
Optimizing Search Strategies in k-d Trees

NEAL SAMPLE†, MATTHEW HAINES‡, MARK ARNOLD‡, TIMOTHY PURCELL†

†Department of Computer Science
Stanford University
Stanford, CA 94305
UNITED STATES

{nsample, tpurcell}@cs.stanford.edu

‡Department of Computer Science

University of Wyoming
Laramie, WY 82070
UNITED STATES

{haines, marnold}@cs.uwyo.edu

Abstract: K-d trees have been widely studied, yet their complete advantages are often not realized due to
ineffective search implementations and degrading performance in high dimensional spaces. We outline an
effective search algorithm for k-d trees that combines an optimal depth-first branch and bound (DFBB) strategy
with a unique method for path ordering and pruning. This technique was developed for improving nearest neighbor
(NN) search, but has also proven effective for k-NN and approximate k-NN queries.

Key-Words: k-d trees, search, high dimensionality, DFBB, nearest neighbor, k-NN

1 Introduction
Search is an important facet of many applications, and
various search methods are continually being refined.
Different types of search are of interest to different
disciplines. Nearest neighbor (NN) search is
important to many case-based reasoning (CBR) as
well as various classification and matching problems
[9]. Approximate nearest neighbor search is important
to many AI systems, and in systems where there is an
acceptable trade-off between exact answers and
performance. K-NN and other multivariate range
queries play critical roles in database retrieval,
classification problems, and clustering problems.

Various techniques have been used to solve search
problems, including hashing and indexing, various
types of trees, and many hybrid and novel approaches.
Proposed tree solutions alone include k-d, B+, R+,
BBD, VAMSplit k-d, red-black, Patricia and other
variants [2, 3, 5, 6, 7, 8, 9, 11]. Tree-based search
strategies are popular for many reasons, including, for
n cases, O(log n) search and insertion time, O(n log n)
construction time, and reasonable space requirements.
Tree structures also allow for dynamic insertion of
additional elements and support for range queries.

In this paper, we outline essential optimizations
for performing various types of searches on a k-d tree
structure. The first optimization, tracking nodes,
provides an efficient pruning technique for searching
high-order trees. The second optimization, depth first

branch and bound (DFBB) search, provides a bound
on the search depth. The third optimization, path
ordering, is used in conjunction with DFBB to select
an efficient search order. The fourth optimization, the
addition of an information structure at tree build time,
allows for further pruning with a Bounds-Overlap-Ball
(BOB) test.

Algorithms have been proposed that have
reasonable performance on a subset of the searches
outlined above, but have significant limitations that
prevent their extension to all domains. Recently,
Nene and Nayar proposed a method for effective NN
search in high dimensions [1]. Their method, while
providing a good search time, generates a static
structure that prevents the insertion of additional
elements without an expensive tree rebuilding. Such a
solution would not be appropriate for many domains,
including growing case bases and expanding
databases. K-d trees, while limited by well
understood problems, are nonetheless an important
search structure, and should be used as effectively as
possible.

The k-d tree has been analyzed extensively, but
not exhaustively, since its introduction in 1975 [6].
Friedman, Bentley, and Finkel presented good search
and construction algorithms for NN searching with k-
d trees as early as 1977 [2]. More recently, Arya and
Mount have presented refined search tactics that have
been especially effective for approximate searches [3].
The refinements present here are effective for all the

search types outlined and provide the maximum
speed-up for exact NN queries.

2 Traditional Search
Many papers have examined the best ways to
construct k-d trees. We do not purport to improve the
construction method, but present our method only for
future comparisons. In fact, our search and pruning
techniques work equally well with a tree that has been
built using one of the bulk-loading techniques [5, 9] as
with our incremental construction technique, outlined
below.

We start with a randomized set of elements of
dimensionality d, which are added to the tree one at a
time. The single parameter passed to the tree
constructor is a density value, δ, also referred to as
“bucket size.” Each leaf (or "bucket") is stored as an
unordered list of elements. When a leaf (or “bucket”)
exceeds δ elements, it is split into two new leaves.
The split process analyzes the elements in a leaf to
determine the dimension with the greatest local
variance. The nodes are then split based on the mean
value of that dimension. Although splitting on the

median might yield a more balanced tree, the mean
proves to be just as effective as a determinant for
splitting and has the advantage of being able to be
computed quickly. This tree construction method is
quick and dirty.

Over many insertions and deletions into any k-d
tree, it may be necessary to rebuild the tree structure
to maintain near optimal splitting. Optimal k-d tree
insertion and deletion techniques are a separate
investigation; we are concerned with optimizing
searches within a given tree. However, tree imbalance
is known to negatively affect search time, and we
expect results to be improved with well-balanced trees
[10].

The underlying assumption of most construction
techniques is that the tree will be split along the most
discriminating dimensions, at least for each leaf. The

best bulk-loading construction methods guarantee
balance and discrimination by considering the entire
data set in the first split, and making an even division
of that set. Each split set is then considered until no
set is larger than δ, the bucket size. However, testing
against such an optimally built tree does not consider
the effects of inserting and deleting elements, and we
believe that a primary reason to use a tree structure is
the ability to add elements. If an a priori data analysis
is always possible, and insertions and deletions are
infrequent, a structure such as that presented in [1] is
likely a better choice than a k-d tree.

Nearest neighbor searches generally begin with
the construction of a “clipping window,” which
defines a region of the tree space to search. For
example, a three-dimensional range query in a three-
dimensional space uses a hyper-rectangular region.
The enclosed region is partitioned by upper and lower
bounds in each dimension. Such a clipping window
can be seen in figure 1.

A traversal of the k-d tree, returning the elements
in leaves that intersect the clipping window, will
provide an answer to the query. Nodes that lie outside

the clipping window are generally pruned as a leaf is
searched. K-d trees are very effective for range
queries as they are formed as spaces split by planes
orthogonal to dimensional axis. Since the tree is built
by dividing the search space along orthogonal planes,
it is a natural structure for these queries.

Nearest neighbor searches are a different matter.
When k-d trees are used for NN search in low
dimensional spaces, they are quite effective. The
reason for their effectiveness is that in low
dimensions, very few extra cases need to be examined
to find the nearest neighbor. However, in high
dimensions, the search space must be carefully pruned
to prevent the search from degrading to exhaustive
search. We will discuss the reasons for (and solutions
to) the dimensionality problem in the next section.

 x

y

z
y-upper y-lower

(0,0,0)

x-lower

x-upper z-upper

z-lower

Fig.1 3-dimensional clipping window example

ε

III

III IVx

y

β
2ε αααα

Fig.2 Clipping window excess

We discuss the use of k-d trees for k-NN search in the
Additional Findings section.

3 Tracking Nodes for NN Search
In a one-dimensional space, an NN search of a k-d
tree works much like a typical binary tree, except that
each leaf contains multiple elements. A search of a
one dimensional k-d tree proceeds as follows. First, ε,
an initial guess on the distance from the nearest
neighbor is established. If only cases of a certain
similarity are usable, ε may be user defined.
Additionally, if cases have different similarity
requirements along different dimensional axes, a user
defined clipping window may be used.

If there are no restrictions, and an exact nearest
neighbor is required, the selection of an arbitrary ε is a
trivial task. Selection of a good ε is a different matter.
To find an adequate starting ε, determine which leaf
the unique node (α) would be placed in if a
tree.insert(α) were performed. (We will use “α” to
denote a node, not already in the tree, whose nearest
neighbor we are trying to find.) Search that leaf for
the closest node to α and make the distance from the
closest node to α the initial ε. With varying
frequency, based on dimensionality and spatial
density, this initially inspected case is often the exact
NN in question. These results are shown in Fig.6, and
discussed further in the Additional Findings section.

Given a unique node, α, and an initial value for ε,
form a clipping window. The simplest clipping
window is for a one-dimensional space. The “upper”
and “lower” values of the one-dimensional clipping
window are set to α+ε and α-ε, respectively. A
traversal of the tree will yield all nodes within α±ε ,
and a simple search of these marshaled nodes will
yield the nearest neighbor. If the tree density were 1,
no more than 2 nodes would ever have to be examined
in a one-dimensional search. If the tree density were
δ, no more than 2δ nodes would have to be examined.

The problem is harder in two dimensions, but the
reason is well understood. The clipping window is
formed from values that lie normal to the dimensional
axes. Given an arbitrary ε, the clipping window in
two dimensions contains 4ε2 units of the two-
dimensional space, similar to the square dotted region
in figure 2. However, the optimal search space lies
within the circle of radius ε immediately around α,
which covers approximately πε2 units of the two-
dimensional space. Thus, the actual clipping window
covers about (4ε2/πε2) 1.27 times the optimal search
area in a two-dimensional search.

In three dimensions, the clipping window covers
8ε3 units of space, while the optimal search area is
about 4.19ε3 units (4/3πε3). This means that in three
dimensions, the clipping window contains almost
twice the volume of the optimal search space
constrained by ε.

As dimensions grow, these extra “corners” formed
by the hyper-rectangular clipping window grow
exponentially faster than the hyper-spherical region
enclosing the optimal search window. As
dimensionality increases, the intersection of this extra
area in the clipping window dominates the search
space. The corners outside the hyper-sphere take up
more space than the area inside it in just 4 dimensions.

The primary solution to this problem comes in the
form of what we refer to as a “tracking node.”
Because of the orthogonal planes used to build the
tree, search is fast, but little information is stored at
each branch of the tree. It is this absence of
information that the tracking node solves for. Other
complicated methods have been proposed for tracking,
primarily variants of the Bounds-Within-Ball (BWB)
test [2, 9]. Our tracking nodes achieve the same effect
as the BWB test with just one simple structure and a
single comparison at each branch. Also, it is our
claim that the code for the tracking node solution is
more intuitive.

The tracking node is an object of size O(d), as it
only has to store one distance for each dimension.
The tracking node keeps track of the total distance
already covered by the clipping window along a
particular path from root to leaf in the k-d tree. With
this extra information, the “corners” outside the hyper-
sphere can be easily pruned from the search space.

For instance, in figure 2, the clipping window
intersects all four leaves. The circular area
constrained by ε only intersects leaves I, II, and IV.
There is no need to search the nodes in leaf III.

As noted before, these overlapping areas grow
exponentially with dimensionality. As such, the
savings incurred by not searching these corner regions
grows exponentially with δ. The tracking node is
what allows the efficient pruning of the superfluous
leaves.

To show how this pruning is achieved, assume
that the root of the k-d tree contains a value for the x-
axis that divides the tree into two main branches, as
seen in figure 2. Leaf I is searched to find the initial
value of ε. Leaves II and IV are still likely to contain
the nearest neighbor to α, but there is a constraint on
the maximum distance into leaves II and IV that the
neighbor may lie.

In figure 2, β is the distance from the unique case
α to the spatial division at x. By crossing the dividing
line at x, the closest neighbor that may still be a
candidate in leaf II must be within ε-β of the division
x. That means that the value of ε “used up” in the left
sub-tree’s tracking node is β. The value of ε “used
up” in the right sub-tree’s tracking node remains zero.

During each recursive call, the tracking node is
updated to store the total distance from the unique
node α that the minimum case must be. In this case,
even though the clipping window intersects leaf III of
the space, the tracking node indicates that it does not
need to be searched because no elements in the leaf
can be within ε of α.

The value contained in the tracking node allows
rapid pruning of the search space to something more
similar to the true region within ε of α. The tracking
node only prunes nodes that are beyond ε. As noted
previously, the amount of space pruned by the
tracking node increases with dimensionality. This is
expected since the excess volume of the clipping
window also grows with dimensionality.

The initial values of the tracking node are set to
the initial values for each dimension of the novel case,
α. (Recall, α is the whose NN we are trying to find.)
The values of the tracking node are only updated
when a left-hand cutting plane lies to the left of the
initial value of α, or a right-hand cutting plane lies to
the right of the initial value of α. This ensures that the
tracking node only prunes the proper nodes.

4 DFBB Search
While the tracking nodes prune the leaves that lie on
the external boundaries of the search space defined by
ε, the order in which the internal nodes are searched
can be used to the advantage of the process.

Depth first branch and bound (DFBB) works best
(relative to IDS and A* methods) when the branching
factor of the search space is low but the solution
density is high [4]. The beauty of the k-d tree is that
the actual branching factor is always two because each
internal node only splits on a single dimension. The
effective branching factor generally is much lower.
Like the travelling salesman problem (TSP), the axial
division lines in a k-d tree are unevenly spread, like
cities are spread in the TSP [4]. Also, every leaf node
is a solution as each leaf node contains at least 1 NN
candidate, thus the solution density is high.

The basic premise of the DFBB search is to find
an initial solution using a depth-first technique, then
search the rest of the space in a depth-first manner,
never going beyond the current best solution depth.
Each time a better solution is found, a new limit is

placed on the search depth and the search continues.
We apply this theory to the k-d tree, noting that tree
depth and solution depth (distance of closest neighbor)
are not necessarily the same, or even correlated. (E.g.,
the best solution depth (NN distance) in a tree of depth
5 could be in a branch of depth 3 in that k-d tree.)

We can look at the initial value for ε as the initial
solution depth. There is no reason to consider any
node “deeper” (farther from α) than this initial bound,
as there is at least one node closer to α (the node that
determine the intial ε). There are two elements to
consider for successful DFBB search of a k-d tree:
revising ε (the solution depth), and search order.

Epsilon revision for NN search is a simple task.
Whenever a neighbor is discovered that is closer to α
than the current distance ε, this new distance becomes
the new ε. By changing a global ε, there can be a
dynamic contraction of the clipping window as well.
This constrains the search space, but what happens to
search nodes that are several levels farther up in the
recursive search procedure? Do they need to be
updated too? The answer is no.

Because the tracking node contains the minimum
distance a neighbor will be in a given tree branch,
when ε is globally updated, a simple
(tracking_node_distance > ε) test will prune the now
unnecessary recursive calls from the stack. By
dynamically contracting the clipping window and
pruning recursive search calls based on tracking
values, considerable time can be saved. These savings
are illustrated in figures 4 and 5, and further discussed
in the Results section.

Simple contraction of the clipping windows has
dramatic results, as has been shown previously. But a
critical aid to DFBB search, appropriate path ordering,
has been neglected in the same studies. The critical
code fragment presented in [9] demonstrates an
algorithm for ordering that examines tree leaves in a
static order. The algorithm operates independently of
freely available information from tracking nodes.
Such information can be used to intelligently order
search. The combination of this technique with Path
Ordering is the significant contribution of this paper.

5 Path Ordering
The other important factor in DFBB search, in
addition to revision of solution depth, is the search
order. In a naïve recursive search, all the “left”
branches would be traversed, then all the “right”
branches. This naïve approach has the effect of
searching a large part of the space that is unlikely to
contain promising neighbors, because it searches the

outermost regions of the hyper-sphere first, whose
nodes are most likely to be far from α.

However, a simple Monte Carlo approach,
stochastically choosing a path at each opportunity,
does not yield significantly different results from
naïve search. To maximize effectiveness, the value of
ε has to be revised downward as soon as possible, and
this is achieved by careful path selection.

How can the search be easily ordered without
further information stored at each of the tree nodes or
building a complicated priority structure at search
time? By cleverly using the data provided by the
tracking nodes, even a recursive algorithm, with no
extra knowledge stored in the tree (and without
expensive volumetric calculations), can quickly search
the most promising leaves before moving to the outer
surfaces of the search space.

Here is the simple algorithm for doing so:

Search-Tree(tree, track_left, track_right)
{

if (tree == leaf)
check-for-candidates(tree)

else {
track_left = intersection(tree->left)
track_right = intersection(tree->right)

if (track_left < track_right) {
if (track_left < epsilon)

Search-Tree(tree-node->left,
track_left, track_left)

if (track_right < epsilon)
Search-Tree(tree-node->left,

track_right, track_right)
} else {

if (track_right < epsilon)
Search-Tree(tree-node->left,

track_right, track_right)
if (track_left < epsilon)

Search-Tree(tree-node->left,
track_left, track_left)

}
}

} //end Search-Tree

What this algorithm accomplishes is a search that is
depth first, but ordered by desirability. The “internal”
leaves nearest to the novel case α will be searched
first. This generally allows for the earliest revisions of
ε and thus the maximum possible contraction of the
search space.

For example, once again consider the case in
figure 2. The most logical leaf to search first would
be leaf I. The Search-Tree algorithm guarantees
that leaf I will be searched first.

Assuming once again that the first division of the
k-d space was drawn along the x-axis, the tracking
value of the left node will again be β. The tracking

value of the right node will be zero, as the value of the
x dimension is less than (or “left of”) the value of the
x dimension in α, so the tracking value is not revised.

Leaves I and IV are now immediate candidates for
search, and II and III can be considered only when I
and IV pop off the recursion stack. Given the dividing
line along axis y, leaf I will have a tracking value of
zero still, but leaf IV will have some positive value
(>0). So, leaf I must be searched first.

After the leaf I search pops off the stack, leaf IV
will be searched. Once this is searched, we return to
leaves II and III. Since the value of dimension y used
to split leaves II and III is greater than α’s value along
the y dimension, leaf II will still have a tracking value
of β, but leaf III will have a tracking value of β plus
some positive (>0) amount. This means leaf II will be
searched next.

Finally, the last potential search is of leaf III.
Even without a revision of ε, the tracking value of leaf
III is greater than the initial ε and will not be
considered in the search.

With this ordering by tracking value placed on the
k-d tree’s nodes, the most internal nodes are searched
first and ε is revised downward at the earliest possible
time. Of course this is a heuristic method for ordering
the search, and the knowledge is not perfect, but it is
superior to its non-heuristic counterpart, as can be
seen in figure 5.

This algorithm simpler than [9], and provides a
critical advantage: By carefully ordering search,
fewer Bounds-Overlap-Ball tests will have to be
performed and more pre-case-inspection pruning
occurs, as shown in the results section.

6 Bounds-Overlap-Ball (BOB) Test
We save the description of the BOB for last, as it is
only possible to perform when additional information
is embedded when the tree is constructed. As such, it
may not be applicable to all existing k-d trees, but it is
a simple task to add BOB information to existing trees
and tree constructors.

The time required to add the BOB information
when the tree is built is a constant. As such, the
information is essentially free, and should be used
whenever possible. If for some reason it is not
possible to put BOB information into an tree existing
structure, performance can still be very good, but it
will not be optimal.

The information required to perform the BOB test
consists of two objects in a leaf node, both of the same
type as the data stored in the leaf. For example, if the
tree held structures consisting of two real numbers, an
(x, y) coordinate, two such structures would be

required in each bucket. One structure contains the
maximum values for the (x, y) fields of the elements in
a given leaf. The second structure contains the
minimum values for the (x, y) fields of the elements in
a given leaf.

Before inspecting the contents of a leaf, and
incurring the cost of δ comparisons (recall, there are
up to δ elements in a given leaf), a single BOB test
will indicate whether there are likely candidates in the
leaf. Clearly, this test is more productive when the
bucket size (δ) is large, and saves more time as the
cost of similarity comparisons increase.

Figure 3 demonstrates how the BOB test works, in
principle. The case closest to α lies leaf III. That case
defines a circle, with radius ε, around α. All other
potential candidates to be the nearest neighbor to α

must lie within this region.
This region extends into leaf IV, but the cases in

leaf IV do not need to be examined. The BOB test
determines whether or not there is an intersection
between the region delimited by ε in leaf III (with
dashed lines) and the region around the cases in leaf
IV (also with dashed lines). If there is an intersection,
at least one possible candidate lies in leaf IV,
otherwise it the cases in leaf IV can be neglected.

7 Results
A large, high-dimensional k-d tree would be a disk-
based index. The primary expense with a disk-based
index is block reads. Block reads for internal nodes
can be limited, especially with good construction and
balance techniques. Data in the internal nodes may be
very deep in each block, compared to the leaves. Each
internal split node requires data for only one
dimension and thus many internal levels may be
contained in a single block. However, in a leaf, there

is only one set of objects (up to δ objects), each with d
dimensions.

Reading these cases and calculating their distance
from α is the primary expense. As such, our metric
for calculating performance will be object
comparisons (comparing leaf objects to α).

To isolate the contributions of the four
optimization strategies (DFFB, search ordering,
tracking nodes, and BOB), we performed a battery
tests.

The data set used to build the k-d trees consisted
of 200,000 elements. The elements of the set were d-
element tuples, uniformly distributed and normalized
to the range 0.0-1.0 in each dimension. The test set
was similarly constructed, and had 1000 d-element
tuples. The test set was not drawn from the original
200,000.

Each test was performed with 200,000 elements to
build the k-d tree. 1000 searches were performed and
the total time and number of nodes examined were
recorded. The tests were also balanced for
dimensionality. 200,000 points were used to build a
two-dimensional tree, a three-dimensional tree, and so
on, up to and including a 25-dimensional tree.

The first comparison is of all four optimizations to
a wholly uniformed search. The results are shown in
figure 4. At 11 dimensions, the uninformed search
method compares α to over 50,000 nodes, or 25% of
the entire search space. The optimized DFBB search
can effectively consider an additional six dimensions
(to d=17) before degenerating to that level of
performance. It appears that even the best search
method is still futile for high dimensions, but is
somewhat better than the wholly uninformed search
strategy.

Before analyzing the other test results, a word
about dimensionality. There are several reasons that
the number of nodes searched increases with an
increase in dimensionality. This “curse of
dimensionality” can be averted with certain
permutations of the initial data set that lower the
dimensionality of the problem. These statistical
methods include convolving and eliminating variables
with high covariance, and other techniques that reduce
the dimensionality of the data set.

The issue of dimensionality is not intrinsically
insurmountable by the search techniques of the k-d
tree. High dimensionality generally degrades k-d
search times because of the depopulation of the search
space (i.e., 100,000 elements in a 10 dimensional
space are generally much more dense than 100,000
elements in a 15 dimensional space). A progression of
the final ε values sheds light on the problem. In the
two dimensional search space, the average distance of

ε

I II

III IV

αααα

Fig.3 BOB test

the nearest neighbor is <0.001. In twenty five
dimensions, the average nearest neighbor is 0.954
away from the unique case, α. The density of 200,000
elements in two-dimensions (ranging from 0.0-1.0) is
far higher than a similar 200,000 elements in a 25
dimensional space.

In practice, the problems of high dimensionality
are often not as extreme as we have demonstrated
using a fixed number of points over an increasing
range of dimensions. In many problems, the number
of points in a space increases rapidly with
dimensionality. The increase in the population density
of high dimensional spaces diminishes the effects of
dimensionality and brings nodes searched closer to the
ideal of O(log N), with a large constant that is
exponential in dimension, δ [7].

Regardless of the ability to reduce the
dimensionality of a data set, it is crucial to be able to
effectively search the highest possible dimension
before resorting to reduction techniques.

The second comparison we make is between the
optimized process and the process without the
tracking nodes. The search with tracking nodes is
shown in figure 5. The discerning observer will note
that the graph line nearly identical to the “unordered
search” and “no BOB test” lines. This result indicates
that the omission of any of the three optimizations
(ordering, tracking nodes and BOB test, but not
epsilon revision) will yield a significant speedup, but
that all four methods are required for maximal gain.

An omitted line, identical to the wholly
uninformed search, was achieved by leaving out the
tracking nodes and BOB test. Without either test, no
additional pruning of leaves (by tracking nodes) or
within leaves (via BOB) is possible and the search is
not better than the worst method shown here. The

tracking nodes facilitate a reasonable search in spaces
above 10 dimensions. Without the tracking nodes, the
performance degrades rapidly. As noted in the section
on the Bounds-Overlap-Ball test, it may not be
possible to add such information to existing trees. In
such cases, omission of the tracking nodes is enough
to render search as ineffective as the wholly
uninformed search. Coupling all four optimizations
does yield a distinct advantage

While search without the tracking nodes and BOB
test degenerates to the performance of the wholly
uninformed search, the DFBB ordering component
and ε revisions both contribute to significant
speedups.

Figure 5 demonstrates the effect of the ε revision.
Epsilon revision is possible in almost any search of a
k-d tree, but reducing ε as early as possible can
magnify the effect.

Assuming an existing tree structures not suited to
the BOB test, search without the ε revisions averages
67.4% more nodes examined, in dimensions 5-21, and
50.5% over the entire range from 2-25.

The search ordering did not provide as much gain
as we had hoped, but it still provides an additional
reduction in search time. As figure 5 shows, the
DFBB search pattern is better than the naïve search
order. As mentioned earlier, stochastic ordering of the
search is no better than the naïve method.

The overall time reduction for DFBB search
(measured in nodes examined) compared to a naïve

search method is a remarkable 79% average over
dimensions 6-19, with a 67% increase over
dimensions 1-19, and a lower average considering the
entire range (when all searches degrade to looking at
almost all cases).

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
dim ensionality

no
de

s
se

ar
ch

ed

uninform ed search all optim izations

Fig.4 Comparison of uniformed and optimized search

However, the significance of this paper comes in
comparison to the next best methods, wherein only
one optimization was omitted. The modest average

speedup of 20% in dimensions 10-20 achieved by the
combination of all techniques demonstrates that all
components must be present to maximize search gains
in high dimensional spaces. In dimensions 2-21, there
was an average of almost 15% fewer cases inspected.

Almost any search strategy could employ some
sort of DFBB reductions by revising ε downward, but
figure 5 shows a clear savings from revising ε
downward at the earliest possible times, which is
achieved by our path ordering.

8 Additional Findings
This search algorithm tracked various factors in
addition to the number of nodes examined to discover
the nearest neighbor. Two important statistics further
demonstrate the necessity of a dense search space in
high dimensions. We counted and tracked the
percentage of cases for which the actual nearest
neighbor was discovered in the first leaf searched, and
further the number of revisions to ε.

First, it is interesting to note that the growth rate
in number of cases examined was indeed close to
O(1.56594δ), as predicted in [7]. In dimensions 2-19,
the growth rate was ~1.576δ, concurring with previous
findings for a fixed size population, uniformly
distributed, in increasing dimensions. Comparing this
value to the mean number of ε revisions per search, ϕ,
we found that the successive ratios for δϕ for the
dimensions from 2-19 was ~1.567, even closer to limit
proposed in [7].

This finding demonstrated a strong correlation
between the number of ε revisions and the size of the

search space, further indicating that early ε revision
times are of critical importance to reducing search
cost. We are planning additional examination of this

correlation between number of ε revisions and search
space size.

We have also extended our technique to
approximate NN search and k-NN search. Using
information about initial distributions of the data set,
we can determine an initial value for ε based on the
probability that at least one element will lie within the
hyper-sphere around α bounded by ε. The method for
choosing an appropriate initial ε is outlined in [1], and
has proven successful in their fixed technique. While
the results of those experiments are beyond the scope
of this paper, we present two critical findings from our
additional work on the subject [8].

First, the ability to find the actual nearest neighbor

to α on the first path through the k-d tree is startlingly
good in low dimensions. As shown in figure 6, there
is 50% or better chance of hitting the exact nearest
neighbor on the first path searched through six
dimensions. Through fifteen dimensions, the first

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

5 7 9 11 13 15 17 19 21
dimensionality

no
de

s
se

ar
ch

ed

uninformed search No BOB test unordered search no tracking nodes all optimizations

Fig.5 Comparison of various search methods

0
0 .1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9

1

1 5 9 13 1 7 2 1 2 5

d im e n s io n a ilty

Fi
rs

t P
at

h

Fig.6 Nearest neighbor identified on first path

path averages finding no worse than the “third”
nearest neighbor. A very good approximation of the
true nearest neighbor to α can be found with the
search of a single tree path.

Further, the number of ε revisions grows at a near
constant rate (figure 7), and is strongly correlated to
dimensionality. Again, this is partly due to the sparse
population of high dimensional spaces, but has been
used for good k-NN search times [8]. Point clustering
is much lower in high dimensions, thus our search
path encounters better candidates more often, but
these better candidates are not often significantly
better candidates. In effect, there is a slower rate of
search sphere contraction in higher dimensions. This
facilitates k-NN search without much additional
overhead.

It is a simple task to collect the k nearest
neighbors from the first bin(s) examined, using the
distance of the farthest neighbor from α as the initial
value for ε. Whenever a case nearer to α than the kth
case is found, it is inserted into the candidate list; ε is
revised down to the distance of the new kth element in
the candidate list from α. This technique and a similar
approximate k-NN method are quite successful for
classification [8]. Our method for finding the k
nearest neighbors is an adaptation of the priority
queue method described in [9].

9 Conclusions
It is unlikely that the growth rates for k-d tree searches
will fall below the O(1.56594δ) barrier without a
significant (and previously unimagined) break-
through. In the meantime, we have proposed a
method for minimizing the hidden constant in the
search time.

By coupling DFBB search with an intelligent
search ordering heuristic based on our tracking nodes,
we have shown times that are nearly 80% better than

naïve or stochastic searches, until effects of spatial
density distort the results in higher dimensions.

Approximate NN search and k-NN search of k-d
trees can benefit from our search method as well. A
similar approach to our own was taken in [9], but we
have advanced those techniques with an ordered
search property previously unused. The combined
effect of these four optimizations is clearly better than
strategies that have attempted combining any subset of
the four.

References

[1] Nene, S. A., and Nayar, S. K, A simple algorithm
for nearest neighbor search in high dimensions, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol.19, No.9, 1997, pp. 989-1003.

[2] Friedman, J. H., Bentley, J. H., and Finkel, R. A,
An algorithm for finding best matches in logarithmic
expected time, ACM Transactions on Mathematical
Software, Vol.3, Num.3, 1977, pp. 209-226.

[3] Arya, S., Mount, D. M., Netanyahu, N. S.,
Silverman, R., and Wu, A. Y, An optimal algorithm
for approximate nearest neighbor searching, 5th
Annual ACM-SIAM Symposium on Discrete
Algorithms, 1994, pp. 573-582.

[4] Vempati, N. R., Kumar, V., and Korf, R. E, Depth-
first vs best-first search, Proceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-
91), 1991, pp. 434-440.

[5] White, D. A., and Jain, R., Algorithms and
Strategies for Similarity Retrieval, Technical Report
VCL-96-101, Visual Computing Laboratory,
University of California, San Diego, 1996.

[6] Bentley, J. L, Multidimensional binary search trees
used for associative searching, Communications of the
ACM, Vol.18, Num.9, 1975, pp. 509-517.

[7] Arya, S., Mount, D. M., and Narayan, O,
Accounting for Boundary Effects in Nearest Neighbor
Searching, 11th Annual Symposium on Computational
Geometry, 1995, pp. 336-344.

[8] Sample, N., and Haines, M, Rapid classification
techniques for high dimensional search spaces,
Technical Report, HHCL-97-100, High-speed
Heterogeneous Computing Laboratory, University of
Wyoming, 1997.

y = 0.1328x + 0.0395
R2 = 0.9882

0

1

2

3

4

2 7 12 17 22
dimensionality

re
vi

so
ns

Fig.7 Average number of epsilon revisions

[9] Wess, S., Althoff, K. D., and Derwand, G, Using
k-d trees to improve the retrieval step in case-based
reasoning, S. Wess, K. D. Althoff, and M. M. Richter
(Eds.), Topics in Case-Based Reasoning, Berlin:
Springer Verlag, 1994.

[10] Sproull, R. F, Refinements to Nearest-Neighbor
Searching in k-Dimensional Trees, Algorithmica,
Vol.6, Num.4, 1991, pp. 579-589.

[11] Knuth, D., The Art of Computer Programming:
Sorting and Searching, Second Edition, Addison-
Wesley, 1998.

