for the same pool of customers. A natural pricing structure would 
evolve based on the time to completion and the surety of the service providers. (Surety 
is the probability that a job will finish execution within a deadline window forecast by 
the service provider.)  Quick executing services with a high surety would of course be 
more valuable than the same services that have longer running times or a low surety.  
A customer�s choice of service providers would depend on what value they place on 
time, cost, and surety, simultaneously. Until now, schedulers have treated the remote 
service problem as a multivariate optimization involving only two variables: cost and 
time [2,4,13]. We extend the worldview by accounting for the uncertainty introduced 
when services are not under the client�s control.  

Access to an array of services provides many opportunities for service composition.  
The ability to compose services is an especially powerful tool for multi-disciplinary 
projects where no single client has expertise in all sub-problem areas [12].  By 
allowing for composition of existing modules, researchers can devote less effort to 
software development and more time to central research questions.  But there is a 
pitfall: distributed services are not under the control of the client.  This means that 
estimates for job completion time may be inaccurate and clients cannot control 
resource allocation to recover from hazards.  An inaccurate estimate in the completion 
time of single service is undesirable; in a program comprised of multiple services this 
can quickly become untenable.   

The main research problem we address in this paper is the decreased level of 
scheduling surety that comes from composing a program from multiple distributed 
services [12,14].  By making programs composed of distributed services more 
reliable, these compositions become an increasingly viable solution for a wide range 
of problems, and become an appropriate solution for a larger class of clients. 

At a finer resolution, the goal of this project is to take a program composed of 
multiple services and complete it within a soft deadline and cost budget, while 
guaranteeing a client-specified minimum level of surety. The scheduling process 
begins with the selection of an initial schedule based on service provider estimates for 
completion time and fee [35]. The initial schedule is driven by dependencies (data, 
control, etc.) between service invocations and estimates from service providers.  At 
runtime, job monitoring detects misbehaving services that can jeopardize the 
completion of the entire program.  During the monitoring phase, surety is recalculated 
whenever progress is made (or not made, but time has advanced).  If surety drops 



 

 

below the minimum threshold determined by the client, the scheduler takes action to 
recover from the delay and increase surety to an acceptable level.  Any measures taken 
require finding alternative schedules for the remainder of the program that restore 
surety without exceeding the program�s budget.  Monitoring coupled with reactive 
rescheduling is key to providing clients with the surety of distributed job completion, 
as they would expect from a program running solely on local resources. 

Systems such as CHAIMS (Compiling High-level Access Interfaces for Multi-site 
Software) allow clients to abstract away heterogeneity and service autonomy while 
simultaneously compensating for pitfalls associated with both [15]. We focus on 
scheduling with CHAIMS because its preferred development language (CLAM � 
Composition Language for Autonomous Megamodules) provides key language 
primitives that enable dynamic scheduling with the possibility of recovery from 
hazards.  CLAM contains a primitive to get estimates of the job completion time and 
cost from a service provider (ESTIMATE), and a primitive to examine job progress 
from a service provider (EXAMINE)[16].  These two capabilities used in concert 
allow for scheduling a program with more confidence in execution time.  Other 
coordination languages such as MANIFOLD are appropriate for this type of 
composition, but lack the EXAMINE and ESTIMATE primitives found in CLAM 
[17,18].   

The current supported runtime system for CHAIMS is known CPAM (CHAIMS 
Protocol for Autonomous Megamodules) [19]. The protocol removes the barriers 
imposed by different programming languages and distribution protocols, while 
providing support for the scheduling primitives in CLAM.  Programs written in 
CLAM are known as megaprograms, though the class of programs is known by 
myriad names in other scheduling literature (ensembles, compositions, grid programs, 
workflows, etc.) [5,19,22,23].  Within CHAIMS, megaprograms are composed from 
megamodules. Megamodules are what we have referred to simply as services; they are 
assumed to possibly come from multiple programming languages, distinct hosts, and 
have different native distribution protocols [16]. 

An initial objective of CHAIMS was to simply develop a language and runtime 
support for the programs composed from distributed modules. The focus of this work 
is to add a dynamic scheduler to the system that can deal with the issues that arise in 
an unreliable environment. We build on their prior efforts because the language and 
runtime support overlap well with the requirements of runtime testing and surety 
monitoring.  However, our work is broadly applicable to any system where estimates 
may be gathered a priori and where clients may monitor runtime progress. 

Current distributed service scheduling research has not presented a complete 
solution that incorporates uncertainty. Most distributed computation schedules assume 
a cooperative environment where delays are rare, and that initial estimates come from 
oracles. The foundation of this work is that distributed systems (in practice) are rife 
with uncertainty that affects the reliability of schedules generated a priori.  Section 2 
discusses the characteristics of autonomous service providers and the attributes central 
to the scheduling task.  Section 3 gives a brief description of CHAIMS and how it 
enables composition and coordination of distributed services.  Section 4 explains the 
scheduling techniques and job monitoring that we advocate.  Section 5 covers related 
work and explains how our techniques may be leveraged in distributed architectures 



 

 

other than CHAIMS.  This research has opened further questions, detailed in section 
6. 

2 Autonomous Service Providers 

The Internet has made distributed services a reality and opened up a completely new 
scheduling problem area to explore  [1,4,21,24,25].  Without careful consideration, as 
computations are moved farther and farther from client control, it is increasingly likely 
that hazards will slow or halt progress.  These hazards may arise from hardware or 
software failures, to power outages, to resource mismanagement by a service provider.  
Additionally, in competitive markets, service providers try to maximize profits. A 
greedy service provider could mistakenly take on more jobs than it can handle and 
delay the finishing time of all jobs. Alternately, an unscrupulous service provider 
might stop the execution of a low-paying job, however unfair it may seem, for more 
lucrative jobs that arise. Running into delays for a single service can be costly, but 
when programs are composed from multiple distributed services, delays in one service 
can have an undesirable cascade effect that destroys scheduling commitments for the 
entire client program. One aid to avoid such problems comes in the form of contracts 
[11, 34]. In the simplest contracts, clients use initial estimates of job completion time 
to bind service providers.  This still does not guarantee that service providers will be 
able to meet the deadline of their contract.  As such, it is also necessary to monitor job 
progress during execution to determine if the contract will be met (and to react swiftly 
and appropriately to recover if it is not).  

In this uncertain environment it is necessary to leverage contracts to motivate 
clients and service providers to meet their mutual obligations. At its core, the contract 
enables two parties who do not trust each other to enter into a mutually beneficial 
agreement. While contracts are a tool to promote accountability, they do not enforce 
it. In this paper we do not discuss contracts negotiation or enforcement, as they are 
implementation details that each distribution model must decide on. However, more 
information on contracts and negotiations within distributed systems can be found in 
[2,20,23]. We expect contracts to consider: 

• Cost � what a service provider will charge for the service.   
• Completion time - the estimated length of time to complete the job. 
• Variance - the amount of time before or after the completion time that the job 

may finish.  (It is assumed no service provider can be completely accurate in 
job estimation.) Variance may be presented symmetrically or asymmetrically. 
In this paper, we assume symmetric variance in the examples, but provide 
equations to handle asymmetric variance. 

• Late fee � a credit the service provider returns to the client per unit of time that 
the job is not finished after completion time plus variance.   

• Cancellation fee - a set amount that the service provider will return to the 
client if the client breaks the contract. This value may be zero, but is of utility 
to both client and service provider. 

• Reservation � an amount the client pays after negotiating the contract to hold 
resources until it exercises the contract and invokes the service. This 



 

 

reservation fee guarantees that the client will be given access to the service 
provider�s resources, and confidence that the client can have some control over 
job start time. Reservations are a complicated issue themselves, and are further 
discussed in [11,23]. We assume �American options�, which allow a client to 
start a service at any point until expiry. 

This distributed computational model for accessing services closely parallels 
traditional economical models. Significant detail on how grid computing relates to 
(and can leverage) various economic mechanisms can also be found in [2,4,11,23]. 
We do not make assumptions about the trading or cash economies that will lubricate 
the grid; we simply examine the general considerations that economic factors place on 
scheduling under uncertainty. 

3 CHAIMS 

Technological advancements and social change have made grid computing a feasible 
option for computation. We have chosen the CHAIMS platform as a test bed for our 
investigations for the reasons mentioned in section 1. Specifically, we leverage its 
compositional programming language (CLAM) and the runtime support system 
(CPAM) to enable composition and coordination of distributed services. In the future 
we expect to plug our scheduler into other compositional and grid platforms. In this 
section, we give more detail about CHAIMS. 

3.1 CLAM 

CLAM is a declarative language intended for large-scale module composition that 
lacks constructs for complicated computation [16].  Motivating the absence of 
computational primitives in CLAM was a desire to create a simple language for non-
programmer domain experts to accomplish their desired tasks [19].  The premise rests 
on the idea that there is a collection of service providers who will offer some services 
that may be used with other distributed services, or perhaps with modules locally 
controlled by domain experts. 

CLAM is designed for a large-scale environment where parallelism is important.  
Unlike many languages for distributed or parallel computing (e.g., HPF (High 
Performance Fortran) [26]), CLAM does not specify what resources a service 
invocation uses. This permits service instances to be scheduled identically, regardless 
of the capabilities and resources of the service�s backing system. Breaking free from 
resource specification enables freedom in choosing service providers at runtime, 
rather than compile time, thus selecting providers based on costs at runtime. This late 
binding time is similar to the tactic introduced in [11,13]. 

While CLAM is simply a declarative compositional language, it makes heavy use 
of the coordination capabilities supported by CPAM to achieve good performance. 
CPAM enables asynchronous service invocation and parallel execution. The key 
facilities that CPAM offers are the ability to get estimates on job completion and to 
examine job progress during service execution.  These two CPAM capabilities are 
mirrored in the ESTIMATE and EXAMINE primitives of CLAM.  Further discussion 



 

 

in Section 4 will show how ESTIMATE and EXAMINE provide the capabilities for 
building an intelligent scheduler. Note that enabling these primitives in any distributed 
framework provides a generic framework for scheduling under uncertainty. 

3.2 CPAM 

CPAM is a generic high-level protocol for remote service invocation.  CPAM 
compensates for language and platform differences by representing data as ASN.1 
structures [19]. Data is transmitted from clients to services (and between services) 
opaquely, with no alteration possible during transit. Services must be wrapped to 
unpack data type locally. CPAM has been implemented above many transport 
protocols such as DCOM, Java RMI and CORBA. There is also a �native� transport 
mechanism for CPAM. 

CPAM breaks service invocation into a multi-step process to enable asynchrony 
and parallelism. The steps of invocation are SETUP, SETPARAM (parameter 
setting), ESTIMATE (garner cost estimates), INVOKE, EXAMINE (monitor 
progress), EXTRACT and TERMINATE [16]. An extended discussion of each is 
available in [16]. These functions are exposed to programmers in CLAM. However, 
with an automated scheduler, ESTIMATE and EXAMINE are not required in the 
language, just as part of the runtime. ESTIMATE and EXAMINE are necessary for 
scheduling because they allow the construction of an initial schedule and allow for 
monitoring during runtime. Calling ESTIMATE from a service provider returns an 
estimate of job completion time and a variance related to that value. Because the 
runtime of a service is often dependent on its input, SETPARAM is used to give the 
service provider enough information to make an informed estimate. Once a service is 
executing, EXAMINE can be called to view the progress of the job. The ultimate goal 
is to deprecate the EXAMINE and EXTRACT primitive in CLAM by leveraging them 
in a scheduler built directly on top of CPAM.  Runtime support provided by mature 
grid implementations such as Legion are also appropriate [27,28]. 

4 Scheduling in an Uncertain Environment 

 
In order to deal with an uncertain environment it is necessary to consider surety when 
scheduling.  A surety threshold is set before a program is started, and is monitored 
throughout the execution lifetime of the program. When progress information 
indicates that the surety threshold has been breached, dynamic repair and rescheduling 
operations are triggered. As mentioned previously, the scheduler will make use of the 
ESTIMATE and EXAMINE capabilities to build initial schedules and to monitor 
progress. 
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Fig. 1. The scheduling process 

Before scheduling can start, the client determines a budget for the program. A budget 
is made up of (1) the deadline that the program must be finished by, (2) the amount of 
consideration (money, credits, bartered resources, etc. depending on the economic 
model) that can be spent on the program execution, and (3) the minimum level of 
surety that must be met by the scheduler. Individual clients determine the amount of 
time and consideration available for a specific program�s execution. The surety is a 
limit on the risk the client will tolerate in meeting their budget. Once the constraints of 
the budget are determined, the client can select to optimize or balance these three 
budgetary concerns (time, cost, surety).  Figure 1 shows a simplified view of the 
scheduling process; steps not central to this work are omitted. We will discuss each of 
these steps in detail. In this section, we present an overview of the process steps.   

First, estimates are collected for each service from potentially many service 
providers and used in the program to build possible schedules.  In our current naïve 
implementation, we exhaustively enumerate all schedules and select one from the pool 
of best choices. Before discussing which schedules are �best�, we will clarify our 
underlying schedule evaluation techniques. 

Once a candidate schedule is created, the shortest expected running time of that 
schedule can be determined using CPM (Critical Path Method)[29].  With this 
information it is trivial to test whether a schedule meets the minimum time and budget 
criteria, however nothing is known at this point about surety. The longest path (in 
terms of expected execution time) in the program determines the runtime of the 
program. This longest path is called the �critical path� because any delay along the 
critical path will affect the running time of the entire program. To determine surety it 
is necessary to extend the CPM analysis to a probabilistic PERT (Program Evaluation 
and Review Techniques) analysis [29,30,31]. PERT extends CPM by accounting for 
the uncertainty in each estimated service duration to compute the surety of the entire 
program. We will discuss our use of PERT in significant detail in the next section. 

Once a schedule is selected and contracts are finalized, the scheduler may invoke 
any ready services in the program. As services execute, their progress is monitored to 
ensure that completion times are met; if the overall surety of program completion 
drops below the predetermined threshold, the scheduler begins the repair and 
reschedule phase. In the repair phase there are many options. New service providers 
may be found to replace the service module that is delaying overall progress. Or other 
services along the critical path may be substituted for alternative services that have 



 

 

shorter runtimes (though at an increased cost). Once repair and rescheduling is 
complete, the scheduler returns to monitoring the execution. 

4.1 Simple Planning 

The first step in scheduling is program analysis to discover any dependencies among 
component services and construct a dependency graph for the workflow. The very 
simple program in Figure 2 shows implicit data dependencies between services. For 
instance, service3 takes A and B as input. A and B are outputs of service1 and 
service2, respectively. These dependencies are mapped into the workflow of 
Figure 3 where nodes represent services and dependencies are shown as arcs between 
nodes with the arrow pointing to the dependent node.  These workflows consist of 
paths that are created by dependencies between nodes.  Once the dependencies are 
mapped, the scheduler requests bids from service providers in order to fill in cost 
values for the proposed schedule. 

The scheduler contacts a repository or directory service that returns a list of service 
providers that perform a specific service. Based on this list, the scheduler contacts the 
service providers and requests bids.  The bid request is based on the service needed, 
the expected start time for the service, and information about the size and complexity 
of the input parameters to the service.  For some services, the inputs cannot be known 
at runtime because they are the outputs of other services; in these cases information 
about the size and complexity of parameters is currently based on heuristics that the 
Service provider uses to make best estimates. Service providers collate this 
information and calculate a possible bid.  The client receives a collection of bids and 
will either accept one or more bids for the schedule, or attempt to renegotiate with the 
service providers [2,20,23]. The deciding factor in which bids are accepted is based 
on the Pareto optimality [32] of the �best� schedules.  For a bid to be Pareto optimal, 
there can be no other bid with an absolute advantage in terms of price, time and 
surety.  The Pareto curve in this case is weighted by the optimization strategy 
presented by the client, for instance in soft real-time applications surety will have a 
high weighting.  All decisions are based simultaneously on cost, time, and surety. 

Using CPM gives the scheduler the critical path and the expected runtime of the 

// begin program
A = service1();
B = service2();
C = service3(A,B);
D = service4(C);
E = service5(C);
// end of program       
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    Fig. 2. Sample program  Fig. 3. Dependency graph of sample program 



 

 

program. This information allows the schedule to select candidate schedules that meet 
the client�s budget and to further optimize and refine the schedule. For instance, CPM 
indicates positions of �slack� in the schedule, where cheaper, longer running processes 
may be used because they�re not along the critical path [29]. By choosing slower 
services in these non-critical paths, the scheduler can possibly decrease the overall 
cost of the program, thus saving resources that may be necessary for repairs at a later 
time. The total price cost for all services executed plus the cost of any reservations not 
kept is the total cost of the program. 

 The PERT method extends CPM to account for uncertainty of individual 
service completion times and determines the probability of completing a complete 
program by an expected time [29].  PERT analysis forms the basis for our 
rescheduling decisions. To perform the initial analysis, the scheduler uses three time 
estimates for each service: most likely(m), optimistic(a) and pessimistic(b) completion 
times. �Optimistic� and �pessimistic� times are derived from the expected time 
coupled with the variance. With this information, the expected duration ie of a single 

service can be determined by a weighted combination of the most likely duration im  
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Activity durations are independent; hence the sum of the independent random 
expected functions ie  is normally distributed. From the expected completion time 
and standard deviation of each service on the critical path, we construct the expected 
completion time and standard deviation of the entire program as: 
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for all services i on the critical path.  With this we can calculate the probability that 
the program completion time T is less than the deadline of time t.  This   

)( tTprob ≤ represents the surety level of the program completing execution by its 
deadline, t.  We specify the completion time as: 
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which is used to express the surety of the program as: 
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Using CPM and PERT, the scheduler can evaluate the bids that form the final 
schedules. What follows now is an example of the complete repair and scheduling 
activity. 

In this example, Table 1 shows a set of bids produced for the sample program in 
Figure 2. In some cases, multiple service providers bid for a service, giving the 
scheduler some flexibility. In the case of service3, only one service provider has 
replied with a bid, thus it will have to be used. 

Table 1. Bids received for each service 

Service Cost Time
service1 8 8 +/- 2

9 10 +/- 1
11 6 +/- 0

service2 10 5 +/- 2
12 4 +/- 1

service3 5 6 +/- 0
service4 15 2 +/- 0

10 4 +/- 2
service5 20 1 +/- 0

10 2 +/- 2
5 3 +/- 1  

After all bids have been received, the scheduler searches for an optimal schedule, 

 START 

service1 

service3 

service4 

service2

service5

FINISH 

8 ± 2 5 ± 2

6 ± 0 

3 ± 14 ± 2 

   

     Fig. 4. Sample Schedule  Fig. 5. Probability distribution of original program  
schedule 



 

 

based on the client�s budget. Assume the client has given a deadline of 20 units of 
time, a budget of ¥65 and a minimum surety requirement of 90%. (We use the �¥� 
symbol simply to distinguish the cost numbers from the time numbers, and make no 
implication about any particular specie or economic model.)  The bids from table 1 
are used to construct the schedule in Figure 4. In Figure 4, the critical path to consist 
of nodes service1, service3, and service4.  By application of CPM, this 
schedule has an expected finishing time of 18, an earliest finishing time of 14, and 
latest finishing time of 22 assuming no hazards. The total budget estimated for this 
program is ¥38, allowing a reserve of ¥27, which can be used to repair the schedule in 
case of delay or hazard. Figure 5 shows the probability distribution of this program�s 
completion time. The surety for the program is determined via PERT to be 98.31%, an 
acceptable level (≥90%). Please note that these values for cost, time, and surety are 
from an a priori analysis based solely on service provider estimates. In the next 
section, we explain surety based monitoring and repair strategy. 

4.2 Monitoring and Repairing Schedules 

Once the initial planning stage is complete and contracts have been drawn, execution 
starts. For our running example, we assign this start time a convenient value of 
time=0. The schedule for our example (shown in Figure 4) is very �tight� in terms of 
cost. There are alternative assignments of service instances that would give a lower 
overall cost. This trades off with overall runtime of the schedule to some extent, but 
the tradeoff is considered acceptable because the schedule does not fall below the 
surety threshold. 

Of course delays along the critical path are likely to be the most damaging since 
they extend the run time of the entire program. Constant monitoring is required to 
ensure that single delays do not affect the entire program. However, delays not in the 
critical path can also impact surety. We illustrate this case next. 

At time=0, service1 and service2 begin execution. Imagine that we monitor 
progress at each time integer interval. At time=1, time=2, and time=3, the scheduler 
observes no anomalies. However, at time=4, a hazard is detected. 

According to the expected schedule, at time=4, service2 should be 80% 
completed. Imagine that the scheduler observes that service2 is only 50% 
complete. Based on this information, the scheduler projects that the service2 will 
complete at time=11, thus altering the critical path to include service2 instead of 
service1. This potential delay changes the expected running time of the program, 
which subsequently lowers the surety of the overall execution to 14.44%, which is an 
unacceptable level (< 90%). 

To counter this delay, the scheduler first contacts all service providers to get new 
bids. (It is interesting to note that in our model as system conditions change, initial 
estimates become moot. This is especially true when scheduling long-running 
services.) The scheduler determines that the most effective strategy is to accept a bid 
to attempt to finish service2 at an earlier time. At time=4, a bid for an instance of 
service2 that will cost ¥10 and complete in 5 units of time (with a variance of 2 (5±2)) 
is found and accepted. Immediately, this second service provider for service2 begins 
work in parallel with the delayed instance. This repair strategy has increased the surety 



 

 

of the complete program, but we now expect the program to finish somewhere 
between time=15 and time=23 with a mean expectation of time=19. This repair 
increases the surety to 85.56%, and reduces the reserve budget to ¥17. A surety of 
85.56% is below the threshold. This schedule requires further repair. 

After the delay is caught and an alternative found, the surety remains below the 
90% threshold. To further increase surety, it is necessary to select a node along the 
critical path and either find alternate service providers that can perform the same 
service in less time, or contract with multiple service providers to execute the same 
service in parallel, thus increasing the probability that at least one of them will deliver 
results in time. The method used to increase surety depends on how much budget is 
left over, and if alternative service providers can be found with the required 
performance capabilities. In this example, assume that we discover another service 
provider that offers service4 for ¥10 with a completion time of 3, and variance of 
2. Using this service provider increases overall surety to 95.83%, which is above the 
threshold for this execution. 

Surety represents the risk of a client program not meeting its deadline that the client 
will accept. Monitoring job execution at runtime allows our CHAIMS scheduler to 
compare current surety to the limit established by the client.  Falling below the surety 
threshold triggers the scheduler to repair or reschedule to counteract the effects of 
hazard. This is achieved primarily by finding alternative or duplicate services increase 
surety. If surety is set too high (e.g., 100%) or the budget too low, the space of 
acceptable schedules is radically reduced, and the likelihood of successful schedules 
decreases as well. 

4.3 Initial Results 

Initial results are promising but difficult to quantify. The prototype scheduler 
generates Pareto optimal schedules and selects a schedule based on the client-
specified criteria. However, this does not address the central performance question: 
how effective is the scheduler at working around delays and hazards? Our initial 
evaluation strategy was to simulate network conditions and service providers and 
allow the scheduler to make its best attempt at scheduling a set of randomly generated 
programs. Various delays plagued the scheduler during simulation, and we determined 
a metric for comparison. Using dynamic programming, we simulated all schedules and 
compared the optimal overall costs and completion times to our scheduler�s 
performance. 

This analysis technique does not produce meaningful results. For instance, we 
tested a program in which its last required service would become permanently 
unavailable shortly after its execution began. It turns out that the �ideal� schedule is 
counter-intuitive and would not be selected by any rational scheduler. For instance, if 
a schedule had only very long running, inexpensive services, then it would fail 
because it exceeded its time budget long before reaching the final service that was 
designed to go offline. In those cases, the schedule that had no chance to finish on 
time wasted less of the client�s resources during a futile attempt to solve the problem. 
This edge case shows the extreme flaw in straightforward quantitative analysis: if a 
schedule cannot be completed, the worst scheduling policies are rewarded. In this 



 

 

particular case, a scheduler that constantly returned �failure to find any satisfying 
schedules� would performance best. We are exploring alternative ways to quantify our 
results. 

5 Related Work 

There is significant work in the area of scheduling, though the missing ingredient to 
move from laboratory conditions to real world systems has been surety.  Our approach 
differs from previous research operating under closed world assumptions where a) a 
priori estimates are provided by infallible oracles, or b) a priori estimates of cost will 
be valid at time=n, where n is potentially far in the future after the estimate was given. 
Finally, we see scheduling techniques for time and cost simultaneously, and repair 
strategies under the oracular estimates assumption, but we have not seen these 
techniques in conjunction with surety analysis. 

5.1 Mariposa 

Mariposa is a scheduler for operations over large distributed databases. Entities 
negotiate with each other for services such as queries, data transmission, and storage 
[11,13].  Entities act through agents to process their requests. A key assumption is that 
estimates will be met, without exception.  This assumption only holds if a central 
administrator manages all entities and the administrator ensures that each entity 
behaves properly. Our scheduler could provide Mariposa the intelligence to handle 
issues that arise when there is no resource overseer, as expected in a truly distributed 
environment. 

5.2 NOW (Networks of Workstations) 

The premise of NoW [33] is that collections of desktops working together have a 
much better price-performance ratio than mainframes and supercomputers of the same 
power. Applications considered highly suitable for NoW range from cooperative file 
caching to parallel computing within a network. Specific projects such as POPCORN 
[5] seek to take concepts of NoW and extend them to work on the entire Internet. 
POPCORN is providing programmers with a virtual parallel computer by utilizing 
processors that participate in this system. POPCORN is based on the notion of a 
market where buyers and sellers come together and barter for resources. 

POPCORN assumes that nodes will fail, and that it is easier to repeat work on 
backup nodes if a worker misses a deadline. Our scheduling system could account for 
this uncertainty by monitoring job progress and rapidly migrating computation to 
alternative nodes if delays are detected. 



 

 

5.3 Grid Computing 

Many computational grid projects are being developed simultaneously (ecogrid, 
DataGrid, power grid, etc.) [9,10,22].  Contributions to this field are coming from 
many different projects, each with tailored goals for grid computing. An overarching 
goal is to allow for resource sharing and services spread over large geographic, 
political, and economic distances. Projects like the European DataGrid currently focus 
significant attention on developing a network infrastructure that supports the rapid 
transport of multi-PetaByte datasets between different locations [1].   

Other projects such as Globus provides tools to bridge the gap between 
heterogeneous grid participants [6]. Globus provides a low level toolkit to handle 
issues of network communication, authentication and data access. These tools can be 
used to create high-level services such as intelligent schedulers that can be inserted 
into a computational grid. Thus, Globus makes it possible to insert our scheduler into 
a grid infrastructure and provide surety to clients. The resulting increase in schedule 
dependability will extend the power and use of grid computing. 

5.4 ePert and Extensions 

This work extends workflow management systems to include time management 
[30,31].  ePert determines internal deadlines in the workflow and monitors progress at 
run-time.  If deadlines are not met, alternate schedules are chosen. However, these 
alternative schedules must be known at runtime, and fully available during execution 
time. ePert extends the PERT method to include with it alternate execution paths a 
process can take. These extensions allow for some level of pro-active scheduling by 
detecting time failures and recovering from them.  Our scheduling techniques can 
contribute dynamic components to their work. However, the closed-world assumptions 
are more likely to hold with workflow schedulers since there is often a strong 
command and control structure responsible for the workflow (e.g., workflows within a 
single corporation). 

6 Future Work 

This project has produced tools that allow us to develop and test advanced scheduling 
techniques.  We are currently working on two parallel tracks. First, we are testing 
various scheduling heuristics that should improve our repair tactics. Second, we are 
investigating techniques to quantify performance of our scheduler. We have 
considered various multivariate analysis evaluation metrics but since they neglect the 
notion of surety in their cost models, reasonable and rational schedules have 
demonstrably poor performance compared to the most irrational schedulers in certain 
cases. We reiterate that the usefulness of our scheduler is not limited to the CHAIMS 
system, but we are eager to fulfill this claim by inserting our scheduler into a standard 
grid component. 



 

 

7 Conclusions 

We present a scheduling technique that uses surety to overcome much of the 
uncertainty naturally present in distributed computing environments. We take a 
program composed of multiple distributed services and complete it within a client-
specified soft deadline by guaranteeing that a minimum level of surety is maintained 
throughout the program execution. The scheduling tactics demonstrated here make 
initial schedules, monitor runtime progress, and then repair the schedule if surety 
drops below a threshold value.  This work is broadly applicable to systems whose 
distributed nature is impacted by uncertainty. 
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