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ABSTRACT network-level information (e.g., endpoint exchanges), time-stamp

While a variety of lossy compression schemes have been developed for ce'J_nformatlon (e.g.z call start and end times), and billing lnformatlon_
tain forms of digital data (e.g., images, audio, video), the area of lossy (e.g., applied tariffs), among other_s [3]', Thes_'e CDRs are stored in
compression techniques for arbitrary data tables has been left relatively unIabIeS that can grow t_o t_ruly massive sizes, In the order of several
explored. Nevertheless, such techniques are clearly motivated by the ever—TeraByteS pe_r year' Similar massive tab!es are also generated from
increasing data collection rates of modern enterprises and the need for e'{ietwork—monltorlng tools that gather switch- and router-level_ traf-
fective, guaranteed-quality approximate answers to queries over massivéIC data, su_ch_ as SNMP/RMON probes [17]. Such tOOI.S typically
relational data sets. In this paper, we propSSRARTAN', a system that co[lt_act traffic information for each network element at fine granu-
takes advantage of attribute semantics and data-mining models to perfornllar!tIeS (eg a_t the level OT packet flows between source-_destlnatlon
lossy compression of massive data tabl&PARTAN is based on the palrs)_, giving rise to massive volpmes oftable data overtlmg. These
novel idea of exploiting predictive data correlations and prescribed error Massive tables of network-traffic and“CDR data ?re continuously
tolerances for individual attributes to construct concise and accOtage explored and analyzed to prod_uce the knowledge that enables k_ey
sification and Regression Tree (CaRT) models for entire columns of a ta- _network-management taSks’ including application and }Jser profll-
ble. More preciselySPARTAN selects a certain subset of attributes for Ing, proactive e_md reacilve resource management, traffic engineer-
which no values are explicitly stored in the compressed table; instead, con"9; an(_j_capacny planning. L . . .
cise CaRTs that predict these values (within the prescribed error bounds) 'I_'radltlona_lly, de_tta compressmn ISSues anse na_turally |n_ appli-
are maintained. To restrict the huge search space and construction cos(%atlo_rls dealln_g \_N'_th massive data se?s_, and effective solutlons_ are
of possible CaRT predictor§ PARTAN employs sophisticated leaming crucial for optimizing the usage of critical system resources, like
techniques and novel combinatorial optimization algorithms. Our experi- storage space and 1/O pandW|dth (for st_orlng and accessmg the
mentation with several real-life data sets offers convincing evidence of thedata) and network bandwidth (for transferring the data across sites).

effectiveness 08 PARTAN's model-based approachSPARTAN is In mobile-computing applications, for instance, clients are usually
able to consistently yield substantially better compression ratios than exist—d'scorrheclted ?nd’ therefore, olftengeec;:i t%dr?wr_lloﬁd data for Ofﬂll’l&
ing semantic or syntactic compression tools (&@gip) while utilizing only use. ese clients may use low-bandwidth wire _ess COI_’mectlons
small data samples for model inference. and can be palmtop computers or handheld devices with severe
storage constraints. Thus, for efficient data transfer and client-side
1 INTRODUCTION resource conservation, the relevant data needs to be compressed.

Several statistical and dictionary-based compression methods have

Effective exploratory analysis of massive, high-dimensional ta- been proposed for text corpora and multimedia data, some of which
bles of alphanumeric data is a ubiquitous requirement for a va- (e.g., Lempel-Ziv or Huffman) yield provably optimal asymptotic
riety of application environments, including corporate data ware- performance in terms of certain ergodic properties of the data source.
houses, network-traffic monitoring, and large socioeconomic or de- These methods, however, fail to provide adequate solutions for
mographic surveys. For example, large telecommunication providersompressing a massive data table, as they view the table as a large
typically generate and store records of information, termed “Call- byte string and do not account for the complex dependency patterns
Detail Records” (CDRs), for every phone call carried over their in the table.
network. A typical CDR is a fixed-length record structure compris-  Compared to conventional compression problems, effectively com-
ing several hundred bytes of data that capture information on vari- pressing massive tables presents a host of novel challenges due to
ous (categorical and numerical) attributes of each call; this includesseveral distinct characteristics of table data sets and their analysis.

*Work done while visiting Bell Laboratories. * Approximate (L ossy) C(_Jmpron_. Due to the exploratory na- .
ture of many data-analysis applications, there are several scenarios
in which an exact answer may not be required, and analysts may
in fact prefer a fast, approximate answer, as long as the system
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salary > 40,000 ExAMPLE 1.1. Consider the table with 4 attributes and 8 tu-

n y ples shown in Figure 1(a). Also, suppose that the acceptable errors
age | salary assets | credit due to compression for the numeric attributes age, salary, and as-
20 | 30,000 | 25,000 | poor . 1 sets are 2, 5,000, and 25,000, respectively. Figure 1(b) depicts a
25 | 76,000 | 75000 | good | IR | eret a0t oo classification tree for predicting the credit attribute (with salary as
30 | 90,000 | 200,000] good the predictor attribute) and a regression tree for predicting the as-
40 | 100,000 175,000 poor salary > 80,000

sets attribute (with salary and age as the predictor attributes). Ob-
serve that in the regression tree, the predicted val ue of assets (label
value at each leaf) is almost always within 25,000, the specified
y (ﬁfﬁgﬁ ;jgfy-‘iofoo 000) error tolerance, of the actual tuple value. For instance, the pre-

' dicted value of assets for the tuple with salary = 90,000 is 225,000
while the original value is 200,000. The only tuple for which the
predicted value violates this error bound is the tuple with salary =

50 | 110,000] 250,000 good n
60 | 50,000 | 150,000] good
70 | 35,000 | 125,000| poor age > 50

75 | 15,000 | 100,000| poor y

assets = 50,000 assets = 125,000

(a) Tuples in Table (b) CaRT Models 100,000, which isan marked asan outlier valuein both trees. Thus,
by explicitly storing, in the compressed version of the table, each
Figure 1: Model-Based Semantic Compression. outlier value along with the CaRT models and the projection of the

table onto only the predictor attributes (age and salary), we can
ensure that the error due to compression does not exceed the user-
amounts of valuable system resources. Thus, in contrast to tradi-specified bounds. Further, storing the CaRT models (plus outliers)

tional lossless data compression, the compression of massive tablegyr credit and assets instead of the attribute values themselves re-

can often afford to béossy, as long as some (user- or application- sultsin a reduction from 8 to 4 values for credit (2 labels for leaves
defined) upper bounds on the compression error are guaranteed by 1 split value at internal node + 1 outlier) and a reduction from 8

the compression algorithm. This is obviously a crucial differentia- to 6 values for assets (3 |abels for leaves + 2 split values at internal

tion, as even small error tolerances can help us achieve much bettefiodes + 1 outlier). Il

compression ratios.

e Semantic Compression. Existing compression techniques are 1€ key algorithmic problem faced ByPAR7.AN"s compres-
“syntactic” in the sense that they operate at the level of consecutiveSION €ngine is that of computing an optimal set of CaRT models
bytes of data. As explained above, such syntactic methods typi-for the input table such that (a)_ t_he_ overall storage requirements
cally fail to provide adequate solutions for table-data compression, ©f the compressed table are minimized, and (b) all predicted at-
since they essentially view the data as a large byte string and ddiribute values are W|th|_n _the _user-specmed_ error bounds._ This is
not exploit the complex dependency patterns in the table. Effective@ Very challenging optimization problem since, not only is there
table compression mandates techniques thateanantic in nature, an exponential number of possible CaRT-based models to choose
in the sense that they account for and exploit both (1) the mean-from, but also building CaRTs (to estimate their compression ben-
ings and dynamic ranges of individual attributes (e.g., by taking efits) is a computation-intensive task, typically requiring multiple
advantage of the specified error tolerances): and, (2) existing data?@Sses over the data [2, 10, 13]. As a consequaEelR 7 AN
dependencies and correlations among attributes in the table. has to employ a number of sophisticated techniques from the areas

I . . . of knowledge discovery and combinatorial optimization in order
Our Contributions. In this paper, we describe the architecture of 9 y n

1 i . _to efficiently discover a “good” (sub)set of predicted attributes and
ngAcﬁZZ}rjr:?n,ir?gsﬁézr;sﬂgtgil:feosrridl\é zr;t;‘%gn?];?g;ggtnej}cem:g;'iiconstruct th? corr_esponding CaRT models. Below, we list some of
data tables.SPARTAN is based on the novel idea of exploit- SPARTANs§aI|ent features. ]
ing data correlations and user-specified “loss”/error tolerances for® Use of Bayesian Network to Uncover Data Dependencies. A
individual attributes to construct concise and accutiassifica- Bayesian network is a DAG whose edges reflect strong predictive
tion and Regression Tree (CaRT) models [2] for entire columns of correlations between n_odes of the graph [14]. Thus,_ a Bayesian net-
a table. More precisel§ PARTAN selects a certain subset of at- work on the table’s attrlputes can be used Fo dramatically re_duce the
tributes (referred to agredicted attributes) for which no values are ~ S€arch space of potential CaRT models since, for any attribute, the
explicitly stored in the compressed table; instead, concise CaRTsm‘?St promising CaRT _predlctors are the ones that involve attributes
that predict these values (within the prescribed error bounds) arell its “neighborhood” in the network. Our curreStPPARTAN
maintained. Thus, for a predicted attributethat is strongly cor- implementation uses a constralnt_-based Bay_eglan ngtwor_k builder
related with other attributes in the tabBPARTAN is typically bf'is_ed on recently proposed algorithms for efﬁment!y inferring pre-
able to obtain a very succinct CaRT predictor for the valueX pf dictive strqcture from Qata._To c_ontrol the computational overhead,
which can then be used to completely eliminate the columnkfor the Bayes_lan network is built using a reasonably small random sam-
in the compressed table. Clearly, storing a compact CaRT modelP!€ Of the input table.
in lieu of millions or billions of actual attribute values can result in e Novel CaRT-selection Algorithmsthat Minimize Stor age Cost.
substantial savings in storage. In addition, allowing for errors in the SPARTAN exploits the inferred Bayesian network structure by
attribute values predicted by a CaRT model only serves to reduceusing it to intelligently guide the selection of CaRT models that
the size of the model even further and, thus, improve the guality of minimize the overall storage requirement, based on the prediction
compression; this is because, as is well known, the size of a CaRTand materialization costs for each attribute. Intuitively, the goal
model is typically inversely correlated to the accuracy with which is to minimize the sum of the prediction costs (for predicted at-
it models a given set of values [2]. tributes) and materialization costs (for attributes used in the CaRTSs).

We demonstrate that this model-selection problem is a strict gener-
! [From WebsterBpartan: /'spart-*n/ (1) of or relating to Sparta in ancient alization of theWeighted Maximum Independent Set (WMIS) prob-

Greece, (2) a: marked by strict self-discipline and avoidance of comfort and!em [9], Which is known to b.e\/P-hard._ However, by employing_
luxury, b: sparing of words : TERSE : LACONIC. a novel algorithm that effectively exploits the discovered Bayesian




structure in conjunction with efficient, near-optimal WMIS heuris- upper bound on thprobability that the (approximate) value

tics, SPARTAN is able to obtain a good set of CaRT models for of X; in T. is different from the actual value i. More
compressing the table. formally, if z, 2’ denote the accurate and approximate value
e Improved CaRT Construction Algorithmsthat Exploit Error (respectively) of attributeX; for any tuple of T', then our
Tolerances. A signification portion ofSPARTAN’s execution compressor guarantees thigfr = 2'] > 1 —e;.

time is spent in building CaRT models. This is mainly because For numeric attributes, the error tolerance could very well be spec-
SPARTAN needs to actually construct many promising CaRTs ified in terms of quantiles of the overall range of values rather than
in order to estimate their prediction cost, and CaRT construction absolute, constant values. Similarly, for categorical attributes the
is a computationally-intensive process. To reduce CaRT-building probability of error could be specified separately for each individ-
times and speed up system performadfBARTAN employs the ual attribute class (i.e., value) rather than an overall measure. (Note
following three optimizations: (1) CaRTs are built using random that such an extension would, in a sense, make the error bounds
samples instead of the entire data set, (2) leaves are not expanded fbr categorical attributes more “local”, similar to the numeric case.)
values of tuples in them can be predicted with acceptable accuracyOur proposed model-based compression framework and algorithms
and (3) pruning is integrated into the the tree growing phase usingcan be readily extended to handle these scenarios, so the specific
novel algorithms that exploit the prescribed error tolerance for the definitions of error tolerance are not central to our methodology.
predicted attribute. To make our discussion concrete, we use the definitions outlined

We have implemented th§ PARTAN system and conducted above for the two attribute classes. (Note that our error-tolerance
an extensive experimental study with three real-life data sets toSemantics can also easily captiwesiess compression as a special
compare the quality of compression due®ARTAN"’s model- case, by setting; = 0 for all 4.)
based approach with existing syntactic and semantic compressiorMetrics. The basic metric used to compare the performance of dif-
techniques. For all three data sets, and even for small error tolerferent compression algoritms is the well-knosompression ratio,
ances (e.g., 1%), we found th&PARTAN is able to achieve, on  defined as the ratio of the size of the compressed data representa-
an average, 20-30% better compression ratios. Further, our expertion produced by the algorithm and the size of the original (uncom-
imental results indicate th&8 PARTAN compresses tables bet-  pressed) input. A secondary performance metric istigpression
ter when they contain more numeric attributes and as error threshthroughput that, intuitively, corresponds to the rate at which a com-
olds grow bigger. For instance, for a table containing mostly nu- pression algorithm can process data from its input; this is typically
meric attributes and for higher error tolerances in the 5-10% range,defined as the size of the uncompressed input divided by the total
SPARTAN outperformed existing compression techniques by moreompression time.
than a factor of 3. Finally, we show that our improved CaRT con-  Our work focuses primarily on optimizing the compression ra-
struction algorithms mak& PARTAN's performance competi-  tio, that is, achieving the maximum possible reduction in the size
tive, enabling it to compress data sets containing more than halfof the data within the acceptable levels of error defined by the

a million tuples in a few minutes. user. This choice is mainly driven by the massive, long-lived data
sets that are characteristic of our target data warehousing applica-
2. OVERVIEW OF APPROACH tions and the observation that the computational cost of effective

P : compression can be amortized over the numerous physical opera-
2.1 Preliminaries tions (e.g., transmissions over a low-bandwidth link) that will take
Definitions and Notation. The input to theSPARTAN system place during the lifetime of the data. Also, note that our methodol-
consists of an-attribute tablel’, comprising a large number of tu-  ogy offers a key “knob” for tuning compression throughput perfor-
ples (rows). We lett’ = {Xi,...,X,} denote the set of at- mance, namely the size of the data sample useSTYR TAN's

tributes ofT" anddom(X;) represent the domain of attribué . model-construction algorithms. Setting the sample size based on
Attributes with a discrete, unordered value domain are referred to asthe amount of main memory available in the system can help en-

categorical, whereas those with ordered value domains are referredsyre high compression speeds.
to asnumeric. We also usé. to denote the compressed version of . .
tableT, and|T| (|T-|) to denote the storage-space requirements for 2.2 Model-Based Semantic Compression

T (T¢) in bytes. Briefly, our proposednodel-based framework for the semantic
The key input parameter to our semantic compression algorithmscompression of tables is based on two key technical ideas. First,

is a (user- or application-specifiedydimensional vector oérror we exploit the (user- or application-specified) error bounds on in-

tolerances € = [e1, . .. ,ex] that defines theer-attribute accept- dividual attributes in conjunction with data mining techniques to

able degree of information loss when compresdingPer-attribute efficiently buildaccurate models of the data. Second, we compress
error bounds are also employed in the fascicles framework [12].) the input table using a select subset of the models built. The ba-
Intuitively, thei‘" entry of the tolerance vecter specifies an up-  sic intuition here is that this select subset of data-mining models is
per bound on the error by which any (approximate) valugiah carefully chosen to capture large portions of the input table within
the compressed tabl can differ from its original value iff". Our the specified error bounds.

error tolerance semantics differ across categorical and numeric at- More formally, we define the model-based, compressed version
tributes, due to the very different nature of the two attribute classes.of the input tablel’ as a paifl, =< T', {M,... ,M,} > where

(1) T’ is a small (possibly empty) projection of the data values in
T that are retainedccurately in 7..; and, (2){M,... ,M,}isa
select set of data-mining models, carefully built with the purpose of
maximizing the degree of compression achievedIfavhile obey-

ing the specified error-tolerance constraints. Abstractly, the role of
T’ is to capture values (tuples or sub-tuples) of the original table
that cannot be effectively “summarized away” in a compact data-
2. For a categorical attribute X;, the tolerance:; defines an mining model within the specified error tolerances. (Some of these

1. For anumeric attribute X;, the tolerance; defines an upper
bound on theabsol ute difference between the actual value of
X; in T and the corresponding (approximate) valuelin
That is, if z, 2’ denote the accurate and approximate value
(respectively) of attributeX; for any tuple of T', then our
compressor guarantees thag [z — e;, z’ + e;].



values may in fact be needediaput to the selected models.) The

As the above example shows, in many practical cases, fasci-

attribute values if” can either be retained as uncompressed data cles can effectively exploit the specified error tolerances to achieve

or be compressed using a conventional lossless algorithm.

high compression ratios. There are however, several scenarios for

A definition of our general model-based semantic compressionwhich a more general, model-based compression approach is in

problem can now be stated as follows.

[Model-Based Semantic Compression (MBSC)]: Given a multi-
attribute tablel” and a vector of (per-attribute) error toleranees
find a set of model§ M., ... , M.} and a compression scheme
for T' based on these modéls =< T', {M,... , My} > such
that the specified error boundsare not exceeded and the storage
requirement$T,| of the compressed table are minimizlld.

Given the multitude of possible models that can be extracted
from the data, this is obviously a very general problem definition

that covers a huge design space of possible alternatives for semantic
compression. We provide a more concrete statement of the prob

lem addressed in our work on tPARTAN system later in this

section. First, however, we discuss how our model-based compres
sion framework relates to recent work on semantic compression
and demonstrate the need for the more general approach advocate

in this paper.
Comparison with Fascicles. Our model-based semantic compres-

sion framework, in fact, generalizes earlier ideas for semantic data
compression, such as the very recent proposal of Jagadish, Madar.

and Ng on usindascicles for the semantic compression of rela-
tional tables [12]. (To the best of our knowledge, this is the only
work on lossy semantic compression of tables with guaranteed up
per bounds on the compression efror

A fascicle basically represents a collection of tuples (rows) that
haveapproximately matching values for some (but not necessarily
all) attributes, where the degree of approximation is specified by

user-provided compactness parameters. Essentially, fascicles can
be seen as a specific form of data-mining models, i.e., clusters in

subspaces of the full attribute space, where the notion of a cluste

is based on the acceptable degree of loss during data compressio
The key idea of fascicle-based semantic compression is to exploit.

the given error bounds to allow for aggressive grouping and “sum-
marization” of values by clustering multiple rows of the table along
several columns (i.e., the dimensionality of the cluster).

ExAMPLE 2.1. Consider the table in Figure 1(a) described in
Example 1.1. Error tolerances of 2, 5,000 and 25,000 for the three
numeric attributes age, salary and assets, respectively, result in the
following two fascicles:

F; 1 F 2
30 | 90,000 | 200,000 | good 70 | 35,000 | 125,000 | poor
50 | 110,000 | 250,000 | good 75 | 15,000 | 100,000 | poor

Thetuplesin the two fascicles F; and F» are similar (with respect
to the permissible errors) on the asset and credit attributes (shown
in bold). Thereason for thisisthat two attribute values are consid-
ered to be similar if the difference between themisat most twice the
error bound for the attribute. Thus, substituting for each attribute
value, the mean of the maximum and minimum val ue of the attribute
ensures that the introduced error is acceptable. Consequently, in
order to compress the table using fascicles, the single (sub)tuple
(225,000, good) replaces the two corresponding (sub)tuples in the
first fascicle and (112,500, poor) is used instead of the two sub-
tuples in the second fascicle. Thus, in the final compressed table,
the maximum error for assetsis 25,000, and the number of values
stored for the assets and credit attributes is reduced from8to 6.11

Tﬁuloit (column-wise) attribute dependencies for the purposes of se-

order. The main observation here is that fascicles only try to de-
tect “row-wise” patterns, where sets of rows have similar values
for several attributes. Such “row-wise” patterns within the given
error-bounds can be impossible to find when strong “column-wise”
patterns/dependencies (e.g., functional dependencies) exist across
attributes of the table. On the other hand, different classes of data-
mining models (like Classification and Regression Trees (CaRTs))
can accurately capture and model such correlations and, thereby,
attain much better semantic compression in such scenarios.
Revisiting Example 1.1, the two CaRTs in Figure 1(b) can be
Used to predict values for ttessets andcredit attributes, thus com-

pletely eliminating the need to explicitly store values for these at-
tributes. Note that CaRTs result in better compression ratios than

fascicles for our example table — the storage fordfedit attribute
rgduces from 8 to 4 with CaRTs compared to 6 with fascicles.

Concrete Problem Definition. The above discussion demonstrates
the need for a semantic compression methodology that is more gen-
eral than simple fascicle-based row clustering in that it can account
for and exploit strong dependencies among the attributes of the
ihput table. The important observation here (already outlined in
Example 1.1) is that data mining offers models (i.e., CaRTs) that
can accurately capture such dependencies with very concise data

structures. Thus, in contrast to fascicles, our general model-based
semantic compression paradigm can accommodate such scenarios.
The ideas of row-wise pattern discovery and clustering for se-
mantic compression have been thoroughly explored in the context
of fascicles [12]. In contrast, our work on t&PARTAN se-
mantic compressor reported in this paper focuses primarily on the
novel problems arising from the need to effectively detect and ex-

mantic table compression. The key idea underlying our approach
is that, in many cases, a small classification (regression) tree struc-
ture can be used to accuratgigedict the values of a categorical
(resp., numeric) attribute (based on the values of other attributes)
for a very large fraction of table rows. This means that, for such
cases, our compression algorithms can complegdiyinate the
predicted column irfavor of acompactpredictor (i.e., a classifi-
cation or regression tree model) and a small set of outlier column
values. More formally, the design and architectur6 AR TAN
focuses mainly on the following concrete MBSC problem.

[SPARTAN CaRT-Based Semantic Compression]: Given a multi-
attribute tableél’ with a set of categorical and/or numeric attributes
X, and a vector of (per-attribute) error toleranegdind a sub-
set{X1,...,X,} of X and a set of corresponding CaRT models
{M1,..., M,;}suchthat: (1) modeM; is a predictor for the val-
ues of attributeX; based solely on attributesii—{X1,... , X, },
foreachi = 1,... | p; (2) the specified error boundsare not ex-
ceeded; and, (3) the storage requireméfits of the compressed
tableT, =< T',{Mi,... ,Mp} > are minimizedll

Abstractly, our novel semantic compression algorithms seek to
partition the set of input attribute&” into a set ofpredicted at-
tributes { X1, ... , X, } and a set ofredictor attributes X' — { X1,

., Xp } such that the values of each predicted attribute can be ob-
tained within the specified error bounds based on (a subset of) the
predictor attributes through a small classification or regression tree
(except perhaps for a small set of outlier values). (We use the no-

2Due to space constraints, we omit a detailed discussion of related work; ittation X; — X; to denote a CaRT predictor for attribute using

can be found in the full version of this paper [1].

the set of predictor attributey; C X — {X,... , X,}.) Note that



we do not allow a predicted attribufé to also be a predictor fora  there is an exponential number of possibilities for building CaRT-
different attribute. This restriction is important since predicted val- based attribute predictors, we need a concise model that identifies
ues of X; can contain errors, and these errors can cascade furthethe strongest correlations and “predictive” relationships in the input
if the erroneous predicted values are used as predictors, ultimatelydata.

causing error constraints to be violated. The final goal, of course, is The approach used in theeEBENDENCYFINDER component of

to minimize the overall storage cost of the compressed table. ThisSPARTAN is to construct 8ayesian network [14] on the under-
storage cosf;| is the sum of two basic components: lying set of attributest’. Abstractly, a Bayesian network imposes a
Directed Acyclic Graph (DAG) structur@ on the set of nodeg’,

such that directed edges capture direct statistical dependence be-
tween attributes. (The exact dependence semantGsaoé defined

; - L s shortly.) Thus, intuitively, a set of nodes in the “neighborhood” of

is basically the projection df’ onto the set of predictor at- v i 7 (e.g., X;'s parents) captures the attributes that are strongly

tributes. (The storage cost of materializing attribifeis correlated taX; and, therefore, show promise as possible predictor
denoted byVat er Cost (X;).) attributes forX;.

2. Prediction cost, i.e., the cost of storing the CaRT models used ¢ CARTSELECTOR The CARTSELECTORcOmponent constitutes
for prediction plus (possibly) a small set of outlier values of the core ofSPARTAN"s model-based semantic compression en-
the predicted attribute for each model. (The storage cost of gine. Given the input tabl@ and error tolerances;, as well

1. Materialization cost, i.e., the cost of storing the values for all
predictor attributest — {Xi,... , X,}. This costis repre-
sented in th&” component of the compressed table, which

predicting attributeX; through the CaRT predictot; — X; as the Bayesian network on the attributesTobuilt by the De-
is denoted byPr edCost (X; — X;); this doesnot include PENDENCYFINDER, the CARTSELECTORIs responsible for se-
the cost of materializing the predictor attributestin) lecting a collection of predicted attributes and the correponding

CaRT-based predictors such that the final overall storage cost is
~We should note here that our proposed CaRT-based compresminimized (within the given error bounds). As discussed above,
sion methodology is essentiallythogonal to techniques based on  spARTAN’s CARTSELECTORemploys the Bayesian network
row-wise clustering, like fascicles. It is entirely possible to com- ¢ it on X to intelligently guide the search through the huge
bine the two techniques for an even more effective model-basedspace of possible attribute prediction strategies. Clearly, this search
semantic compression mechanism. As an example, the predictofpyolyes repeated interactions with the RTBUILDER component,

attribute tablel” derived by our “column-wise” techniques can be \yhich is responsible for actually building the CaRT-models for the
compressed using a fascicle-based algorithm. (In fact, this is eX-predictors (Figure 2).

actly the strategy used in our curréfPAR7.AN implementation; We demonstrate that even in the simple case where the set of
however, other methods for combining the two are also possible.)nodes that is used to predict an attribute nodeifs fixed, the

The important point here is that, since the entrie§"ofire used  proplem of selecting a set of predictors that minimizes the com-
as inputs to (approximate) CaRT models for other attributes, carepination of materialization and prediction cost naturally maps to
must be taken to ensure that errors introduced in the COMPressionhe\neighted Maximum Independent Set (WMIS) problem, which is

of 7" do not compound over the CaRT models in a way that causesynown to beA"P-hard and notoriously difficult to approximate [9].

error guarantees to be violated. The issues involved in combininggased on this observation. we propose a CaRT-model selection
our CaRT-based compression methodology with row-wise cluster-syrateqy that starts out with an initial solution obtained from a near-

ing techniques are addressed in more detail later in the paper. optimal heuristic for WMIS [11] and tries to incrementally improve
; it by small perturbations based on the unique characteristics of our
2.3 O_Verv_lew of the SPA_RTAN System problem. We also give an alternatigeeedy model-selection algo-
As depicted in Figure 2, the architecture of $IBARTAN sys- rithm that chooses its set of predictors using a simple local con-

tem comprises of four major components: theABNDENCYFINDER,  dition during a single “roots-to-leaves” traversal of the Bayesian
the CARTSELECTOR, the CARTBUILDER, and the RWAGGRE networkG.

GATOR. In the following, we provide a brief overview of each
SPARTAN component; we defer a more detailed description of
each component and the relevant algorithms to Section 3.

e CARTBUILDER. Given a collection of predicted and (corre-

sponding) predictor attribute¥; — X;, the goal of the GRT-

BuILDER component is to efficiently construct CaRT-based models

for eachX; in terms ofX; for the purposes of semantic compres-

e e e ks, 06, o7] sion. Induction of CaRT-based models is typically a computation-

e e . intensive process that requires multiple passes over the input data [2,
i 13]. As we demonstrate, howev&fPARTAN"s CaRT construc-
tion algorithms can take advantage of the compression semantics

Table T
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EN garmorxs} and exploit the user-defined error-tolerances to effectively prune
predicor Atributes + /. N"ees o computation. In addition, by building CaRTs using data samples
bl BuildCaRT((xax7>x3,8) . 7 1 instead of the entire data SSPARTAN is able to further speed

3 L4 . up model construction.
cgmp,:;;i_ - . @« ROWAGGREGATOR OnceSPARTAN's CARTSELECTORCOM-
Table oo -0 ponent has finalized a “good” solution to the CaRT-based semantic

compression problem, it hands off its solution to theWAGGRE
GATOR component which tries to further improve the compression
ratio through row-wise clustering. Briefly, theORAGGREGA-

» DEPENDENCYINDER. The purpose of the BPENDENCYINDER  1og yses a fascicle-based algorithm [12] to compress the predic-
component is to produce anteraction model for the input ta- oy attributes, while ensuring (based on the CaRT models built) that

ble attributes, that is then used to guide the CaRT building algo- g(rors in the predictor attribute values are not propagated through
rithms of SPARTAN. The main observation here is that, since

Figure2: SPARTAN System Architecure.




the CaRTs in a way that causes error tolerances (for predicted atscore [6, 7, 8]. (In general, this is a hard optimization problem

tributes) to be exceeded. that is typically N"P-hard [5].) Both methods have their pros and
cons. Given the intractability of scoring-based network generation,

3. SPARTAN SYSTEM COMPONENTS several heuristic search methods with reasonable time complexi-
ties have been proposed. Many of these scoring-based methods,

3.1 The DEPENDENCYFINDER Component however, assume amrdering for the input attributes and can give

Motivation. As explained in Section 2.2, the essenc8 BEARTAN"’s drastically different networks for different attribute orders. Fur-
CaRT-based semantic compression problem lies in discovering ather, due to their heuristic nature, such heuristic methods may not
collection of “strong” predictive correlations among the attributes find the best structure for the data. On the other hand, constraint-
of an arbitrary table. The search space for this problem is obviously based methods have been shown to be asymptotically correct un-
exponential: given any attribut¥;, any subset of X — {X;} could der certain assumptions about the data [4], but, typically, introduce
potentially be used to construct a predictor f&ff Furthermore, edges in the network based on Conditional Independence (Cl) tests
verifying the quality of a predictor for the purposes of semantic that become increasingly expensive and unreliable as the size of
compression is typically a computation-intensive task, since it in- the conditioning set increases [7]. Also, several constraint-based
volves actually building the corresponding classification or regres- methods have very high computational complexity, requiring, in
sion tree on the given subset of attributes [2, 10, 13]. Since building the worst case, an exponential number of CI tests.

an exponentially large number of CaRTs is clearly impractical, we =~ SPARTAN's DEPENDENCYFINDERimplements a constraint-
need a methodology for producing a condisteraction model that based Bayesian network builder based on the algorithm of Cheng
identifies the strongest predictive correlations among the input at-et al. [4]. Unlike earlier constraint-based methods, the algorithm of
tributes. This model can then be used to restrict the search to interCheng et al. explicitly tries to avoid complex ClI tests with large
esting regions of the prediction space, limiting CaRT construction conditioning sets and, by using Cl tests based on mutual informa-
to truly promising predictors. Building such an interaction model tion divergence, eliminates the need for an exponential number of
is the main purpose #PARTAN's DEPENDENCYFINDERCOM- Cl tests [4]. In fact, given am-attribute data set, our Bayesian
ponent. network builder requires at moéi(n*) Cl tests, which, in our im-

The specific class of attribute interaction models used in the cur- plementation, translates to at ma¥tn*) passes over the input tu-
rentSPARTAN implementation is that dBayesian networks [14]. ples. Recall thaSPARTAN's DEPENDENCYFINDER uses only
Briefly, a Bayesian network is a combination of a probability dis- a small random sample of the input table to discover the attribute
tribution and a structural model in the form of a DAG over the at- interactions; the size of this sample can be adjusted according to the
tributes in which edges represent direct probabilistic dependence.amount of main memory available, so that no I/O is incurred (other
In effect, a Bayesian network is a graphical specification of a joint than that required to produce the sample). Also, note that the D
probability distribution that is believed to have generated the ob- PENDENCYFINDERIS, in a sense, out of the “critical path” of the
served data. Bayesian networks are an essential tool for capturdata compression process, since such attribute interactions are an
ing causal and/or predictive correlations in observational data [16]; intrinsic characteristic of the data semantics that only needs to be
such interpretations are typically based on the following depen- discoveredonce for each input table. Our EPENDENCYFINDER

dence semantics of the Bayesian network structure. implementation adds several enhancements to the basic Cheng et
e Parental Markov Condition [14]: Given a Bayesian networ& al. algorithm, such as the use of Bayesian-scoring methods for ap-
over a set of attributed’, any nodeX; € X is independent of all  Propriately orienting the edges in the final network [1].

its non-descendant nodes given its parent nod€s {denoted by 3.2 The CARTSELECTOR Component

7(X5)).
(X0)) The CARTSELECTORcomponent is the heart SSPARTAN's

e Markov Blanket Condition [14]: Given a Bayesian network ; . . . !
A ; model-based semantic compression engine. Given the input data
over a set of attributed’, we define théVlarkov blanket of X; € X table and error tolerances, as well as the Bayesian network cap-

(denoted by3(X;)) as the union of;'s parents X;’s children, and : : - :
e . : s turing the attribute interactions, the goal of the RT SELECTOR
the parents ak;’s children inG'. Any nodeX; € X'is independent is to select (1) a subset of attributes to be predicted and (2) the

of all other nodes given its Ma.r.kov blanket ] corresponding CaRT-based predictors, such that the overall stor-
Based on the above conditions, a Bayesian network over theage cost is minimized within the specified error bounds. Recall

attributes of the input table can provide definite guidance on the from Section 2.2 that the total storage c{it| is the sum of the

search for promising CaRT predictors for semantic compression. materialization costs (of predictor attributes) and prediction costs

More specifically, it is clear that predictors of the formiX;) — (of the CaRTs for predicted attributes). In essence, th&®TS-
Xi or 3(Xi) — X should be considered as prime candidates for g ectorimplements the core algorithmic strategies for solving
CaRT-based semantic compression. SPARTAN’s CaRT-based semantic compression problem (Sec-

Construction Algorithm. Learning the structure of Bayesian net- tion 2.2). Deciding on a storage-optimal set of predicted attributes
works from data is a difficult problem that has seen growing re- and corresponding predictors poses a hard combinatorial optimiza-
search interest in recent years [8, 6, 4]. There are two general apiion problem; as the following theorem shows, the probles 8-
proaches to discovering Bayesian structure: Gastraint-based hard even in the simple case where the set of predictor attributes to
methods try to discover conditional independence properties be- be used for each attribute is fixed.

tween data attributes using appropriate statistical measures (e.g., . . .

¥? or mutual information) and then build a network that exhibits 1 HEOREM 3.1. Consider a given set of n predictors {4, —

the observed correlations and independencies [4, 1654&)ng- X : forall X; € X, whered; C X}. Choosing a storage-

based (or, Bayesian) methods are based on defining a statistically- OPtimal subset of attributes A,,.q C A’ to be predicted using at-
motivatedscore function (e.g., Bayesian or MDL-based) that de- {ributesin X’ — X;,cq isA’P-hard. i

T e o o Tl neluor St Lo e Cb, Thesimpe nstance AR TAAN s CaRT-based semaniccom-
’ 9 pression problem described in the above theorem can be shown to



be equivalent to th&\kighted Maximum Independent Set (WMIS) Our Greedy algorithm provides a simple, low-complexity solu-
problem, which is known to b&P-hard. The WMIS problem can  tion to SPARTAN’s CaRT-based semantic compression problem.
be stated as follows: “Given a node-weighted, undirected graph(The detailed pseudo-code f@ireedy can be found in [1].) Given
G = (V, E), find a subset of noddg’ C V such that no two ver- ann-attribute table and Bayesian netwdi it is easy to see that
tices inV' are joined by an edge if and the total weight of nodes  Greedy always constructat most (n — 1) CaRT predictors dur-
in V' is maximized.” Abstractly, the partitioning of the nodes into ing its traversal of5. This simplicity, however, comes at a price.
V" andV — V' corresponds exactly to the partitioning of attributes More specifically,Greedy CaRT selection suffers from two major
into “predicted” and “materialized” with the edges 6f captur- shortcomings. First, selecting an attribtketo be predicted based
ing the “predicted by” relation. Further, the constraint that no two solely on its “localized” prediction benefit (through its predecessors
vertices inV’ are adjacent il ensures that all the (predictor) at- in G) is a very myopic strategy, since it ignores the potential ben-
tributes for a predicted attribute (") are materialized, which efits from usingX; itself as a (materialized) predictor attribute for
is a requirement oSPARTAN’s compression problem. Also, its descendants i@. Such very localized decisions can obviously
the weight of each node coresponds to the “storage benefit” (ma-result in poor overall predictor selections. Second, the value of the
terialization cost - prediction cost) of predicting the corresponding “benefit threshold” parameteét can adversely impact the perfor-
attribute. Thus, maximizing the storage benefit of the predicted at- mance of the compression engine and selecting a reasonable value
tributes has the same effect as minimizing the overall storage costfor 6 is not a simple task. A high value may mean that very few
of the compressed table. or no predictors are chosen, whereas afovalue may cause low-
Even though WMIS is known to b& P-hard and notoriously ~ benefit predictors to be chosen early in the search thus excluding
difficult to approximate for general graphs [9], several recent ap- some high-benefit predictors at lower layers of the Bayesian net-
proximation algorithms have been proposed with guaranteed worst-work.
case performance bounds foounded-degree graphs [11]. The

optimization problem faced bﬁPARTAN’S CARTSELECTOR X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X4 X1 X2
is obviously much harder than simple WMIS, since theRT S- o —>¢—>0 o6 o o o—e—o o0

[ tially free to decide on the set of predictor at- iy S0 10 S0y a8 45 %0
ELECTORIS essen y p (a) Bayesian network G (b) Gtemp (1st iter.) (c) Gtemp (2nd iter.) (d) Gtemp (3rd iter.)

tributes for each CaRT. Further, theARTSELECTORalSO has to

invokeSPARTAN’s CARTBUILDER component to actually build  Figure 3: Example Instance for CART SELECTORAIgorithms.
potentially useful CaRTs, and this construction is itself a computatior
intensive task [2, 13].

Given the inherent difficulty of the CaRT-based semantic com- EXAMPLE 3.1. Consider the Bayesian network graph defined
pression problenSPARTAN’s CART SELECTORImplementstwo ~ over attributes Xy, ... , X4 shown in Figure 3(a). Let the materi-
distinct heuristic search strategies that employ the Bayesian net-alization cost of each attribute be 125. Further, let the prediction
work model of T’ built by the DEPENDENCYFINDER to intelli- costs of CaRT predictors be as follows:
gently guide the search through the huge space of possible attribute
prediction alternatives. The first strategy is a simgieedy selec- Er edCost ({X1} = Xp) = 75 PredCost ({Xp} — X3) = 15
. . : . . PredCost ({X1} — X3) = 80 PredCost ({X2} — X4) = 80
tion algorlthmt_hatch_ooses C_:aRT predictors greedily based on their p, oqcost ({X1} = X1) = 125 PredCost ({X3} — X4) = 75
storage benefits during a single “roots-to-leaves” traversal of the
Bayesian graph. The second, more complex strategy takes a les8uppose that § = 1.5. Snce X; has no parents, it is initially
myopic approach that exploits the similarities between our CaRT- added to X,,.4¢. In the next two iterations, since Mat er Cost (Xz)
selection problem and WMIS; the key idea here is to determine / PredCost ({X:1} — X») =1.67 > 1.5 and Mat er Cost (X3)
the set of predicted attributes (and the corresponding CaRTs) by/ PredCost ({X1} — X3) = 1.56 > 1.5, X» and X3 are added
obtaining (approximate) solutions to a number of WMIS instances to X,,.cq. Finally, X, isadded to X,,..: since Mat er Cost (X4) /

created based on the Bayesian modéelof PredCost ({X1} — X4) = 1 < 1.5. Thus, the overall storage
TheGreedy CaRT Selector. Briefly, SPARTANs Greedy CaRT- €0t of materializing X; and X4, and predicting X> and Xs is
selection algorithm visits the set of attribut&sin the topological- 125 + 75 + 80 + 125 = 405.

sort order imposed by the constructed Bayesian network n@del
and tries to build a CaRT predictor for each attribute based on its
predecessors. Thus, for each attribiievisited, there are two
possible scenarios.

TheMaxIndependentSet CaRT Selector. SPARTAN’s MaxIn-
dependentSet CaRT-selection algorithm, depicted in Figure 4, al-
leviates the drawbacks @breedy mentioned above. Intuitively,
the MaxIndependentSet algorithm starts out by assuming all at-

1. If X; has no parent nodes i@ (i.e., nodeX; is a root of tributes to be materialized, i.eX... = X (Step 1), and then
@) thenGreedy concludes thak; cannot be predicted and, works by iteratively solving WMIS instances that try to improve
consequently, places; directly in the subset of materialized the overall storage cost by moving the nodes in the (approximate)
attributesX’ .. WMIS solution to the subset of predicted attribut€s.q. Con-

) ) . ) ) sider thefirst iteration of the main while-loop (Steps 3-30). Al-

2. Otherwise (i.e.7r(X;) is not empty inG), SPARTAN's gorithm Max| ndependentSet starts out by building CaRT-based
CARTBUILDER component is invoked to construct a CaRT-  yragictors for each attributé; in X' based onX;'s “predictive
based predictor foiX; (within the specified error tolerance  4; ghbor hood”in the constructed Bayesian netwak(Steps 5—
e;) using the set of attribut_es c_hosen for ma_terialization thus 7): thisnei ghbor hood function is an input parameter to the al-
far Xnq¢. (Note that possibly irrelevant attributes Mt gorithm and can be set to eith&}'s parents or its Markov blanket
will be filtered out by the CaRT construction algorithm in j, & Then, based on the “predicted-by” relations observed in the
CARTBUILDER.) Once the CaRT foX; is built, the rela- constructed CaRT#$/ ax| ndependentSet builds a node-weighted,
tive storage benefit of predicting; can be estimatedy; is undirected grapk&;..., on X’ with (a) all edgegX;, V'), wherey

chosen for prediction if this relative benefit is at ledgan is used in the CaRT predictor fof;, and (b) weights for each node
input parameter t&reedy) and materialized otherwise.



procedure Max!IndependentSet( T'(X) , €, G , neighborhood() )

Input: n-attribute tablel’; n-vector of error tolerances Bayesian network
G on the set of attributed’; functionneighborhood() defining the
“predictive neighborhood” of a nod®; in G (e.g.,m(X;) or 5(X;)).

Output: Set of materialized (predicted) attribut@$ ¢ (Xpreq = X'—
Xmat) and a CaRT predictdPRED(X;) — X; for eachX; € X}, cq.

begin

1. Xmat =&, Xpred =¢

2. PRED(X;) := ¢ forall X; € X', improve :=true

3. while (improve# false) do

4, for each X; € Xpat

5. mat er _.nei ghbor s(X;) := (Xmat N neighborhood(X;)) U
{PRED(X) : X € neighborhood(X;),X € Xpreq} — {X;}

6. M := Bui | dCaRT(mat er _nei ghbor s(X;) — X;,e;)

7. letPRED(X;) C nat er _nei ghbor s(X;) be the set of predictor

attributes used ioM

8. cost _change; :=0

9. for each X; € A),,.q such thatX; € PRED(X;)

10. NEWPRED; (X;) := PRED(X;) — {X;} UPRED(X;)

11. M := Bui | dCaRT(NEWPRED; (X;) — X, e;)

12. setNEWPRED; (X ) to the (sub)set of predictor attributes
used inM

13. cost _change; := cost change; + (PredCost (PRED(X})

— Xj) — Pr edCost (NEWPREDi(Xj) — X]))
14. end
15. end
16.  build an undirected, node-weighted gra@b,mp = (Xmat, Etemp)
on the current set of materialized attribut§s.:, where:

17. @)Etemp :={(X,Y) : Vpair (X,Y) € PRED(X}) for someX;
in Xpred} U {(X“Y) VY € PRED(Xz) X € Xmat}
18. (b)wei ght (X;) := Mat er Cost (X;) — PredCost (PRED(X;)

— X;) + cost _change; for eachX; € Xmat
19. S := FindWMIS(Gtemp)
20. [* select (approximate) maximuwei ght independent set in */

WMIS solution can obviously select only one of these predictors.
On the other hand, the above scenario means that (by “transitivity”)
it is very likely that{X, Y} can also provide a good predictor for
W (i.e., only X andY need to be materialized).

Later iterations oM axlndependentSet’s main while-loop try
to further optimize the initial WMIS solution based on the above
observation. This is accomplished by repeatedly moving attributes
from the remaining set of materialized attribut&s,: to the pre-
dicted attributest),..4. For each materialized attribufg, M axIn-
dependentSet finds its “materialized neighborhood” in the Bayesian
modelG, that comprises for each nodéin thenei ghbor hood
of X;: (1) X itself, if X € Xpqt and (2) the (materialized) at-
tributes currently used to predict, if X € A,..q (Step 5). A
CaRT predictor forX; based on its materialized neighbors is then
constructed (Step 6). Now, sinég may already be used in a num-
ber of predictors for attributes ift,,.4, we also need to account for
the change in storage cost for these predictors whkien replaced
by its materialized neighbors used to predict it; this change (de-
noted bycost _change;) is estimated in Steps 8-14. The node-
weighted, undirected grapBiemp iS then built onX,,.: with the
weight for each nod&; set equal to the overall storage benefit of
predictingX;, includingcost _.change; (Steps 16-18). (Note that
this benefit may very well be negative.) Finally, a (near-optimal)
WMIS of Giemp is chosen and added to the set of predicted at-
tributesX),,.q With the appropriate updates to the set of CaRT pre-
dictors. Note that, since our algorithm considers the “transitive ef-
fects” of predicting each materialized nodg in isolation, some
additional care has to be taken to ensure #tahost one predic-
tor attribute from each already selected CaR®jn., is chosen at
each iteration. This is accomplished by ensuring that all attributes

21. I* Gtemp as “maximum-benefit” subset of predicted attributes */ pelonging to a predictor SPRED(X;) for someX; € Xpreq form

22, if (D" xegWei ght (X) < 0) thenimprove :=false
23. dse

24. for each X; € Al eq

25. if (PRED(X;) N S = {X;}) then

26. PRED(Xj) := NEWPRED; (Xj)
27. end

28. Xmat 1= Xmat — 5, Xpred = Xpred us

29. end

30. end /* while */

end

Figure4: The MaxIndependentSet CaRT-Selection Algorithm.

X, set equal to the storage-cost benefit of predicfipgSteps 16—
18). Finally, MaxIndependentSet finds a (near-optimal) WMIS

of Giemp and the corresponding nodes/attributes are moved to the
predicted seft,..q With the appropriate CaRT predictors (assum-

ing the total benefit of the WMIS is positive) (Steps 19-29).
Note that in Step 5, it is possible famt er _nei ghbor s(Xj;)
to be¢. This could happen, for instance,X; is a root of G and

X,’s nei ghbor hood comprises of its parents. In this case, the

model M returned byBui | dCaRT is empty and it does not make
sense forX; to be in the predicted set,,.... We ensure thak;
always stays imt,,..: by settingPr edCost (PRED(X;) — X;) to
oo if PRED(X;) = ¢, which causesX;’s weight to become-co
in Step 18.

The WMIS solution discovered after this first iteratiorbéxI n-

dependentSet can be further optimized, since it makes the rather
restrictive assumption that an attribute can only be predicted base

on its directnei ghbor hood in G. For example, consider a sce-
nario whereG contains the directed chaf)X, Y} —» Z — W,
and the attribute paifX, Y’} provides a very good predictor faf,
which itself is a good predictor for the valuedf. Then, the initial

I* updateXyqt, Xpred, and the chosen CaRT predictors */

aclique in the construction 0&Gemp (Step 17). Then, by its defi-
nition, the WMIS solution can contain at most one node from each
such sePRED(X;). MaxlIndependentSet’s while-loop continues
until no further improvements on the overall storage cost are possi-
ble (Step 22).

ExamMPLE 3.2. Consider the Bayesian network graph shownin
Figure 3(a) and let prediction costs for attributes be as described
earlier in Example 3.1. Further, suppose the nei ghbor hood
function for anode X;; isitsparents. Inthefirstiteration, PRED(X; ) =
¢, PRED(XZ) = X, PRED(Xg) = X, and PRED(X4) = X3.
Further, since X,,.q = ¢, cost change; = 0 for each X; €
Xmat- Asa result, the graph Giemp and weights for the nodes are
set as shown in Figure 3(b). Note that node X isassigned a weight
of —oo because PRED(X:) = ¢. The optimal WMIS of Giemp IS
{X3} sinceitsweight is greater than the sum of the weights of X>
and X4. Thus, after thefirstiteration Xpreq = {X3}.

Inthesecond iteration, PRED( X4 ) isset to X in Steps 57 since
neighborhood(X4) = X3 and X3 € X)eq With PRED(X3) =
X,. Further, PRED(X;) = ¢ and PRED(X-) = X;. Also, since
X» € PRED(X3), in Steps 8-14, NEWPRED; (X3) = {X:} and
cost _.change, =PredCost ({X»} — X3) — PredCost ({X1}
— X3) =—65. Inaddition, since X; and X4 arenot predictorsfor
a predicted attribute, cost _change; = cost _change, = 0.
Thus, the graph Giemp and weights for the nodes are set as shown
in Figure 3(c). Theweight for X, is essentially Mat er Cost (X»)
— PredCost ({X;} — X3) + cost change, =125 — 75 —

5 and theweight for X, isMat er Cost (X4) — PredCost ({X>}

— X4) + cost change, = 125 — 80 + 0. The optimal WMIS
of Gtemp is {X4} and thus X,,..q = {X3, X4} after the second
iteration.

Finally, Figure 3(d) illustrates G, during thethird iteration —
node X, hasaweight of —60 since PRED(X>) = {X1} and X is



used to predict both X3 and X4. Thus, while predicting (instead of for the salary attribute is 5,000 and after (lossy) compression, the
materializing) X» resultsin a decrease of 50 in the cost of X5, the salary value of 76,000 is stored as 81,000Fh Consequently,
cost of predicting X3 and X4 using X; (instead of X>) increases since the classification tree in Figure 1(b) is used to predict the
increases by 110, thus resulting in a net increase in cost of 60. value of theassets attribute, the value of the attribute would be
The algorithm terminates since weight of every node in Giemyp IS wrongly predicted as 225,000 (instead of 75,000), thus violating
negative. The end result is a total storage cost of only 345, which the error bound of 25,000.

is, in fact, the optimal solution for thisinstance. il SPARTAN's ROWAGGREGATORCOmMponent uses a fascicle-
based algorithm [12] to further compress the taBlef predictor
attributes. Since fascicle-based compression is lossy, in the follow-
ing, we show how the above-mentioned scenario can be avoided
when compressing numeric attributes using fascicles. For a nu-
meric predictor attributeX;, define valuev to be a split value for

X, if X; > wvis a split condition in some CaRM; in T.. Also,

in a fascicle (set of records), we say that an attriblifds com-

pact if the rangdz’, z"’] of X;-values in the fascicle, in addition

to having width at mos2e;, also satisfies the property that for ev-
ery split valuev, eitherz’ > v orz” < v. In our fascicle-based
compression algorithm, for each compact attribiie by using

(' + z'")/2 as the representative fox;-values in the fascicle,

3.3 The CARTBUILDER Component we can ensure that the error bounds for both predictor as well as

SPARTAN’s CARTBUILDER component constructs a CaRT predicted attributes are respected. In fact, we can show that the

. . . . values for predicted attributes are identical prior to and &ftas
predictorX; — X for the attributeX; with X; as the predictor at- compressed using fascicles. This is because for each i,

trltt)u_tef. The ?F:TBU'LDER sogjegll_ve "Ztcl’ consttr#ctt ther;smal(lj-_ ¢ @e original and compressed tuple traverse the same path in every
est (in terms of storage space) CaRT madel such that each predicte aRTM;. For instance, suppose th& > v is a split condition

value (of a tuple’s value for attribut&;) deviat_es from the actual in some CaRT and[X;] is different after compression. Then, if
value by at mos;, the error tolerance for attribufg; . , t[X:] > v, it must be the case that for the fascicle contairtinigr

If the predicted attributeX; is categorical, thenSP_ARTANs .., the X;-value rangdz’, z"'], ' > v. Thus, the compressed value
CARTBuUILDER component builds a compact classification tree with for t[X;] ((z' + «")/2) must also be greater than In a similar

vgiluetsi Onvfri serw:gtras ’([:ila:s :abﬁlﬁgal—rBUml LgéERterfrilrpltoysnclgs- " fashion, we can show that whefX;] < v, the compressed value
stication tree construction algo s from [15] to first construct a of t[X;] is also less than or equal to Thus, our more strict def-

low storage cost tree and then explicitly stores sufficient number of inition of compact attributes prevents errors in predictor attributes

:Jhutllers S.fl.JCg that tt?e frrSCEI'%n of(r;sglgssmed recordstls Ietshs ;hanfrom rippling through the predicted attributes. Further, the fasci-
the ?pef.' 1€ ;errt?r_b Otlé( lus, that U|'LDERgu;5|1ran e;st 3. cle computation algorithms developed in [12] can be extended in a
€ fraction of atiributel; s vajues that are incorrectly predicted s straightforward manner to compute fascicles contaiilmgmpact

less thare;. : . e
In the case ohumeric predicted attributes\;, SPARTAN’s attributes (according to our new definition).

CARTBUILDER employs a novel, efficient algorithm for construct-

ing compact regression trees for predictifg with an error that 4. EXPERIMENTAL STUDY

is guaranteed not to exceed The key technical idea in our al- In this section, we present the results of an extensive empirical
gorithm is to integrate building and pruning during the top-down study whose objective was to compare the quality of compression
construction of a guaranteed-error regression tree — this is achievediue toSPARTAN's model-based approach with existing syntac-
through a novel technique (based on dynamic programming) fortic (gzip) and semantic (fascicles) compression techniques. We
computing a lower bound on the cost of a yet-to-be-expanded sub-conducted a wide range of experiments with three very diverse real-
tree. Due to space constraints, the detailS BARTAN s regres- life data sets in which we measured both compression ratios as well
sion tree construction algorithm can be found in the full paper [1]. as running times foaS PARTAN . The major findings of our study

can be summarized as follows.
34 The ROWAGGREGATORComponent

’ e Better Compression Ratios. On all data setsSPARTAN
SPARTAN's CARTSELECTORCOmponent computes the set  proquces smaller compressed tables comparegtiand fasci-

of attributes{ X, ..., X, } to predict and the CaRT mode{sv1, cles. The compression due 8PARTAN is more effective for

-+, My} for predicting them. These mo_dells are stored in the (apjes containing mostly numeric attributes, at times outperform-
compressed versioit. of the table along withl”, the projection  jng gzip and fascicles by a factor of 3 (for error tolerances of 5-
of tableT on predictor attributes. Obviously, by compressifig  1004). Even for error tolerances as low as 1%, the compression

one could reduce the storage overhead.afven further. However, due toSPARTAN, on an average, is 20-30% better than existing
while lossless compression algorithms can be used to conipress schemes.

without any problems, we need to be more careful when applying
lossy compression algorithms 8. This is because, with lossy
compression, the value of a predictor attribifgin 7’ may be
different from its original value that was initially used to build the

Complexity of Algorithm MaxIndependentSet. Analyzing the
execution of algorithnM axl ndependentSet, we can show thatn
the worst case, it requires at mosf)(n) invocations of the WMIS
solution heuristic Find WMIS) and constructs at moé)(p";)
CaRT predictors, whers is the number of attributes iA" and p

is an upper bound on the number of predictor attributes used for
any attribute inX,,.q. Further, under assumptions slightly less
pessimistic than the worst case, it can be shown thatvbax! n-
dependentSet algorithm only needs to solv@(log n) WMIS in-
stances and buil@(pn log n) CaRT predictors. The details of the
analysis can be found in the full paper [1].

e Small Sample Sizes are Effective. For the data sets, even with
samples as small as 50KB (0.06% of one data SURTAN is

able to compute a good set of CaRT models that result in excellent
CaRT models. As a result, it is possible for errors that exceed thecompression ratios. Thus, using samples to build_ tht_e_Bayesian net-
specified bounds, to be introducped into the values of predicted at-Work and CaRT models can speed SPARTAN significantly.
tributes. For instance, consider the table from Example 1.1 (shown® Best Algorithms for SPARTAN Components. The MaxIn-

in Figure 1(a)) and the CaRTs in Figure 1(b) contained in the com- dependentSet CaRT-selection algorithm compresses the data more
pressed versioff, of the table. Suppose that the error tolerance effectively that theGreedy algorithm. Further, Sinc§ PARTAN



spends most of its time building CaRTs (between 50% and 75% very different characteristics in our experiments.

depending on the data set), the integrated pruning and building ofe Census, (ww. bl s. census. gov/) This data set was taken from
CaRTs results in significant speedupsSBARTANs execution  the Current Population Survey (CPS) data, which is a monthly sur-
times. vey of about 50,000 households conducted by the Bureau of the
Thus, our experimental results validate the thesis of this paperCensus for the Bureau of Labor Statistics. Each month’s data con-
that SPARTAN is a viable and effective system for compress- tains around 135,000 tuples with 361 attributes, of which we used
ing massive tables. All experiments reported in this section were 7 categorical attributes (e.g., education, race) and 7 numeric at-
performed on a multi-processor (4 700MHz Pentium processors)tributes (e.g., age, hourly pay rate). In the final data set, we used
Linux server with1 GB of main memory. data for 5 months (June through October 2000) that contained a

. total of 676,000 tuples and occupied 28.6 MB of storage.
41 Experlmental Testbed and MethOd()IOgy e Corel. (kdd. i cs. uci . edu/ dat abases/ Cor el Feat ur es/)

Compression Algorithms. We consider three compression algo-  Thjs data set contains image features extracted from a Corel image
rithms in our experimental study. collection. We used &).5 MB subset of the data set which contains

e Gzip. gzip is the widely used lossless compression tool based on the color histogram features of 68,040 photo images. This data set
the Lempel-Ziv dictionary-based compression technique [18]. We consists of 32 numerical attributes and contains 68,040 tuples.

compress the tabl@w-wise usinggzip after doing a lexicographic ¢ Forest-cover. (kdd. i cs. uci . edu/ dat abases/ covert ype/)

sort of the table. We found this to significantly outperform the cases This data set contains the forest cover typesorx 30 meter cells
in which gzip was applied to a row-wise expansion of the table gptained from US Forest Service (USFS) RegtdResource Infor-
(without the lexicographic sort). mation System (RIS) data. T6.2 MB data set contains 581,000
e Fascicles. In [12], Jagadish, Madar and Ng, describe two algo- tuples, andl0 numeric and44 categorical attributes that describe
rithms, Sngle-k and Multi-k, for compressing a table using fasci- the elevation, slope, soil type, etc. of the cells.

cles. They recommend thdulti-k algorithm for small values of

(the number of compact attributes in the fascicle), butSingle-k
algorithm otherwise. In our implementation, we use Smgle-k
algorithm as described in [12]. The two main input parameters to
the algorithm are the number of compact attribukesnd the max-
imum number of fascicles to be built for compressiéh, In our
experiments, for each individual data set, we used valuésaofd

P that resulted in the best compression due to the fascicle algo-
rithm. We found theSingle-k algorithm to be relatively insensitive

to P (similar to the finding reported in [12]) and choBeo be500

for all three data sets. However, the sizes of the compressed table
output bySingle-k did vary for different values ok and so for the
Corel, Forest-cover and Census data sets (described below), we s
k to 6, 36 and 9, respectively. Note that these large valueg of
justify our use of thesingle-k algorithm. We also set the minimum
sizem of a fascicle to 0.01% of the data set size. For each numeric
attribute, we set the compactness tolerance to two times the input4 2 Experimental Results
error tolerance for that attribute. However, since for categorical at-

tributes, the fascicle error semantics differs from our’s, we used apicts the compression ratios fgeip, fascicles andS PARTAN

compactness tolerance of 0 for every categorical attribute. for the three data sets. From the figures, itis clear§fRR4 R TAN
* SPARTAN . Weimplemented all components of @#®@ARTAN  gytperforms botlyzip andfascicles, on an average, by 20-30% on

system as described in sectin For theGreedy CaRT-selection g gata sets, even for a low error threshold value of 1%. The com-
algorithm, we used value of 2 for the relative benefit paranteter pression due t&PARTAN is especially striking for the Corel
theMaxI ndependent Set CaRT-selection algorithm, for finding the  (jata set that contains only numeric attributes. For high error tol-
WMIS of the node-weighted grapi;emy,, we used thQUALEX erances (e.g., 5-10%F5PARTAN produces a compressed Corel
software packagewu. busygi n. dp. ua/ npc. ht ). This soft- taple that is almost a factor of 3 smaller than the compressed ta-
ware implements an algorithm based on a quadratic programmingp|es generated byzip and fascicles, and a factor of 10 smaller
formulation of the maximum weighted clique problem [9]. The than the uncompressed Corel table. Even for the Census data set,
running time isO(n") (wheren is number of vertices in the graph).  which contains an equal number of numeric and categorical at-
In all our experimentsQUALEX always found the optimal solu-  triputes, SPARTAN compresses better than fascicles for smaller
tion and accounted for a negligible fraction of the overall execution g3nd moderate error threshold values (e.g., 0.5% to 5%); only for

time. We also implemented the integrated building and pruning al- jarger error bounds (e.g., 10%) do fascicles perform slightly better
gorithm in theBui | dCaRT component, and used a simple lower hanSPARTAN..

Default Parameter Settings. The critical input parameter to the
compression algorithms is the error tolerance for numeric attributes
(note that we use an error tolerance of O for all categorical at-
tributes). The error tolerance for a numeric attribixieis speci-

fied as a percentage of the width of the rangeXpivalues in the
table. Another important parameter 8PARTAN is the size

of the sample that is used to select the CaRT models in the final
compressed table. For these two parameters, we use default val-
ues of 1% (for error tolerance) and 50KB (for sample size), re-
spectively, in all our experiments. Note that 50KB corresponds to
8.065%, 0.475% and .174% of the total size of the Forest-cover,
e(Eorel and Census data sets, respectively. Finally, unless stated oth-
erwiseSPARTAN always used axl ndependentSet for CaRT-
selection and the integrated pruning and building algorithm for con-
structing regression trees.

Effect of Error Threshold on Compression Ratio. Figure 5 de-

bound of1 + min{log(|Xi|),log(|dom(X;)|)} for every “yet to The reasomyzip does not compress the data sets as well is that
be expanded” leaf node. Finally, in theoORAGGREGATORCOM-  pike fascicles an$PARTAN it treats the table simply as a se-
ponent, we employed tr8ngle-k fascicle algorithm, withP setto  guence of bytes and is completely oblivious of the error bounds
500 andk equal to two-thirds of the number of attributeszih In for attributes. In contrast, both fascicles aSPARTAN ex-

order to be fair in our comparison with fascicles, we set the error pojt data dependencies between attributes and also the semantics
tolerance for categorical attributes to always be 0. of error tolerances for attributes. Further, compared to fascicles

Real-life Data Sets. We used the following real-life data sets with which simply cluster tuples with approximately equal attribute val-
ues, CaRTs are much more sophisticated at capturing dependencies
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Figure5: Effect of Error Threshold on Compression Ratio.

between attribute columns. This is especially true when tables con-running times ofSPARTAN"'s CaRT-selection algorithms for the
tain numeric attributes since CaRTs employ semantically rich split three data sets. We consider three CaRT-selection algorithms —
conditions for numeric attributes lik&; > v. Another crucial Greedy, Maxl ndependentSet with thenei ghbor hood for a node
difference between fascicle- and CaRT-based compression is thatset to it parents anell axl ndependentSet with thenei ghbor hood
when fascicles are used for compression, each tuple and as a corfor a node set to it Markov blanket (in the Bayesian graph). From
sequence, every attribute value of a tuple is assigned to a singlehe table, it follows that théaxlndependentSet algorithms al-
fascicle. However, i PARTAN, a predictor attribute and thus a  ways compress better than t@eeedy algorithm. This is because
predictor attribute value (belonging to a specific tuple) can be usedthe Greedy algorithm follows a very “local” prediction strategy

in a number of different CaRTs to infer values for multiple different for each attribute, basing the decision on whether or not to predict
predicted attributes. Thus, CaRTs offer a more powerful and flex- an attribute solely on how well it is predicted by its materialized
ible model for capturing attribute correlations than fascicles. As a ancestors in the Bayesian network graph. In contrastitbel n-
result, a set of CaRT predictors are are able to summarize complexdependentSet algorithm adopts a more “global” view when mak-
data dependencies between attributes much more succinctly thamg a decision on whether to predict or materialize an attribute —
a set of fascicles. For an error constraint of 1%, the final Corel specifically, it not only takes into account how well an attribute is
SPARTAN -compressed table contains 20 CaRTs that along with predicted by attributes in its neighborhood, but also how well it pre-
outliers, consume only 1.98 MB or 18.8% of the uncompressed ta-dicts other attributes in its neighborhood. Observe that, in general,
ble size. Similarly, for the Forest-cover data set, the number of the version oM axlndependentSet with the Markov blanket as a
predicted attributes in the compressed table is 21 (8 numeric andnode’snei ghbor hood performs slightly better thaM axl nde-

13 categorical) and the CaRT storage overhead (with outliers) is apendentSet with parents as theei ghbor hood.

measly 4.77 MB or 6.25% of the uncompressed table. With respect to running times, in general, we found taix| n-

The compression ratios fd#PARTAN are even more impres-  dependentSet with parents performs quite well across all the data
sive for larger values of error tolerance (e.g., 10%) since the storagesets. This is because, it constructs few CaRTs (18 for Census, 32 for
overhead of CaRTs + outliers is even smaller at these higher errorCorel and 46 for Forest-cover) and since it restrictsthieghbor -
values. For example, at 10% error, in the compressed Corel dateghood for each attribute to only its parents, each CaRT contains few
set, CaRTs consume only 0.6 MB or 5.73% of the original table predictor attributes. Whil&reedy does build the fewest CaRTs in
size. Similarly, for Forest-cover, the CaRT storage overhead re- most cases (10 for Census, 16 for Corel and 19 for Forest-cover),
duces to 2.84 MB or 3.72% of the uncompressed table. The onlyall the materialized ancestors of an attribute are used as predic-
exception is the Census data set where the decrease in storage ovepr attributes when building the CaRT for the attribute. As a re-
head is much steeper for fascicles than for CaRTs. We conjecturesult, since close to 50% attributes are materialized for the data sets,
that this is because of the small attribute domains in the Census dat@ach CaRT is built using a large number of attributes, thus hurt-
that cause each fascicle to cover a large number of tuples at higheing Greedy’s performance. Finally, the performanceMfxInde-
error threshold values. pendentSet with Markov blanket suffers since it, in some cases,
Effect of Random Sample Sizeon Compression Ratio. Figure 6(a) ~constructs a large number of CaRTs (56 for Census, 17 for Corel
illustrates the effect on compression ratio as the sample size is in-2nd 138 for Forest-cover). Further, since the Markov blanket for
creased from 25KB to 200KB for the Forest-cover data set. In- & node contains more attributes than simply its parents, the num-
terestingly, even with a 25KB sample, which is about 0.03% of ber of predictor attributes used in each CaRT for Markov blanket
the total data set siz&§PARTAN is able to obtain a compres- IS typically much larger. As a result, CaRT construction times for
sion ratio of approximately 0.1, which is about 25% better than Markov blanket are higher and overall execution times for Markov

the compression ratio fayzip and fascicles. Further, note thatin-  blanket are less competitive.

creasing the sample size beyond 50KB does not result in significant Data oat Compression Ralio/Running Time (sec)
improvements in compression quality. The implication here is that Greedy WMIS(Parent)] WMIS(Markov)
itis possible to infer a good set of models even with a small random | Corel 0.3527/148.25 0.292/97.44] 0.287/80.73
sample of the data set. This is significant since using a small sample | Forest-cover| 0.131/932 0.106 /670 0.1/1693
instead of the entire data set for CaRT model construction can sig- [_Census 0.18/205.77] 0.148/153 | 0.157/453.35

nificantly improveSPARTANs running time (see running time
experiments described later).

Effect of CaRT Selection Algorithm on Compression Ratio /
Running Time. In Table 1, we show the compression ratios and

Table 1: Effect of CaRT Selection Algorithm on Compression
Ratio/Running Time.

Effect of Error Threshold and SampleSizeon Running Time. In
Figures 6(b) and 6(c), we plot the running times 8PARTAN
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Figure 6: Effect of Error Threshold and Sample Size on Compression Ratio/Running Time.

for a range of error threshold values and sample sizes. Two trendsstrategies that take advantage of the prescribed error tolerances to
in the figures that are straightforward to observe areSARTAN’s minimize the computational effort involved. Our experimentation
running time decreases for increasing error bounds, and increasewith several real-life data sets has offered convincing evidence of
for larger sample sizes. The reason for the decrease in executiorthe effectiveness a§ PARTAN s model-based approach.

time when the error tolerance is increased is that for larger error
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