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Abstract:  K-d trees have been widely studied, yet their complete advantages are often not realized due to 
ineffective search implementations and degrading performance in high dimensional spaces.  We outline an 
effective search algorithm for k-d trees that combines an optimal depth-first branch and bound (DFBB) strategy 
with a unique method for path ordering and pruning.  This technique was developed for improving nearest neighbor 
(NN) search, but has also proven effective for k-NN and approximate k-NN queries. 
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1 Introduction 
Search is an important facet of many applications, and 
various search methods are continually being refined.  
Different types of search are of interest to different 
disciplines.  Nearest neighbor (NN) search is 
important to many case-based reasoning (CBR) as 
well as various classification and matching problems 
[9].  Approximate nearest neighbor search is important 
to many AI systems, and in systems where there is an 
acceptable trade-off between exact answers and 
performance.  K-NN and other multivariate range 
queries play critical roles in database retrieval, 
classification problems, and clustering problems. 

Various techniques have been used to solve search 
problems, including hashing and indexing, various 
types of trees, and many hybrid and novel approaches.  
Proposed tree solutions alone include k-d, B+, R+, 
BBD, VAMSplit k-d, red-black, Patricia and other 
variants [2, 3, 5, 6, 7, 8, 9, 11].  Tree-based search 
strategies are popular for many reasons, including, for 
n cases, O(log n) search and insertion time, O(n log n) 
construction time, and reasonable space requirements.  
Tree structures also allow for dynamic insertion of 
additional elements and support for range queries. 

In this paper, we outline essential optimizations 
for performing various types of searches on a k-d tree 
structure.  The first optimization, tracking nodes, 
provides an efficient pruning technique for searching 
high-order trees.  The second optimization, depth first 

branch and bound (DFBB) search, provides a bound 
on the search depth.  The third optimization, path 
ordering, is used in conjunction with DFBB to select 
an efficient search order.  The fourth optimization, the 
addition of an information structure at tree build time, 
allows for further pruning with a Bounds-Overlap-Ball 
(BOB) test. 

Algorithms have been proposed that have 
reasonable performance on a subset of the searches 
outlined above, but have significant limitations that 
prevent their extension to all domains.  Recently,  
Nene and Nayar proposed a method for effective NN 
search in high dimensions [1].  Their method, while 
providing a good search time, generates a static 
structure that prevents the insertion of additional 
elements without an expensive tree rebuilding.  Such a 
solution would not be appropriate for many domains, 
including growing case bases and expanding 
databases.  K-d trees, while limited by well 
understood problems, are nonetheless an important 
search structure, and should be used as effectively as 
possible. 

The k-d tree has been analyzed extensively, but 
not exhaustively, since its introduction in 1975 [6].  
Friedman, Bentley, and Finkel presented good search 
and construction algorithms for NN searching with k-
d trees as early as 1977 [2].  More recently, Arya and 
Mount have presented refined search tactics that have 
been especially effective for approximate searches [3].  
The refinements present here are effective for all the 



search types outlined and provide the maximum 
speed-up for exact NN queries. 

2 Traditional Search 
Many papers have examined the best ways to 
construct k-d trees.  We do not purport to improve the 
construction method, but present our method only for 
future comparisons.  In fact, our search and pruning 
techniques work equally well with a tree that has been 
built using one of the bulk-loading techniques [5, 9] as 
with our incremental construction technique, outlined 
below. 

We start with a randomized set of elements of 
dimensionality d, which are added to the tree one at a 
time.  The single parameter passed to the tree 
constructor is a density value, δ, also referred to as 
“bucket size.”  Each leaf (or "bucket") is stored as an 
unordered list of elements.  When a leaf (or “bucket”) 
exceeds δ elements, it is split into two new leaves.  
The split process analyzes the elements in a leaf to 
determine the dimension with the greatest local 
variance.  The nodes are then split based on the mean 
value of that dimension.  Although splitting on the 

median might yield a more balanced tree, the mean 
proves to be just as effective as a determinant for 
splitting and has the advantage of being able to be 
computed quickly.  This tree construction method is 
quick and dirty. 

Over many insertions and deletions into any k-d 
tree, it may be necessary to rebuild the tree structure 
to maintain near optimal splitting.  Optimal k-d tree 
insertion and deletion techniques are a separate 
investigation; we are concerned with optimizing 
searches within a given tree.  However, tree imbalance 
is known to negatively affect search time, and we 
expect results to be improved with well-balanced trees 
[10]. 

The underlying assumption of most construction 
techniques is that the tree will be split along the most 
discriminating dimensions, at least for each leaf.  The 

best bulk-loading construction methods guarantee 
balance and discrimination by considering the entire 
data set in the first split, and making an even division 
of that set.  Each split set is then considered until no 
set is larger than δ, the bucket size.  However, testing 
against such an optimally built tree does not consider 
the effects of inserting and deleting elements, and we 
believe that a primary reason to use a tree structure is 
the ability to add elements.  If an a priori data analysis 
is always possible, and insertions and deletions are 
infrequent, a structure such as that presented in [1] is 
likely a better choice than a k-d tree. 

Nearest neighbor searches generally begin with 
the construction of a “clipping window,” which 
defines a region of the tree space to search.  For 
example, a three-dimensional range query in a three-
dimensional space uses a hyper-rectangular region.  
The enclosed region is partitioned by upper and lower 
bounds in each dimension.  Such a clipping window 
can be seen in figure 1. 

A traversal of the k-d tree, returning the elements 
in leaves that intersect the clipping window, will 
provide an answer to the query.  Nodes that lie outside 

the clipping window are generally pruned as a leaf is 
searched.  K-d trees are very effective for range 
queries as they are formed as spaces split by planes 
orthogonal to dimensional axis.  Since the tree is built 
by dividing the search space along orthogonal planes, 
it is a natural structure for these queries. 

Nearest neighbor searches are a different matter.  
When k-d trees are used for NN search in low 
dimensional spaces, they are quite effective.  The 
reason for their effectiveness is that in low 
dimensions, very few extra cases need to be examined 
to find the nearest neighbor.  However, in high 
dimensions, the search space must be carefully pruned 
to prevent the search from degrading to exhaustive 
search.  We will discuss the reasons for (and solutions 
to) the dimensionality problem in the next section.  
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Fig.1  3-dimensional clipping window example 
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We discuss the use of k-d trees for k-NN search in the 
Additional Findings section. 

3 Tracking Nodes for NN Search 
In a one-dimensional space, an NN search of a k-d 
tree works much like a typical binary tree, except that 
each leaf contains multiple elements.  A search of a 
one dimensional k-d tree proceeds as follows.  First, ε, 
an initial guess on the distance from the nearest 
neighbor is established.  If only cases of a certain 
similarity are usable, ε may be user defined.  
Additionally, if cases have different similarity 
requirements along different dimensional axes, a user 
defined clipping window may be used. 

If there are no restrictions, and an exact nearest 
neighbor is required, the selection of an arbitrary ε is a 
trivial task.  Selection of a good ε is a different matter.  
To find an adequate starting ε, determine which leaf 
the unique node (α) would be placed in if a 
tree.insert(α) were performed.  (We will use “α” to 
denote a node, not already in the tree, whose nearest 
neighbor we are trying to find.)  Search that leaf for 
the closest node to α and make the distance from the 
closest node to α the initial ε.  With varying 
frequency, based on dimensionality and spatial 
density, this initially inspected case is often the exact 
NN in question.  These results are shown in Fig.6, and 
discussed further in the Additional Findings section. 

Given a unique node, α, and an initial value for ε, 
form a clipping window.  The simplest clipping 
window is for a one-dimensional space.  The “upper” 
and “lower” values of the one-dimensional clipping 
window are set to α+ε and α-ε, respectively.  A 
traversal of the tree will yield all nodes within α±ε , 
and a simple search of these marshaled nodes will 
yield the nearest neighbor.  If the tree density were 1, 
no more than 2 nodes would ever have to be examined 
in a one-dimensional search.  If the tree density were 
δ, no more than 2δ nodes would have to be examined. 

The problem is harder in two dimensions, but the 
reason is well understood.  The clipping window is 
formed from values that lie normal to the dimensional 
axes.  Given an arbitrary ε, the clipping window in 
two dimensions contains 4ε2 units of the two-
dimensional space, similar to the square dotted region 
in figure 2.  However, the optimal search space lies 
within the circle of radius ε immediately around α, 
which covers approximately πε2 units of the two-
dimensional space.  Thus, the actual clipping window 
covers about (4ε2/πε2) 1.27 times the optimal search 
area in a two-dimensional search. 

In three dimensions, the clipping window covers 
8ε3 units of space, while the optimal search area is 
about 4.19ε3 units (4/3πε3).  This means that in three 
dimensions, the clipping window contains almost 
twice the volume of the optimal search space 
constrained by ε. 

As dimensions grow, these extra “corners” formed 
by the hyper-rectangular clipping window grow 
exponentially faster than the hyper-spherical region 
enclosing the optimal search window.  As 
dimensionality increases, the intersection of this extra 
area in the clipping window dominates the search 
space.  The corners outside the hyper-sphere take up 
more space than the area inside it in just 4 dimensions. 

The primary solution to this problem comes in the 
form of what we refer to as a “tracking node.”  
Because of the orthogonal planes used to build the 
tree, search is fast, but little information is stored at 
each branch of the tree.  It is this absence of 
information that the tracking node solves for.  Other 
complicated methods have been proposed for tracking, 
primarily variants of the Bounds-Within-Ball (BWB) 
test [2, 9].  Our tracking nodes achieve the same effect 
as the BWB test with just one simple structure and a 
single comparison at each branch.  Also, it is our 
claim that the code for the tracking node solution is 
more intuitive. 

The tracking node is an object of size O(d), as it 
only has to store one distance for each dimension.  
The tracking node keeps track of the total distance 
already covered by the clipping window along a 
particular path from root to leaf in the k-d tree.  With 
this extra information, the “corners” outside the hyper-
sphere can be easily pruned from the search space. 

For instance, in figure 2, the clipping window 
intersects all four leaves.  The circular area 
constrained by ε only intersects leaves I, II, and IV.  
There is no need to search the nodes in leaf III. 

As noted before, these overlapping areas grow 
exponentially with dimensionality.  As such, the 
savings incurred by not searching these corner regions 
grows exponentially with δ.  The tracking node is 
what allows the efficient pruning of the superfluous 
leaves. 

To show how this pruning is achieved, assume 
that the root of the k-d tree contains a value for the x-
axis that divides the tree into two main branches, as 
seen in figure 2.  Leaf I is searched to find the initial 
value of ε.  Leaves II and IV are still likely to contain 
the nearest neighbor to α, but there is a constraint on 
the maximum distance into leaves II and IV that the 
neighbor may lie. 



In  figure 2, β is the distance from the unique case 
α to the spatial division at x.  By crossing the dividing 
line at x, the closest neighbor that may still be a 
candidate in leaf II must be within ε-β of the division 
x.  That means that the value of ε “used up” in the left 
sub-tree’s tracking node is β.  The value of ε “used 
up” in the right sub-tree’s tracking node remains zero. 

During each recursive call, the tracking node is 
updated to store the total distance from the unique 
node α that the minimum case must be.  In this case, 
even though the clipping window intersects leaf III of 
the space, the tracking node indicates that it does not 
need to be searched because no elements in the leaf 
can be within ε of α. 

The value contained in the tracking node allows 
rapid pruning of the search space to something more 
similar to the true region within ε of α.  The tracking 
node only prunes nodes that are beyond ε.  As noted 
previously, the amount of space pruned by the 
tracking node increases with dimensionality.  This is 
expected since the excess volume of the clipping 
window also grows with dimensionality. 

The initial values of the tracking node are set to 
the initial values for each dimension of the novel case, 
α.  (Recall, α is the whose NN we are trying to find.)  
The values of the tracking node are only updated 
when a left-hand cutting plane lies to the left of the 
initial value of α, or a right-hand cutting plane lies to 
the right of the initial value of α.  This ensures that the 
tracking node only prunes the proper nodes. 

4 DFBB Search 
While the tracking nodes prune the leaves that lie on 
the external boundaries of the search space defined by 
ε, the order in which the internal nodes are searched 
can be used to the advantage of the process. 

Depth first branch and bound (DFBB) works best 
(relative to IDS and A* methods) when the branching 
factor of the search space is low but the solution 
density is high [4]. The beauty of the k-d tree is that 
the actual branching factor is always two because each 
internal node only splits on a single dimension.  The 
effective branching factor generally is much lower.  
Like the travelling salesman problem (TSP), the axial 
division lines in a k-d tree are unevenly spread, like 
cities are spread in the TSP [4].  Also, every leaf node 
is a solution as each leaf node contains at least 1 NN 
candidate, thus the solution density is high. 

The basic premise of the DFBB search is to find 
an initial solution using a depth-first technique, then 
search the rest of the space in a depth-first manner, 
never going beyond the current best solution depth.  
Each time a better solution is found, a new limit is 

placed on the search depth and the search continues.  
We apply this theory to the k-d tree, noting that tree 
depth and solution depth (distance of closest neighbor) 
are not necessarily the same, or even correlated.  (E.g., 
the best solution depth (NN distance) in a tree of depth 
5 could be in a branch of depth 3 in that k-d tree.) 

We can look at the initial value for ε as the initial 
solution depth.  There is no reason to consider any 
node “deeper” (farther from α) than this initial bound, 
as there is at least one node closer to α (the node that 
determine the intial ε).  There are two elements to 
consider for successful DFBB search of a k-d tree: 
revising ε (the solution depth), and search order. 

Epsilon revision for NN search is a simple task.  
Whenever a neighbor is discovered that is closer to α 
than the current distance ε, this new distance becomes 
the new ε.  By changing a global ε, there can be a 
dynamic contraction of the clipping window as well.  
This constrains the search space, but what happens to 
search nodes that are several levels farther up in the 
recursive search procedure?  Do they need to be 
updated too?  The answer is no. 

Because the tracking node contains the minimum 
distance a neighbor will be in a given tree branch, 
when ε is globally updated, a simple 
(tracking_node_distance > ε) test will prune the now 
unnecessary recursive calls from the stack.  By 
dynamically contracting the clipping window and 
pruning recursive search calls based on tracking 
values, considerable time can be saved.  These savings 
are illustrated in figures 4 and 5, and further discussed 
in the Results section. 

Simple contraction of the clipping windows has 
dramatic results, as has been shown previously.  But a 
critical aid to DFBB search, appropriate path ordering, 
has been neglected in the same studies.  The critical 
code fragment presented in [9] demonstrates an 
algorithm for ordering that examines tree leaves in a 
static order.  The algorithm operates independently of 
freely available information from tracking nodes.  
Such information can be used to intelligently order 
search.  The combination of this technique with Path 
Ordering is the significant contribution of this paper. 

5 Path Ordering 
The other important factor in DFBB search, in 
addition to revision of solution depth, is the search 
order.  In a naïve recursive search, all the “left” 
branches would be traversed, then all the “right” 
branches.  This naïve approach has the effect of 
searching a large part of the space that is unlikely to 
contain promising neighbors, because it searches the 



outermost regions of the hyper-sphere first, whose 
nodes are most likely to be far from α. 

However, a simple Monte Carlo approach, 
stochastically choosing a path at each opportunity, 
does not yield significantly different results from 
naïve search.  To maximize effectiveness, the value of 
ε has to be revised downward as soon as possible, and 
this is achieved by careful path selection. 

How can the search be easily ordered without 
further information stored at each of the tree nodes or 
building a complicated priority structure at search 
time?  By cleverly using the data provided by the 
tracking nodes, even a recursive algorithm, with no 
extra knowledge stored in the tree (and without 
expensive volumetric calculations), can quickly search 
the most promising leaves before moving to the outer 
surfaces of the search space. 

Here is the simple algorithm for doing so: 
 
Search-Tree(tree, track_left, track_right)
{

if (tree == leaf)
check-for-candidates(tree)

else {
track_left = intersection(tree->left)
track_right = intersection(tree->right)

if (track_left < track_right) {
if (track_left < epsilon)

Search-Tree(tree-node->left,
track_left, track_left)

if (track_right < epsilon)
Search-Tree(tree-node->left,

track_right, track_right)
} else {

if (track_right < epsilon)
Search-Tree(tree-node->left,

track_right, track_right)
if (track_left < epsilon)

Search-Tree(tree-node->left,
track_left, track_left)

}
}

} //end Search-Tree 
 
What this algorithm accomplishes is a search that is 
depth first, but ordered by desirability.  The “internal” 
leaves nearest to the novel case α will be searched 
first.  This generally allows for the earliest revisions of 
ε and thus the maximum possible contraction of the 
search space. 

For example, once again consider the case in 
figure 2.  The most logical leaf to search first would 
be leaf I.  The Search-Tree algorithm guarantees 
that leaf I will be searched first. 

Assuming once again that the first division of the 
k-d space was drawn along the x-axis, the tracking 
value of the left node will again be β.  The tracking 

value of the right node will be zero, as the value of the 
x dimension is less than (or “left of”) the value of the 
x dimension in α, so the tracking value is not revised. 

Leaves I and IV are now immediate candidates for 
search, and II and III can be considered only when I 
and IV pop off the recursion stack.  Given the dividing 
line along axis y, leaf I will have a tracking value of 
zero still, but leaf IV will have some positive value 
(>0).  So, leaf I must be searched first. 

After the leaf I search pops off the stack, leaf IV 
will be searched.  Once this is searched, we return to 
leaves II and III.  Since the value of dimension y used 
to split leaves II and III is greater than α’s value along 
the y dimension, leaf II will still have a tracking value 
of β, but leaf III will have a tracking value of β plus 
some positive (>0) amount.  This means leaf II will be 
searched next. 

Finally, the last potential search is of leaf III.  
Even without a revision of ε, the tracking value of leaf 
III is greater than the initial ε and will not be 
considered in the search. 

With this ordering by tracking value placed on the 
k-d tree’s nodes, the most internal nodes are searched 
first and ε is revised downward at the earliest possible 
time.  Of course this is a heuristic method for ordering 
the search, and the knowledge is not perfect, but it is 
superior to its non-heuristic counterpart, as can be 
seen in figure 5. 

This algorithm simpler than [9], and provides a 
critical advantage:  By carefully ordering search, 
fewer Bounds-Overlap-Ball tests will have to be 
performed and more pre-case-inspection pruning 
occurs, as shown in the results section. 

6 Bounds-Overlap-Ball (BOB) Test 
We save the description of the BOB for last, as it is 
only possible to perform when additional information 
is embedded when the tree is constructed.  As such, it 
may not be applicable to all existing k-d trees, but it is 
a simple task to add BOB information to existing trees 
and tree constructors. 

The time required to add the BOB information 
when the tree is built is a constant.  As such, the 
information is essentially free, and should be used 
whenever possible.  If for some reason it is not 
possible to put BOB information into an tree existing 
structure, performance can still be very good, but it 
will not be optimal. 

The information required to perform the BOB test 
consists of two objects in a leaf node, both of the same 
type as the data stored in the leaf.  For example, if the 
tree held structures consisting of two real numbers, an 
(x, y) coordinate, two such structures would be 



required in each bucket.  One structure contains the 
maximum values for the (x, y) fields of the elements in 
a given leaf.  The second structure contains the 
minimum values for the (x, y) fields of the elements in 
a given leaf. 

Before inspecting the contents of a leaf, and 
incurring the cost of δ comparisons (recall, there are 
up to δ elements in a given leaf), a single BOB test 
will indicate whether there are likely candidates in the 
leaf.  Clearly, this test is more productive when the 
bucket size (δ) is large, and saves more time as the 
cost of similarity comparisons increase. 

Figure 3 demonstrates how the BOB test works, in 
principle.  The case closest to α lies leaf III.  That case 
defines a circle, with radius ε, around α.  All other 
potential candidates to be the nearest neighbor to α 

must lie within this region. 
This region extends into leaf IV, but the cases in 

leaf IV do not need to be examined.  The BOB test 
determines whether or not there is an intersection 
between the region delimited by ε in leaf III (with 
dashed lines) and the region around the cases in leaf 
IV (also with dashed lines).  If there is an intersection, 
at least one possible candidate lies in leaf IV, 
otherwise it the cases in leaf IV can be neglected. 

7 Results 
A large, high-dimensional k-d tree would be a disk-
based index.  The primary expense with a disk-based 
index is block reads.  Block reads for internal nodes 
can be limited, especially with good construction and 
balance techniques.  Data in the internal nodes may be 
very deep in each block, compared to the leaves.  Each 
internal split node requires data for only one 
dimension and thus many internal levels may be 
contained in a single block.  However, in a leaf, there 

is only one set of objects (up to δ objects), each with d 
dimensions.   

Reading these cases and calculating their distance 
from α is the primary expense.  As such, our metric 
for calculating performance will be object 
comparisons (comparing leaf objects to α). 

To isolate the contributions of the four 
optimization strategies (DFFB, search ordering, 
tracking nodes, and BOB), we performed a battery 
tests. 

The data set used to build the k-d trees consisted 
of 200,000 elements.  The elements of the set were d-
element tuples, uniformly distributed and normalized 
to the range 0.0-1.0 in each dimension.  The test set 
was similarly constructed, and had 1000 d-element 
tuples.  The test set was not drawn from the original 
200,000. 

Each test was performed with 200,000 elements to 
build the k-d tree. 1000 searches were performed and 
the total time and number of nodes examined were 
recorded.  The tests were also balanced for 
dimensionality.  200,000 points were used to build a 
two-dimensional tree, a three-dimensional tree, and so 
on, up to and including a 25-dimensional tree. 

The first comparison is of all four optimizations to 
a wholly uniformed search.  The results are shown in 
figure 4.  At 11 dimensions, the uninformed search 
method compares α to over 50,000 nodes, or 25% of 
the entire search space.  The optimized DFBB search 
can effectively consider an additional six dimensions 
(to d=17) before degenerating to that level of 
performance.  It appears that even the best search 
method is still futile for high dimensions, but is 
somewhat better than the wholly uninformed search 
strategy. 

Before analyzing the other test results, a word 
about dimensionality.  There are several reasons that 
the number of nodes searched increases with an 
increase in dimensionality.  This “curse of 
dimensionality” can be averted with certain 
permutations of the initial data set that lower the 
dimensionality of the problem.  These statistical 
methods include convolving and eliminating variables 
with high covariance, and other techniques that reduce 
the dimensionality of the data set. 

The issue of dimensionality is not intrinsically 
insurmountable by the search techniques of the k-d 
tree.  High dimensionality generally degrades k-d 
search times because of the depopulation of the search 
space (i.e., 100,000 elements in a 10 dimensional 
space are generally much more dense than 100,000 
elements in a 15 dimensional space).  A progression of 
the final ε values sheds light on the problem.  In the 
two dimensional search space, the average distance of 

ε 
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Fig.3 BOB test 



the nearest neighbor is <0.001.  In twenty five 
dimensions, the average nearest neighbor is 0.954 
away from the unique case, α.  The density of 200,000 
elements in two-dimensions (ranging from 0.0-1.0) is 
far higher than a similar 200,000 elements in a 25 
dimensional space. 

In practice, the problems of high dimensionality 
are often not as extreme as we have demonstrated 
using a fixed number of points over an increasing 
range of dimensions.  In many problems, the number 
of points in a space increases rapidly with 
dimensionality.  The increase in the population density 
of high dimensional spaces diminishes the effects of 
dimensionality and brings nodes searched closer to the 
ideal of O(log N), with a large constant that is 
exponential in dimension, δ [7]. 

Regardless of the ability to reduce the 
dimensionality of a data set, it is crucial to be able to 
effectively search the highest possible dimension 
before resorting to reduction techniques. 

The second comparison we make is between the 
optimized process and the process without the 
tracking nodes.  The search with tracking nodes is 
shown in figure 5.  The discerning observer will note 
that the graph line nearly identical to the “unordered 
search” and “no BOB test” lines.  This result indicates 
that the omission of any of the three optimizations 
(ordering, tracking nodes and BOB test, but not 
epsilon revision) will yield a significant speedup, but 
that all four methods are required for maximal gain. 

An omitted line, identical to the wholly 
uninformed search, was achieved by leaving out the 
tracking nodes and BOB test.  Without either test, no 
additional pruning of leaves (by tracking nodes) or 
within leaves (via BOB) is possible and the search is 
not better than the worst method shown here.  The 

tracking nodes facilitate a reasonable search in spaces 
above 10 dimensions.  Without the tracking nodes, the 
performance degrades rapidly.  As noted in the section 
on the Bounds-Overlap-Ball test, it may not be 
possible to add such information to existing trees.  In 
such cases, omission of the tracking nodes is enough 
to render search as ineffective as the wholly 
uninformed search.  Coupling all four optimizations 
does yield a distinct advantage 

While search without the tracking nodes and BOB 
test degenerates to the performance of the wholly 
uninformed search, the DFBB ordering component 
and ε revisions both contribute to significant 
speedups. 

Figure 5 demonstrates the effect of the ε revision.  
Epsilon revision is possible in almost any search of a 
k-d tree, but reducing ε as early as possible can 
magnify the effect. 

Assuming an existing tree structures not suited to 
the BOB test, search without the ε revisions averages 
67.4% more nodes examined, in dimensions 5-21, and 
50.5% over the entire range from 2-25. 

The search ordering did not provide as much gain 
as we had hoped, but it still provides an additional 
reduction in search time.  As figure 5 shows, the 
DFBB search pattern is better than the naïve search 
order.  As mentioned earlier, stochastic ordering of the 
search is no better than the naïve method. 

The overall time reduction for DFBB search 
(measured in nodes examined) compared to a naïve 

search method is a remarkable 79% average over 
dimensions 6-19, with a 67% increase over 
dimensions 1-19, and a lower average considering the 
entire range (when all searches degrade to looking at 
almost all cases). 
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However, the significance of this paper comes in 
comparison to the next best methods, wherein only 
one optimization was omitted.  The modest average 

speedup of 20% in dimensions 10-20 achieved by the 
combination of all techniques demonstrates that all 
components must be present to maximize search gains 
in high dimensional spaces.  In dimensions 2-21, there 
was an average of almost 15% fewer cases inspected. 

Almost any search strategy could employ some 
sort of DFBB reductions by revising ε downward, but 
figure 5 shows a clear savings from revising ε 
downward at the earliest possible times, which is 
achieved by our path ordering. 

8 Additional Findings 
This search algorithm tracked various factors in 
addition to the number of nodes examined to discover 
the nearest neighbor.  Two important statistics further 
demonstrate the necessity of a dense search space in 
high dimensions.  We counted and tracked the 
percentage of cases for which the actual nearest 
neighbor was discovered in the first leaf searched, and 
further the number of revisions to ε. 

First, it is interesting to note that the growth rate 
in number of cases examined was indeed close to 
O(1.56594δ), as predicted in [7].  In dimensions 2-19, 
the growth rate was ~1.576δ, concurring with previous 
findings for a fixed size population, uniformly 
distributed, in increasing dimensions.  Comparing this 
value to the mean number of ε revisions per search, ϕ, 
we found that the successive ratios for δϕ for the 
dimensions from 2-19 was ~1.567, even closer to limit 
proposed in [7]. 

This finding demonstrated a strong correlation 
between the number of ε revisions and the size of the 

search space, further indicating that early ε revision 
times are of critical importance to reducing search 
cost.  We are planning additional examination of this 

correlation between number of ε revisions and search 
space size. 

We have also extended our technique to 
approximate NN search and k-NN search.  Using 
information about initial distributions of the data set, 
we can determine an initial value for ε based on the 
probability that at least one element will lie within the 
hyper-sphere around α bounded by ε.  The method for 
choosing an appropriate initial ε is outlined in [1], and 
has proven successful in their fixed technique.  While 
the results of those experiments are beyond the scope 
of this paper, we present two critical findings from our 
additional work on the subject [8]. 

First, the ability to find the actual nearest neighbor 

to α on the first path through the k-d tree is startlingly 
good in low dimensions.  As shown in figure 6, there 
is 50% or better chance of hitting the exact nearest 
neighbor on the first path searched through six 
dimensions.  Through fifteen dimensions, the first 
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path averages finding no worse than the “third” 
nearest neighbor.  A very good approximation of the 
true nearest neighbor to α can be found with the 
search of a single tree path. 

Further, the number of ε revisions grows at a near 
constant rate (figure 7), and is strongly correlated to 
dimensionality.  Again, this is partly due to the sparse 
population of high dimensional spaces, but has been 
used for good k-NN search times [8].  Point clustering 
is much lower in high dimensions, thus our search 
path encounters better candidates more often, but 
these better candidates are not often significantly 
better candidates.  In effect, there is a slower rate of 
search sphere contraction in higher dimensions.  This 
facilitates k-NN search without much additional 
overhead. 

It is a simple task to collect the k nearest 
neighbors from the first bin(s) examined, using the 
distance of the farthest neighbor from α as the initial 
value for ε.  Whenever a case nearer to α than the kth 
case is found, it is inserted into the candidate list; ε is 
revised down to the distance of the new kth element in 
the candidate list from α.  This technique and a similar 
approximate k-NN method are quite successful for 
classification [8].  Our method for finding the k 
nearest neighbors is an adaptation of the priority 
queue method described in [9]. 

9 Conclusions 
It is unlikely that the growth rates for k-d tree searches 
will fall below the O(1.56594δ) barrier without a 
significant (and previously unimagined) break-
through.  In the meantime, we have proposed a 
method for minimizing the hidden constant in the 
search time. 

By coupling DFBB search with an intelligent 
search ordering heuristic based on our tracking nodes, 
we have shown times that are nearly 80% better than 

naïve or stochastic searches, until effects of spatial 
density distort the results in higher dimensions. 

Approximate NN search and k-NN search of k-d 
trees can benefit from our search method as well.  A 
similar approach to our own was taken in [9], but we 
have advanced those techniques with an ordered 
search property previously unused.  The combined 
effect of these four optimizations is clearly better than 
strategies that have attempted combining any subset of 
the four. 
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