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ABSTRACT
While a variety of lossy compression schemes have been developed for cer-
tain forms of digital data (e.g., images, audio, video), the area of lossy
compression techniques for arbitrary data tables has been left relatively un-
explored. Nevertheless, such techniques are clearly motivated by the ever-
increasing data collection rates of modern enterprises and the need for ef-
fective, guaranteed-quality approximate answers to queries over massive
relational data sets. In this paper, we proposeSPARTAN , a system that
takes advantage of attribute semantics and data-mining models to perform
lossy compression of massive data tables.SPARTAN is based on the
novel idea of exploiting predictive data correlations and prescribed error
tolerances for individual attributes to construct concise and accurateClas-
sification and Regression Tree (CaRT) models for entire columns of a ta-
ble. More precisely,SPARTAN selects a certain subset of attributes for
which no values are explicitly stored in the compressed table; instead, con-
cise CaRTs that predict these values (within the prescribed error bounds)
are maintained. To restrict the huge search space and construction cost
of possible CaRT predictors,SPARTAN employs sophisticated learning
techniques and novel combinatorial optimization algorithms. Our experi-
mentation with several real-life data sets offers convincing evidence of the
effectiveness ofSPARTAN ’s model-based approach –SPARTAN is
able to consistently yield substantially better compression ratios than exist-
ing semantic or syntactic compression tools (e.g.,gzip) while utilizing only
small data samples for model inference.

1. INTRODUCTION
Effective exploratory analysis of massive, high-dimensional ta-

bles of alphanumeric data is a ubiquitous requirement for a va-
riety of application environments, including corporate data ware-
houses, network-traffic monitoring, and large socioeconomic or de-
mographic surveys. For example, large telecommunication providers
typically generate and store records of information, termed “Call-
Detail Records” (CDRs), for every phone call carried over their
network. A typical CDR is a fixed-length record structure compris-
ing several hundred bytes of data that capture information on vari-
ous (categorical and numerical) attributes of each call; this includes
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network-level information (e.g., endpoint exchanges), time-stamp
information (e.g., call start and end times), and billing information
(e.g., applied tariffs), among others [3]. These CDRs are stored in
tables that can grow to truly massive sizes, in the order of several
TeraBytes per year. Similar massive tables are also generated from
network-monitoring tools that gather switch- and router-level traf-
fic data, such as SNMP/RMON probes [17]. Such tools typically
collect traffic information for each network element at fine granu-
larities (e.g., at the level of packet flows between source-destination
pairs), giving rise to massive volumes of table data over time. These
massive tables of network-traffic and CDR data are continuously
explored and analyzed to produce the “knowledge” that enables key
network-management tasks, including application and user profil-
ing, proactive and reactive resource management, traffic engineer-
ing, and capacity planning.

Traditionally, data compression issues arise naturally in appli-
cations dealing with massive data sets, and effective solutions are
crucial for optimizing the usage of critical system resources, like
storage space and I/O bandwidth (for storing and accessing the
data) and network bandwidth (for transferring the data across sites).
In mobile-computing applications, for instance, clients are usually
disconnected and, therefore, often need to download data for offline
use. These clients may use low-bandwidth wireless connections
and can be palmtop computers or handheld devices with severe
storage constraints. Thus, for efficient data transfer and client-side
resource conservation, the relevant data needs to be compressed.
Several statistical and dictionary-based compression methods have
been proposed for text corpora and multimedia data, some of which
(e.g., Lempel-Ziv or Huffman) yield provably optimal asymptotic
performance in terms of certain ergodic properties of the data source.
These methods, however, fail to provide adequate solutions for
compressing a massive data table, as they view the table as a large
byte string and do not account for the complex dependency patterns
in the table.

Compared to conventional compression problems, effectively com-
pressing massive tables presents a host of novel challenges due to
several distinct characteristics of table data sets and their analysis.

� Approximate (Lossy) Compression. Due to the exploratory na-
ture of many data-analysis applications, there are several scenarios
in which an exact answer may not be required, and analysts may
in fact prefer a fast, approximate answer, as long as the system
can guarantee anupper bound on the error of the approximation.
For example, during a drill-down query sequence in ad-hoc data
mining, initial queries in the sequence frequently have the sole pur-
pose of determining the truly interesting queries and regions of the
data table. Providing (reasonably accurate) approximate answers
to these initial queries gives analysts the ability to focus their ex-
plorations quickly and effectively, without consuming inordinate



age salary assets credit
20 30,000 25,000 poor
25 76,000 75,000 good
30 90,000 200,000 good
40 100,000 175,000 poor
50 110,000 250,000 good
60 50,000 150,000 good
70 35,000 125,000 poor
75 15,000 100,000 poor (outlier: salary = 100,000)

assets = 225,000yn

assets = 125,000assets = 50,000

salary > 80,000

age > 50

yn

salary > 40,000

n y

credit = poor credit = good
(outlier: salary = 100,000)

(a) Tuples in Table (b) CaRT Models

Figure 1: Model-Based Semantic Compression.

amounts of valuable system resources. Thus, in contrast to tradi-
tional lossless data compression, the compression of massive tables
can often afford to belossy, as long as some (user- or application-
defined) upper bounds on the compression error are guaranteed by
the compression algorithm. This is obviously a crucial differentia-
tion, as even small error tolerances can help us achieve much better
compression ratios.

� Semantic Compression. Existing compression techniques are
“syntactic” in the sense that they operate at the level of consecutive
bytes of data. As explained above, such syntactic methods typi-
cally fail to provide adequate solutions for table-data compression,
since they essentially view the data as a large byte string and do
not exploit the complex dependency patterns in the table. Effective
table compression mandates techniques that aresemantic in nature,
in the sense that they account for and exploit both (1) the mean-
ings and dynamic ranges of individual attributes (e.g., by taking
advantage of the specified error tolerances); and, (2) existing data
dependencies and correlations among attributes in the table.

Our Contributions. In this paper, we describe the architecture of
SPARTAN 1, a system that takes advantage of attribute semantics
and data-mining models to perform lossy compression of massive
data tables.SPARTAN is based on the novel idea of exploit-
ing data correlations and user-specified “loss”/error tolerances for
individual attributes to construct concise and accurateClassifica-
tion and Regression Tree (CaRT) models [2] for entire columns of
a table. More precisely,SPARTAN selects a certain subset of at-
tributes (referred to aspredicted attributes) for which no values are
explicitly stored in the compressed table; instead, concise CaRTs
that predict these values (within the prescribed error bounds) are
maintained. Thus, for a predicted attributeX that is strongly cor-
related with other attributes in the table,SPARTAN is typically
able to obtain a very succinct CaRT predictor for the values ofX,
which can then be used to completely eliminate the column forX
in the compressed table. Clearly, storing a compact CaRT model
in lieu of millions or billions of actual attribute values can result in
substantial savings in storage. In addition, allowing for errors in the
attribute values predicted by a CaRT model only serves to reduce
the size of the model even further and, thus, improve the quality of
compression; this is because, as is well known, the size of a CaRT
model is typically inversely correlated to the accuracy with which
it models a given set of values [2].

�[From Webster]Spartan: /’spart-*n/ (1) of or relating to Sparta in ancient
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EXAMPLE 1.1. Consider the table with 4 attributes and 8 tu-
ples shown in Figure 1(a). Also, suppose that the acceptable errors
due to compression for the numeric attributes age, salary, and as-
sets are 2, 5,000, and 25,000, respectively. Figure 1(b) depicts a
classification tree for predicting the credit attribute (with salary as
the predictor attribute) and a regression tree for predicting the as-
sets attribute (with salary and age as the predictor attributes). Ob-
serve that in the regression tree, the predicted value of assets (label
value at each leaf) is almost always within 25,000, the specified
error tolerance, of the actual tuple value. For instance, the pre-
dicted value of assets for the tuple with salary = 90,000 is 225,000
while the original value is 200,000. The only tuple for which the
predicted value violates this error bound is the tuple with salary =
100,000, which is an marked as an outlier value in both trees. Thus,
by explicitly storing, in the compressed version of the table, each
outlier value along with the CaRT models and the projection of the
table onto only the predictor attributes (age and salary), we can
ensure that the error due to compression does not exceed the user-
specified bounds. Further, storing the CaRT models (plus outliers)
for credit and assets instead of the attribute values themselves re-
sults in a reduction from 8 to 4 values for credit (2 labels for leaves
+ 1 split value at internal node + 1 outlier) and a reduction from 8
to 6 values for assets (3 labels for leaves + 2 split values at internal
nodes + 1 outlier).

The key algorithmic problem faced bySPARTAN ’s compres-
sion engine is that of computing an optimal set of CaRT models
for the input table such that (a) the overall storage requirements
of the compressed table are minimized, and (b) all predicted at-
tribute values are within the user-specified error bounds. This is
a very challenging optimization problem since, not only is there
an exponential number of possible CaRT-based models to choose
from, but also building CaRTs (to estimate their compression ben-
efits) is a computation-intensive task, typically requiring multiple
passes over the data [2, 10, 13]. As a consequence,SPARTAN
has to employ a number of sophisticated techniques from the areas
of knowledge discovery and combinatorial optimization in order
to efficiently discover a “good” (sub)set of predicted attributes and
construct the corresponding CaRT models. Below, we list some of
SPARTAN ’s salient features.

� Use of Bayesian Network to Uncover Data Dependencies. A
Bayesian network is a DAG whose edges reflect strong predictive
correlations between nodes of the graph [14]. Thus, a Bayesian net-
work on the table’s attributes can be used to dramatically reduce the
search space of potential CaRT models since, for any attribute, the
most promising CaRT predictors are the ones that involve attributes
in its “neighborhood” in the network. Our currentSPARTAN
implementation uses a constraint-based Bayesian network builder
based on recently proposed algorithms for efficiently inferring pre-
dictive structure from data. To control the computational overhead,
the Bayesian network is built using a reasonably small random sam-
ple of the input table.

�Novel CaRT-selection Algorithms that Minimize Storage Cost.
SPARTAN exploits the inferred Bayesian network structure by
using it to intelligently guide the selection of CaRT models that
minimize the overall storage requirement, based on the prediction
and materialization costs for each attribute. Intuitively, the goal
is to minimize the sum of the prediction costs (for predicted at-
tributes) and materialization costs (for attributes used in the CaRTs).
We demonstrate that this model-selection problem is a strict gener-
alization of theWeighted Maximum Independent Set (WMIS) prob-
lem [9], which is known to beNP-hard. However, by employing
a novel algorithm that effectively exploits the discovered Bayesian



structure in conjunction with efficient, near-optimal WMIS heuris-
tics,SPARTAN is able to obtain a good set of CaRT models for
compressing the table.

� Improved CaRT Construction Algorithms that Exploit Error
Tolerances. A signification portion ofSPARTAN ’s execution
time is spent in building CaRT models. This is mainly because
SPARTAN needs to actually construct many promising CaRTs
in order to estimate their prediction cost, and CaRT construction
is a computationally-intensive process. To reduce CaRT-building
times and speed up system performance,SPARTAN employs the
following three optimizations: (1) CaRTs are built using random
samples instead of the entire data set, (2) leaves are not expanded if
values of tuples in them can be predicted with acceptable accuracy,
and (3) pruning is integrated into the the tree growing phase using
novel algorithms that exploit the prescribed error tolerance for the
predicted attribute.

We have implemented theSPARTAN system and conducted
an extensive experimental study with three real-life data sets to
compare the quality of compression due toSPARTAN ’s model-
based approach with existing syntactic and semantic compression
techniques. For all three data sets, and even for small error toler-
ances (e.g., 1%), we found thatSPARTAN is able to achieve, on
an average, 20-30% better compression ratios. Further, our exper-
imental results indicate thatSPARTAN compresses tables bet-
ter when they contain more numeric attributes and as error thresh-
olds grow bigger. For instance, for a table containing mostly nu-
meric attributes and for higher error tolerances in the 5-10% range,
SPARTAN outperformed existing compression techniques by more
than a factor of 3. Finally, we show that our improved CaRT con-
struction algorithms makeSPARTAN ’s performance competi-
tive, enabling it to compress data sets containing more than half
a million tuples in a few minutes.

2. OVERVIEW OF APPROACH
2.1 Preliminaries
Definitions and Notation. The input to theSPARTAN system
consists of an-attribute tableT , comprising a large number of tu-
ples (rows). We letX � fX�� � � � � Xng denote the set ofn at-
tributes ofT anddom�Xi� represent the domain of attributeXi.
Attributes with a discrete, unordered value domain are referred to as
categorical, whereas those with ordered value domains are referred
to asnumeric. We also useTc to denote the compressed version of
tableT , andjT j (jTcj) to denote the storage-space requirements for
T (Tc) in bytes.

The key input parameter to our semantic compression algorithms
is a (user- or application-specified)n-dimensional vector oferror
tolerances �e � �e�� � � � � en� that defines theper-attribute accept-
able degree of information loss when compressingT . (Per-attribute
error bounds are also employed in the fascicles framework [12].)
Intuitively, theith entry of the tolerance vectorei specifies an up-
per bound on the error by which any (approximate) value ofXi in
the compressed tableTc can differ from its original value inT . Our
error tolerance semantics differ across categorical and numeric at-
tributes, due to the very different nature of the two attribute classes.

1. For a numeric attribute Xi, the toleranceei defines an upper
bound on theabsolute difference between the actual value of
Xi in T and the corresponding (approximate) value inTc.
That is, if x, x� denote the accurate and approximate value
(respectively) of attributeXi for any tuple of T , then our
compressor guarantees thatx � �x� � ei� x

� � ei�.

2. For a categorical attribute Xi, the toleranceei defines an

upper bound on theprobability that the (approximate) value
of Xi in Tc is different from the actual value inT . More
formally, if x, x� denote the accurate and approximate value
(respectively) of attributeXi for any tuple of T , then our
compressor guarantees thatP �x � x�� � �� ei.

For numeric attributes, the error tolerance could very well be spec-
ified in terms of quantiles of the overall range of values rather than
absolute, constant values. Similarly, for categorical attributes the
probability of error could be specified separately for each individ-
ual attribute class (i.e., value) rather than an overall measure. (Note
that such an extension would, in a sense, make the error bounds
for categorical attributes more “local”, similar to the numeric case.)
Our proposed model-based compression framework and algorithms
can be readily extended to handle these scenarios, so the specific
definitions of error tolerance are not central to our methodology.
To make our discussion concrete, we use the definitions outlined
above for the two attribute classes. (Note that our error-tolerance
semantics can also easily capturelossless compression as a special
case, by settingei � 	 for all i.)

Metrics. The basic metric used to compare the performance of dif-
ferent compression algoritms is the well-knowncompression ratio,
defined as the ratio of the size of the compressed data representa-
tion produced by the algorithm and the size of the original (uncom-
pressed) input. A secondary performance metric is thecompression
throughput that, intuitively, corresponds to the rate at which a com-
pression algorithm can process data from its input; this is typically
defined as the size of the uncompressed input divided by the total
compression time.

Our work focuses primarily on optimizing the compression ra-
tio, that is, achieving the maximum possible reduction in the size
of the data within the acceptable levels of error defined by the
user. This choice is mainly driven by the massive, long-lived data
sets that are characteristic of our target data warehousing applica-
tions and the observation that the computational cost of effective
compression can be amortized over the numerous physical opera-
tions (e.g., transmissions over a low-bandwidth link) that will take
place during the lifetime of the data. Also, note that our methodol-
ogy offers a key “knob” for tuning compression throughput perfor-
mance, namely the size of the data sample used bySPARTAN ’s
model-construction algorithms. Setting the sample size based on
the amount of main memory available in the system can help en-
sure high compression speeds.

2.2 Model-Based Semantic Compression
Briefly, our proposedmodel-based framework for the semantic

compression of tables is based on two key technical ideas. First,
we exploit the (user- or application-specified) error bounds on in-
dividual attributes in conjunction with data mining techniques to
efficiently buildaccurate models of the data. Second, we compress
the input table using a select subset of the models built. The ba-
sic intuition here is that this select subset of data-mining models is
carefully chosen to capture large portions of the input table within
the specified error bounds.

More formally, we define the model-based, compressed version
of the input tableT as a pairTc �� T �� fM�� � � � �Mpg �where
(1) T � is a small (possibly empty) projection of the data values in
T that are retainedaccurately in Tc; and, (2)fM�� � � � �Mpg is a
select set of data-mining models, carefully built with the purpose of
maximizing the degree of compression achieved forT while obey-
ing the specified error-tolerance constraints. Abstractly, the role of
T � is to capture values (tuples or sub-tuples) of the original table
that cannot be effectively “summarized away” in a compact data-
mining model within the specified error tolerances. (Some of these



values may in fact be needed asinput to the selected models.) The
attribute values inT � can either be retained as uncompressed data
or be compressed using a conventional lossless algorithm.

A definition of our general model-based semantic compression
problem can now be stated as follows.

[Model-Based Semantic Compression (MBSC)]: Given a multi-
attribute tableT and a vector of (per-attribute) error tolerances�e,
find a set of modelsfM�� � � � �Mmg and a compression scheme
for T based on these modelsTc �� T �� fM�� � � � �Mpg � such
that the specified error bounds�e are not exceeded and the storage
requirementsjTcj of the compressed table are minimized.

Given the multitude of possible models that can be extracted
from the data, this is obviously a very general problem definition
that covers a huge design space of possible alternatives for semantic
compression. We provide a more concrete statement of the prob-
lem addressed in our work on theSPARTAN system later in this
section. First, however, we discuss how our model-based compres-
sion framework relates to recent work on semantic compression
and demonstrate the need for the more general approach advocated
in this paper.

Comparison with Fascicles. Our model-based semantic compres-
sion framework, in fact, generalizes earlier ideas for semantic data
compression, such as the very recent proposal of Jagadish, Madar,
and Ng on usingfascicles for the semantic compression of rela-
tional tables [12]. (To the best of our knowledge, this is the only
work on lossy semantic compression of tables with guaranteed up-
per bounds on the compression error2.)

A fascicle basically represents a collection of tuples (rows) that
haveapproximately matching values for some (but not necessarily
all) attributes, where the degree of approximation is specified by
user-provided compactness parameters. Essentially, fascicles can
be seen as a specific form of data-mining models, i.e., clusters in
subspaces of the full attribute space, where the notion of a cluster
is based on the acceptable degree of loss during data compression.
The key idea of fascicle-based semantic compression is to exploit
the given error bounds to allow for aggressive grouping and “sum-
marization” of values by clustering multiple rows of the table along
several columns (i.e., the dimensionality of the cluster).

EXAMPLE 2.1. Consider the table in Figure 1(a) described in
Example 1.1. Error tolerances of 2, 5,000 and 25,000 for the three
numeric attributes age, salary and assets, respectively, result in the
following two fascicles:

F� F�

30 90,000 200,000 good
50 110,000 250,000 good

70 35,000 125,000 poor
75 15,000 100,000 poor

The tuples in the two fascicles F� and F� are similar (with respect
to the permissible errors) on the asset and credit attributes (shown
in bold). The reason for this is that two attribute values are consid-
ered to be similar if the difference between them is at most twice the
error bound for the attribute. Thus, substituting for each attribute
value, the mean of the maximum and minimum value of the attribute
ensures that the introduced error is acceptable. Consequently, in
order to compress the table using fascicles, the single (sub)tuple
(225,000, good) replaces the two corresponding (sub)tuples in the
first fascicle and (112,500, poor) is used instead of the two sub-
tuples in the second fascicle. Thus, in the final compressed table,
the maximum error for assets is 25,000, and the number of values
stored for the assets and credit attributes is reduced from 8 to 6.
�Due to space constraints, we omit a detailed discussion of related work; it
can be found in the full version of this paper [1].

As the above example shows, in many practical cases, fasci-
cles can effectively exploit the specified error tolerances to achieve
high compression ratios. There are however, several scenarios for
which a more general, model-based compression approach is in
order. The main observation here is that fascicles only try to de-
tect “row-wise” patterns, where sets of rows have similar values
for several attributes. Such “row-wise” patterns within the given
error-bounds can be impossible to find when strong “column-wise”
patterns/dependencies (e.g., functional dependencies) exist across
attributes of the table. On the other hand, different classes of data-
mining models (like Classification and Regression Trees (CaRTs))
can accurately capture and model such correlations and, thereby,
attain much better semantic compression in such scenarios.

Revisiting Example 1.1, the two CaRTs in Figure 1(b) can be
used to predict values for theassets andcredit attributes, thus com-
pletely eliminating the need to explicitly store values for these at-
tributes. Note that CaRTs result in better compression ratios than
fascicles for our example table – the storage for thecredit attribute
reduces from 8 to 4 with CaRTs compared to 6 with fascicles.

Concrete Problem Definition. The above discussion demonstrates
the need for a semantic compression methodology that is more gen-
eral than simple fascicle-based row clustering in that it can account
for and exploit strong dependencies among the attributes of the
input table. The important observation here (already outlined in
Example 1.1) is that data mining offers models (i.e., CaRTs) that
can accurately capture such dependencies with very concise data
structures. Thus, in contrast to fascicles, our general model-based
semantic compression paradigm can accommodate such scenarios.

The ideas of row-wise pattern discovery and clustering for se-
mantic compression have been thoroughly explored in the context
of fascicles [12]. In contrast, our work on theSPARTAN se-
mantic compressor reported in this paper focuses primarily on the
novel problems arising from the need to effectively detect and ex-
ploit (column-wise) attribute dependencies for the purposes of se-
mantic table compression. The key idea underlying our approach
is that, in many cases, a small classification (regression) tree struc-
ture can be used to accuratelypredict the values of a categorical
(resp., numeric) attribute (based on the values of other attributes)
for a very large fraction of table rows. This means that, for such
cases, our compression algorithms can completelyeliminate the
predicted column infavor of acompactpredictor (i.e., a classifi-
cation or regression tree model) and a small set of outlier column
values. More formally, the design and architecture ofSPARTAN
focuses mainly on the following concrete MBSC problem.

[SPARTAN CaRT-Based Semantic Compression]: Given a multi-
attribute tableT with a set of categorical and/or numeric attributes
X , and a vector of (per-attribute) error tolerances�e, find a sub-
setfX�� � � � � Xpg of X and a set of corresponding CaRT models
fM�� � � � �Mpg such that: (1) modelMi is a predictor for the val-
ues of attributeXi based solely on attributes inX�fX�� � � � � Xpg,
for eachi � �� � � � � p; (2) the specified error bounds�e are not ex-
ceeded; and, (3) the storage requirementsjTcj of the compressed
tableTc �� T �� fM�� � � � �Mpg � are minimized.

Abstractly, our novel semantic compression algorithms seek to
partition the set of input attributesX into a set ofpredicted at-
tributes fX�� � � � � Xpg and a set ofpredictor attributes X � fX��
� � � � Xpg such that the values of each predicted attribute can be ob-
tained within the specified error bounds based on (a subset of) the
predictor attributes through a small classification or regression tree
(except perhaps for a small set of outlier values). (We use the no-
tationXi � Xi to denote a CaRT predictor for attributeXi using
the set of predictor attributesXi � X �fX�� � � � � Xpg.) Note that



we do not allow a predicted attributeXi to also be a predictor for a
different attribute. This restriction is important since predicted val-
ues ofXi can contain errors, and these errors can cascade further
if the erroneous predicted values are used as predictors, ultimately
causing error constraints to be violated. The final goal, of course, is
to minimize the overall storage cost of the compressed table. This
storage costjTcj is the sum of two basic components:

1. Materialization cost, i.e., the cost of storing the values for all
predictor attributesX � fX�� � � � � Xpg. This cost is repre-
sented in theT � component of the compressed table, which
is basically the projection ofT onto the set of predictor at-
tributes. (The storage cost of materializing attributeXi is
denoted byMaterCost�Xi�.)

2. Prediction cost, i.e., the cost of storing the CaRT models used
for prediction plus (possibly) a small set of outlier values of
the predicted attribute for each model. (The storage cost of
predicting attributeXi through the CaRT predictorXi � Xi

is denoted byPredCost�Xi � Xi�; this doesnot include
the cost of materializing the predictor attributes inXi.)

We should note here that our proposed CaRT-based compres-
sion methodology is essentiallyorthogonal to techniques based on
row-wise clustering, like fascicles. It is entirely possible to com-
bine the two techniques for an even more effective model-based
semantic compression mechanism. As an example, the predictor
attribute tableT � derived by our “column-wise” techniques can be
compressed using a fascicle-based algorithm. (In fact, this is ex-
actly the strategy used in our currentSPARTAN implementation;
however, other methods for combining the two are also possible.)
The important point here is that, since the entries ofT� are used
as inputs to (approximate) CaRT models for other attributes, care
must be taken to ensure that errors introduced in the compression
of T � do not compound over the CaRT models in a way that causes
error guarantees to be violated. The issues involved in combining
our CaRT-based compression methodology with row-wise cluster-
ing techniques are addressed in more detail later in the paper.

2.3 Overview of the SPARTAN System
As depicted in Figure 2, the architecture of theSPARTAN sys-

tem comprises of four major components: the DEPENDENCYFINDER,
the CARTSELECTOR, the CARTBUILDER, and the ROWAGGRE-
GATOR. In the following, we provide a brief overview of each
SPARTAN component; we defer a more detailed description of
each component and the relevant algorithms to Section 3.
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X2
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Figure 2: SPARTAN System Architecure.

� DEPENDENCYFINDER. The purpose of the DEPENDENCYFINDER

component is to produce aninteraction model for the input ta-
ble attributes, that is then used to guide the CaRT building algo-
rithms ofSPARTAN . The main observation here is that, since

there is an exponential number of possibilities for building CaRT-
based attribute predictors, we need a concise model that identifies
the strongest correlations and “predictive” relationships in the input
data.

The approach used in the DEPENDENCYFINDER component of
SPARTAN is to construct aBayesian network [14] on the under-
lying set of attributesX . Abstractly, a Bayesian network imposes a
Directed Acyclic Graph (DAG) structureG on the set of nodesX ,
such that directed edges capture direct statistical dependence be-
tween attributes. (The exact dependence semantics ofG are defined
shortly.) Thus, intuitively, a set of nodes in the “neighborhood” of
Xi in G (e.g.,Xi ’s parents) captures the attributes that are strongly
correlated toXi and, therefore, show promise as possible predictor
attributes forXi.

� CARTSELECTOR. The CARTSELECTORcomponent constitutes
the core ofSPARTAN ’s model-based semantic compression en-
gine. Given the input tableT and error tolerancesei, as well
as the Bayesian network on the attributes ofT built by the DE-
PENDENCYFINDER, the CARTSELECTOR is responsible for se-
lecting a collection of predicted attributes and the correponding
CaRT-based predictors such that the final overall storage cost is
minimized (within the given error bounds). As discussed above,
SPARTAN ’s CARTSELECTOR employs the Bayesian network
G built on X to intelligently guide the search through the huge
space of possible attribute prediction strategies. Clearly, this search
involves repeated interactions with the CARTBUILDER component,
which is responsible for actually building the CaRT-models for the
predictors (Figure 2).

We demonstrate that even in the simple case where the set of
nodes that is used to predict an attribute node inG is fixed, the
problem of selecting a set of predictors that minimizes the com-
bination of materialization and prediction cost naturally maps to
theWeighted Maximum Independent Set (WMIS) problem, which is
known to beNP-hard and notoriously difficult to approximate [9].
Based on this observation, we propose a CaRT-model selection
strategy that starts out with an initial solution obtained from a near-
optimal heuristic for WMIS [11] and tries to incrementally improve
it by small perturbations based on the unique characteristics of our
problem. We also give an alternativegreedy model-selection algo-
rithm that chooses its set of predictors using a simple local con-
dition during a single “roots-to-leaves” traversal of the Bayesian
networkG.

� CARTBUILDER. Given a collection of predicted and (corre-
sponding) predictor attributesXi � Xi, the goal of the CART-
BUILDER component is to efficiently construct CaRT-based models
for eachXi in terms ofXi for the purposes of semantic compres-
sion. Induction of CaRT-based models is typically a computation-
intensive process that requires multiple passes over the input data [2,
13]. As we demonstrate, however,SPARTAN ’s CaRT construc-
tion algorithms can take advantage of the compression semantics
and exploit the user-defined error-tolerances to effectively prune
computation. In addition, by building CaRTs using data samples
instead of the entire data set,SPARTAN is able to further speed
up model construction.

� ROWAGGREGATOR. OnceSPARTAN ’s CARTSELECTORcom-
ponent has finalized a “good” solution to the CaRT-based semantic
compression problem, it hands off its solution to the ROWAGGRE-
GATOR component which tries to further improve the compression
ratio through row-wise clustering. Briefly, the ROWAGGREGA-
TOR uses a fascicle-based algorithm [12] to compress the predic-
tor attributes, while ensuring (based on the CaRT models built) that
errors in the predictor attribute values are not propagated through



the CaRTs in a way that causes error tolerances (for predicted at-
tributes) to be exceeded.

3. SPARTAN SYSTEM COMPONENTS
3.1 The DEPENDENCYFINDER Component
Motivation. As explained in Section 2.2, the essence ofSPARTAN ’s
CaRT-based semantic compression problem lies in discovering a
collection of “strong” predictive correlations among the attributes
of an arbitrary table. The search space for this problem is obviously
exponential: given any attributeXi, any subset of X �fXig could
potentially be used to construct a predictor forXi! Furthermore,
verifying the quality of a predictor for the purposes of semantic
compression is typically a computation-intensive task, since it in-
volves actually building the corresponding classification or regres-
sion tree on the given subset of attributes [2, 10, 13]. Since building
an exponentially large number of CaRTs is clearly impractical, we
need a methodology for producing a conciseinteraction model that
identifies the strongest predictive correlations among the input at-
tributes. This model can then be used to restrict the search to inter-
esting regions of the prediction space, limiting CaRT construction
to truly promising predictors. Building such an interaction model
is the main purpose ofSPARTAN ’s DEPENDENCYFINDERcom-
ponent.

The specific class of attribute interaction models used in the cur-
rentSPARTAN implementation is that ofBayesian networks [14].
Briefly, a Bayesian network is a combination of a probability dis-
tribution and a structural model in the form of a DAG over the at-
tributes in which edges represent direct probabilistic dependence.
In effect, a Bayesian network is a graphical specification of a joint
probability distribution that is believed to have generated the ob-
served data. Bayesian networks are an essential tool for captur-
ing causal and/or predictive correlations in observational data [16];
such interpretations are typically based on the following depen-
dence semantics of the Bayesian network structure.

� Parental Markov Condition [14]: Given a Bayesian networkG
over a set of attributesX , any nodeXi � X is independent of all
its non-descendant nodes given its parent nodes inG (denoted by
��Xi�).

� Markov Blanket Condition [14]: Given a Bayesian networkG
over a set of attributesX , we define theMarkov blanket of Xi � X
(denoted by��Xi�) as the union ofXi ’s parents,Xi’s children, and
the parents ofXi’s children inG. Any nodeXi � X is independent
of all other nodes given its Markov blanket inG.

Based on the above conditions, a Bayesian network over the
attributes of the input table can provide definite guidance on the
search for promising CaRT predictors for semantic compression.
More specifically, it is clear that predictors of the form��Xi� �
Xi or ��Xi� � Xi should be considered as prime candidates for
CaRT-based semantic compression.

Construction Algorithm. Learning the structure of Bayesian net-
works from data is a difficult problem that has seen growing re-
search interest in recent years [8, 6, 4]. There are two general ap-
proaches to discovering Bayesian structure: (1)Constraint-based
methods try to discover conditional independence properties be-
tween data attributes using appropriate statistical measures (e.g.,
�� or mutual information) and then build a network that exhibits
the observed correlations and independencies [4, 16]. (2)Scoring-
based (or, Bayesian) methods are based on defining a statistically-
motivatedscore function (e.g., Bayesian or MDL-based) that de-
scribes the fitness of a probabilistic network structure to the ob-
served data; the goal then is to find a structure that maximizes the

score [6, 7, 8]. (In general, this is a hard optimization problem
that is typicallyNP-hard [5].) Both methods have their pros and
cons. Given the intractability of scoring-based network generation,
several heuristic search methods with reasonable time complexi-
ties have been proposed. Many of these scoring-based methods,
however, assume anordering for the input attributes and can give
drastically different networks for different attribute orders. Fur-
ther, due to their heuristic nature, such heuristic methods may not
find the best structure for the data. On the other hand, constraint-
based methods have been shown to be asymptotically correct un-
der certain assumptions about the data [4], but, typically, introduce
edges in the network based on Conditional Independence (CI) tests
that become increasingly expensive and unreliable as the size of
the conditioning set increases [7]. Also, several constraint-based
methods have very high computational complexity, requiring, in
the worst case, an exponential number of CI tests.
SPARTAN ’s DEPENDENCYFINDER implements a constraint-

based Bayesian network builder based on the algorithm of Cheng
et al. [4]. Unlike earlier constraint-based methods, the algorithm of
Cheng et al. explicitly tries to avoid complex CI tests with large
conditioning sets and, by using CI tests based on mutual informa-
tion divergence, eliminates the need for an exponential number of
CI tests [4]. In fact, given ann-attribute data set, our Bayesian
network builder requires at mostO�n�� CI tests, which, in our im-
plementation, translates to at mostO�n�� passes over the input tu-
ples. Recall thatSPARTAN ’s DEPENDENCYFINDER uses only
a small random sample of the input table to discover the attribute
interactions; the size of this sample can be adjusted according to the
amount of main memory available, so that no I/O is incurred (other
than that required to produce the sample). Also, note that the DE-
PENDENCYFINDER is, in a sense, out of the “critical path” of the
data compression process, since such attribute interactions are an
intrinsic characteristic of the data semantics that only needs to be
discoveredonce for each input table. Our DEPENDENCYFINDER

implementation adds several enhancements to the basic Cheng et
al. algorithm, such as the use of Bayesian-scoring methods for ap-
propriately orienting the edges in the final network [1].

3.2 The CARTSELECTOR Component
The CARTSELECTORcomponent is the heart ofSPARTAN ’s

model-based semantic compression engine. Given the input data
table and error tolerances, as well as the Bayesian network cap-
turing the attribute interactions, the goal of the CARTSELECTOR

is to select (1) a subset of attributes to be predicted and (2) the
corresponding CaRT-based predictors, such that the overall stor-
age cost is minimized within the specified error bounds. Recall
from Section 2.2 that the total storage costjTcj is the sum of the
materialization costs (of predictor attributes) and prediction costs
(of the CaRTs for predicted attributes). In essence, the CARTS-
ELECTOR implements the core algorithmic strategies for solving
SPARTAN ’s CaRT-based semantic compression problem (Sec-
tion 2.2). Deciding on a storage-optimal set of predicted attributes
and corresponding predictors poses a hard combinatorial optimiza-
tion problem; as the following theorem shows, the problem isNP-
hard even in the simple case where the set of predictor attributes to
be used for each attribute is fixed.

THEOREM 3.1. Consider a given set of n predictors fXi �
Xi 
 for all Xi � X � where Xi � Xg. Choosing a storage-
optimal subset of attributes Xpred � X to be predicted using at-
tributes in X � Xpred is NP-hard.

The simple instance ofSPARTAN ’s CaRT-based semantic com-
pression problem described in the above theorem can be shown to



be equivalent to theWeighted Maximum Independent Set (WMIS)
problem, which is known to beNP-hard. The WMIS problem can
be stated as follows: “Given a node-weighted, undirected graph
G � �V�E�, find a subset of nodesV � � V such that no two ver-
tices inV � are joined by an edge inE and the total weight of nodes
in V � is maximized.” Abstractly, the partitioning of the nodes into
V � andV �V � corresponds exactly to the partitioning of attributes
into “predicted” and “materialized” with the edges ofG captur-
ing the “predicted by” relation. Further, the constraint that no two
vertices inV � are adjacent inG ensures that all the (predictor) at-
tributes for a predicted attribute (inV �) are materialized, which
is a requirement ofSPARTAN ’s compression problem. Also,
the weight of each node coresponds to the “storage benefit” (ma-
terialization cost - prediction cost) of predicting the corresponding
attribute. Thus, maximizing the storage benefit of the predicted at-
tributes has the same effect as minimizing the overall storage cost
of the compressed table.

Even though WMIS is known to beNP-hard and notoriously
difficult to approximate for general graphs [9], several recent ap-
proximation algorithms have been proposed with guaranteed worst-
case performance bounds forbounded-degree graphs [11]. The
optimization problem faced bySPARTAN ’s CARTSELECTOR

is obviously much harder than simple WMIS, since the CARTS-
ELECTOR is essentially free to decide on the set of predictor at-
tributes for each CaRT. Further, the CARTSELECTORalso has to
invokeSPARTAN ’s CARTBUILDER component to actually build
potentially useful CaRTs, and this construction is itself a computation-
intensive task [2, 13].

Given the inherent difficulty of the CaRT-based semantic com-
pression problem,SPARTAN ’s CARTSELECTORimplements two
distinct heuristic search strategies that employ the Bayesian net-
work model ofT built by the DEPENDENCYFINDER to intelli-
gently guide the search through the huge space of possible attribute
prediction alternatives. The first strategy is a simplegreedy selec-
tion algorithm that chooses CaRT predictors greedily based on their
storage benefits during a single “roots-to-leaves” traversal of the
Bayesian graph. The second, more complex strategy takes a less
myopic approach that exploits the similarities between our CaRT-
selection problem and WMIS; the key idea here is to determine
the set of predicted attributes (and the corresponding CaRTs) by
obtaining (approximate) solutions to a number of WMIS instances
created based on the Bayesian model ofT .

The Greedy CaRT Selector. Briefly,SPARTAN ’s Greedy CaRT-
selection algorithm visits the set of attributesX in the topological-
sort order imposed by the constructed Bayesian network modelG
and tries to build a CaRT predictor for each attribute based on its
predecessors. Thus, for each attributeXi visited, there are two
possible scenarios.

1. If Xi has no parent nodes inG (i.e., nodeXi is a root of
G) thenGreedy concludes thatXi cannot be predicted and,
consequently, placesXi directly in the subset of materialized
attributesXmat.

2. Otherwise (i.e.,��Xi� is not empty inG), SPARTAN ’s
CARTBUILDER component is invoked to construct a CaRT-
based predictor forXi (within the specified error tolerance
ei) using the set of attributes chosen for materialization thus
far Xmat. (Note that possibly irrelevant attributes inXmat

will be filtered out by the CaRT construction algorithm in
CARTBUILDER.) Once the CaRT forXi is built, the rela-
tive storage benefit of predictingXi can be estimated;Xi is
chosen for prediction if this relative benefit is at least� (an
input parameter toGreedy) and materialized otherwise.

Our Greedy algorithm provides a simple, low-complexity solu-
tion toSPARTAN ’s CaRT-based semantic compression problem.
(The detailed pseudo-code forGreedy can be found in [1].) Given
ann-attribute table and Bayesian networkG, it is easy to see that
Greedy always constructsat most �n � �� CaRT predictors dur-
ing its traversal ofG. This simplicity, however, comes at a price.
More specifically,Greedy CaRT selection suffers from two major
shortcomings. First, selecting an attributeXi to be predicted based
solely on its “localized” prediction benefit (through its predecessors
in G) is a very myopic strategy, since it ignores the potential ben-
efits from usingXi itself as a (materialized) predictor attribute for
its descendants inG. Such very localized decisions can obviously
result in poor overall predictor selections. Second, the value of the
“benefit threshold” parameter� can adversely impact the perfor-
mance of the compression engine and selecting a reasonable value
for � is not a simple task. A high� value may mean that very few
or no predictors are chosen, whereas a low� value may cause low-
benefit predictors to be chosen early in the search thus excluding
some high-benefit predictors at lower layers of the Bayesian net-
work.
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Figure 3: Example Instance for CARTSELECTORAlgorithms.

EXAMPLE 3.1. Consider the Bayesian network graph defined
over attributes X�� � � � � X� shown in Figure 3(a). Let the materi-
alization cost of each attribute be 125. Further, let the prediction
costs of CaRT predictors be as follows:

PredCost�fX�g � X�� � �� PredCost�fX�g � X�� � ��
PredCost�fX�g � X�� � �� PredCost�fX�g � X�� � ��
PredCost�fX�g � X�� � �	� PredCost�fX�g � X�� � ��

Suppose that � � ���. Since X� has no parents, it is initially
added to Xmat. In the next two iterations, since MaterCost�X��
	 PredCost�fX�g �X�� � ���
 � ��� and MaterCost�X��
	 PredCost�fX�g � X�� � ���� � ���, X� and X� are added
to Xpred. Finally, X� is added to Xmat since MaterCost�X�� 	
PredCost�fX�g � X�� � � � ���. Thus, the overall storage
cost of materializing X� and X�, and predicting X� and X� is
��� � 
� � �	 � ��� � �	�.

The MaxIndependentSet CaRT Selector. SPARTAN ’s MaxIn-
dependentSet CaRT-selection algorithm, depicted in Figure 4, al-
leviates the drawbacks ofGreedy mentioned above. Intuitively,
the MaxIndependentSet algorithm starts out by assuming all at-
tributes to be materialized, i.e.,Xmat � X (Step 1), and then
works by iteratively solving WMIS instances that try to improve
the overall storage cost by moving the nodes in the (approximate)
WMIS solution to the subset of predicted attributesXpred. Con-
sider thefirst iteration of the main while-loop (Steps 3–30). Al-
gorithm MaxIndependentSet starts out by building CaRT-based
predictors for each attributeXi in X based onXi’s “predictive
neighborhood” in the constructed Bayesian networkG (Steps 5–
7); thisneighborhood function is an input parameter to the al-
gorithm and can be set to eitherXi’s parents or its Markov blanket
in G. Then, based on the “predicted-by” relations observed in the
constructed CaRTs,MaxIndependentSet builds a node-weighted,
undirected graphGtemp onX with (a) all edges�Xi� Y �, whereY
is used in the CaRT predictor forXi, and (b) weights for each node



procedure MaxIndependentSet( T �X � , 
e ,G , neighborhood�� )
Input: n-attribute tableT ; n-vector of error tolerances
e; Bayesian network

G on the set of attributesX ; functionneighborhood�� defining the
“predictive neighborhood” of a nodeXi in G (e.g.,��Xi� or ��Xi�).

Output: Set of materialized (predicted) attributesXmat (Xpred � X�
Xmat) and a CaRT predictorPRED�Xi�� Xi for eachXi � Xpred.

begin
1. Xmat �� X ,Xpred �� �
2. PRED�Xi� �� � for all Xi � X , improve :=true
3. while ( improve �� false ) do
4. for each Xi � Xmat

5. mater neighbors�Xi� �� �Xmat � neighborhood�Xi���
fPRED�X� � X � neighborhood�Xi��X � Xpredg � fXig

6. M �� BuildCaRT�mater neighbors�Xi�� Xi� ei�
7. letPRED�Xi� � mater neighbors�Xi� be the set of predictor

attributes used inM
8. cost changei �� �
9. for each Xj � Xpred such thatXi � PRED�Xj�
10. NEW PREDi�Xj� �� PRED�Xj� � fXig � PRED�Xi�
11. M �� BuildCaRT�NEW PREDi�Xj�� Xj � ej�
12. setNEW PREDi�Xj� to the (sub)set of predictor attributes

used inM
13. cost changei �� cost changei � �PredCost�PRED�Xj�

� Xj�� PredCost�NEW PREDi�Xj�� Xj��
14. end
15. end
16. build an undirected, node-weighted graphGtemp � �Xmat� Etemp�

on the current set of materialized attributesXmat, where:
17. (a)Etemp �� f�X� Y � � � pair �X� Y � � PRED�Xj� for someXj

in Xpredg
S
f�Xi� Y � � �Y � PRED�Xi� ,Xi � Xmatg

18. (b)weight�Xi� �� MaterCost�Xi� � PredCost�PRED�Xi�
� Xi� � cost changei for eachXi � Xmat

19. S �� FindWMIS�Gtemp�
20. /* select (approximate) maximumweight independent set in */
21. /*Gtemp as “maximum-benefit” subset of predicted attributes */
22. if �

P
X�S weight�X� 	 �� then improve :=false

23. else /* updateXmat, Xpred, and the chosen CaRT predictors */
24. for each Xj � Xpred
25. if ( PRED�Xj� � S � fXig ) then
26. PRED�Xj� �� NEW PREDi�Xj�
27. end
28. Xmat �� Xmat � S , Xpred �� Xpred � S
29. end
30. end /* while */
end

Figure 4: The MaxIndependentSet CaRT-Selection Algorithm.

Xi set equal to the storage-cost benefit of predictingXi (Steps 16–
18). Finally, MaxIndependentSet finds a (near-optimal) WMIS
of Gtemp and the corresponding nodes/attributes are moved to the
predicted setXpred with the appropriate CaRT predictors (assum-
ing the total benefit of the WMIS is positive) (Steps 19–29).

Note that in Step 5, it is possible formater neighbors�Xi�
to be
. This could happen, for instance, ifXi is a root ofG and
Xi ’s neighborhood comprises of its parents. In this case, the
modelM returned byBuildCaRT is empty and it does not make
sense forXi to be in the predicted setXpred. We ensure thatXi

always stays inXmat by settingPredCost�PRED�Xi�� Xi� to
� if PRED�Xi� � 
, which causesXi ’s weight to become��
in Step 18.

The WMIS solution discovered after this first iteration ofMaxIn-
dependentSet can be further optimized, since it makes the rather
restrictive assumption that an attribute can only be predicted based
on its directneighborhood in G. For example, consider a sce-
nario whereG contains the directed chainfX�Y g � Z � W ,
and the attribute pairfX�Y g provides a very good predictor forZ,
which itself is a good predictor for the value ofW . Then, the initial

WMIS solution can obviously select only one of these predictors.
On the other hand, the above scenario means that (by “transitivity”)
it is very likely thatfX�Y g can also provide a good predictor for
W (i.e., onlyX andY need to be materialized).

Later iterations ofMaxIndependentSet’s main while-loop try
to further optimize the initial WMIS solution based on the above
observation. This is accomplished by repeatedly moving attributes
from the remaining set of materialized attributesXmat to the pre-
dicted attributesXpred. For each materialized attributeXi, MaxIn-
dependentSet finds its “materialized neighborhood” in the Bayesian
modelG, that comprises for each nodeX in theneighborhood
of Xi: (1) X itself, if X � Xmat and (2) the (materialized) at-
tributes currently used to predictX, if X � Xpred (Step 5). A
CaRT predictor forXi based on its materialized neighbors is then
constructed (Step 6). Now, sinceXi may already be used in a num-
ber of predictors for attributes inXpred, we also need to account for
the change in storage cost for these predictors whenXi is replaced
by its materialized neighbors used to predict it; this change (de-
noted bycost changei) is estimated in Steps 8–14. The node-
weighted, undirected graphGtemp is then built onXmat with the
weight for each nodeXi set equal to the overall storage benefit of
predictingXi, includingcost changei (Steps 16-18). (Note that
this benefit may very well be negative.) Finally, a (near-optimal)
WMIS of Gtemp is chosen and added to the set of predicted at-
tributesXpred with the appropriate updates to the set of CaRT pre-
dictors. Note that, since our algorithm considers the “transitive ef-
fects” of predicting each materialized nodeXi in isolation, some
additional care has to be taken to ensure thatat most one predic-
tor attribute from each already selected CaRT inXpred is chosen at
each iteration. This is accomplished by ensuring that all attributes
belonging to a predictor setPRED�Xj� for someXj � Xpred form
a clique in the construction ofGtemp (Step 17). Then, by its defi-
nition, the WMIS solution can contain at most one node from each
such setPRED�Xj�. MaxIndependentSet’s while-loop continues
until no further improvements on the overall storage cost are possi-
ble (Step 22).

EXAMPLE 3.2. Consider the Bayesian network graph shown in
Figure 3(a) and let prediction costs for attributes be as described
earlier in Example 3.1. Further, suppose the neighborhood
function for a nodeXi is its parents. In the first iteration, PRED�X�� �

, PRED�X�� � X�, PRED�X�� � X� and PRED�X�� � X�.
Further, since Xpred � 
, cost changei � 	 for each Xi �
Xmat. As a result, the graph Gtemp and weights for the nodes are
set as shown in Figure 3(b). Note that node X� is assigned a weight
of �� because PRED�X�� � 
. The optimal WMIS of Gtemp is
fX�g since its weight is greater than the sum of the weights of X�

and X�. Thus, after the first iteration Xpred � fX�g.
In the second iteration, PRED�X�� is set toX� in Steps 5–7 since

neighborhood�X�� � X� and X� � Xpred with PRED�X�� �
X�. Further, PRED�X�� � 
 and PRED�X�� � X�. Also, since
X� � PRED�X��, in Steps 8–14, NEW PRED��X�� � fX�g and
cost change� � PredCost�fX�g�X��� PredCost�fX�g
�X�� ����. In addition, sinceX� andX� are not predictors for
a predicted attribute, cost change� � cost change� � 	.
Thus, the graph Gtemp and weights for the nodes are set as shown
in Figure 3(c). The weight for X� is essentially MaterCost�X��
� PredCost�fX�g � X�� � cost change� � ��� � 
� �
�� and the weight forX� is MaterCost�X��� PredCost�fX�g
� X�� � cost change� � ��� � �	 � 	. The optimal WMIS
of Gtemp is fX�g and thus Xpred � fX�� X�g after the second
iteration.

Finally, Figure 3(d) illustratesGtemp during the third iteration –
node X� has a weight of��	 since PRED�X�� � fX�g and X� is



used to predict both X� and X�. Thus, while predicting (instead of
materializing) X� results in a decrease of 50 in the cost of X�, the
cost of predicting X� and X� using X� (instead of X�) increases
increases by 110, thus resulting in a net increase in cost of 60.
The algorithm terminates since weight of every node in Gtemp is
negative. The end result is a total storage cost of only 345, which
is, in fact, the optimal solution for this instance.

Complexity of Algorithm MaxIndependentSet. Analyzing the
execution of algorithmMaxIndependentSet, we can show that,in
the worst case, it requires at mostO�n� invocations of the WMIS

solution heuristic (FindWMIS) and constructs at mostO��n
�

�
�

CaRT predictors, wheren is the number of attributes inX and�
is an upper bound on the number of predictor attributes used for
any attribute inXpred. Further, under assumptions slightly less
pessimistic than the worst case, it can be shown that ourMaxIn-
dependentSet algorithm only needs to solveO�log n� WMIS in-
stances and buildO��n log n� CaRT predictors. The details of the
analysis can be found in the full paper [1].

3.3 The CARTBUILDER Component
SPARTAN ’s CARTBUILDER component constructs a CaRT

predictorXi � Xi for the attributeXi with Xi as the predictor at-
tributes. The CARTBUILDER’s objective is to construct the small-
est (in terms of storage space) CaRT model such that each predicted
value (of a tuple’s value for attributeXi) deviates from the actual
value by at mostei, the error tolerance for attributeXi.

If the predicted attributeXi is categorical, thenSPARTAN ’s
CARTBUILDER component builds a compact classification tree with
values ofXi serving as class labels. CARTBUILDER employs clas-
sification tree construction algorithms from [15] to first construct a
low storage cost tree and then explicitly stores sufficient number of
outliers such that the fraction of misclassified records is less than
the specified error boundei. Thus, CARTBUILDER guarantees that
the fraction of attributeXi ’s values that are incorrectly predicted is
less thanei.

In the case ofnumeric predicted attributesXi, SPARTAN ’s
CARTBUILDER employs a novel, efficient algorithm for construct-
ing compact regression trees for predictingXi with an error that
is guaranteed not to exceedei. The key technical idea in our al-
gorithm is to integrate building and pruning during the top-down
construction of a guaranteed-error regression tree – this is achieved
through a novel technique (based on dynamic programming) for
computing a lower bound on the cost of a yet-to-be-expanded sub-
tree. Due to space constraints, the details ofSPARTAN ’s regres-
sion tree construction algorithm can be found in the full paper [1].

3.4 The ROWAGGREGATORComponent
SPARTAN ’s CARTSELECTOR component computes the set

of attributesfX�� � � � � Xpg to predict and the CaRT modelsfM��
� � � �Mpg for predicting them. These models are stored in the
compressed versionTc of the table along withT �, the projection
of tableT on predictor attributes. Obviously, by compressingT�

one could reduce the storage overhead ofTc even further. However,
while lossless compression algorithms can be used to compressT�

without any problems, we need to be more careful when applying
lossy compression algorithms toT�. This is because, with lossy
compression, the value of a predictor attributeXi in T � may be
different from its original value that was initially used to build the
CaRT models. As a result, it is possible for errors that exceed the
specified bounds, to be introduced into the values of predicted at-
tributes. For instance, consider the table from Example 1.1 (shown
in Figure 1(a)) and the CaRTs in Figure 1(b) contained in the com-
pressed versionTc of the table. Suppose that the error tolerance

for the salary attribute is 5,000 and after (lossy) compression, the
salary value of 76,000 is stored as 81,000 inT�. Consequently,
since the classification tree in Figure 1(b) is used to predict the
value of theassets attribute, the value of the attribute would be
wrongly predicted as 225,000 (instead of 75,000), thus violating
the error bound of 25,000.
SPARTAN ’s ROWAGGREGATORcomponent uses a fascicle-

based algorithm [12] to further compress the tableT� of predictor
attributes. Since fascicle-based compression is lossy, in the follow-
ing, we show how the above-mentioned scenario can be avoided
when compressing numeric attributes using fascicles. For a nu-
meric predictor attributeXi, define valuev to be a split value for
Xi if Xi � v is a split condition in some CaRTMi in Tc. Also,
in a fascicle (set of records), we say that an attributeXi is com-
pact if the range�x�� x��� of Xi-values in the fascicle, in addition
to having width at most�ei, also satisfies the property that for ev-
ery split valuev, eitherx� � v or x�� 	 v. In our fascicle-based
compression algorithm, for each compact attributeXi, by using
�x� � x���	� as the representative forXi-values in the fascicle,
we can ensure that the error bounds for both predictor as well as
predicted attributes are respected. In fact, we can show that the
values for predicted attributes are identical prior to and afterT� is
compressed using fascicles. This is because for each tuplet in T�,
the original and compressed tuple traverse the same path in every
CaRTMi. For instance, suppose thatXi � v is a split condition
in some CaRT andt�Xi� is different after compression. Then, if
t�Xi� � v, it must be the case that for the fascicle containingt, for
theXi-value range�x�� x���, x� � v. Thus, the compressed value
for t�Xi� (�x� � x���	�) must also be greater thanv. In a similar
fashion, we can show that whent�Xi� 	 v, the compressed value
of t�Xi� is also less than or equal tov. Thus, our more strict def-
inition of compact attributes prevents errors in predictor attributes
from rippling through the predicted attributes. Further, the fasci-
cle computation algorithms developed in [12] can be extended in a
straightforward manner to compute fascicles containingk compact
attributes (according to our new definition).

4. EXPERIMENTAL STUDY
In this section, we present the results of an extensive empirical

study whose objective was to compare the quality of compression
due toSPARTAN ’s model-based approach with existing syntac-
tic (gzip) and semantic (fascicles) compression techniques. We
conducted a wide range of experiments with three very diverse real-
life data sets in which we measured both compression ratios as well
as running times forSPARTAN . The major findings of our study
can be summarized as follows.

� Better Compression Ratios. On all data sets,SPARTAN
produces smaller compressed tables compared togzip and fasci-
cles. The compression due toSPARTAN is more effective for
tables containing mostly numeric attributes, at times outperform-
ing gzip and fascicles by a factor of 3 (for error tolerances of 5-
10%). Even for error tolerances as low as 1%, the compression
due toSPARTAN , on an average, is 20-30% better than existing
schemes.

� Small Sample Sizes are Effective. For the data sets, even with
samples as small as 50KB (0.06% of one data set),SPARTAN is
able to compute a good set of CaRT models that result in excellent
compression ratios. Thus, using samples to build the Bayesian net-
work and CaRT models can speed upSPARTAN significantly.

� Best Algorithms for SPARTAN Components. The MaxIn-
dependentSet CaRT-selection algorithm compresses the data more
effectively that theGreedy algorithm. Further, sinceSPARTAN



spends most of its time building CaRTs (between 50% and 75%
depending on the data set), the integrated pruning and building of
CaRTs results in significant speedups toSPARTAN ’s execution
times.

Thus, our experimental results validate the thesis of this paper
that SPARTAN is a viable and effective system for compress-
ing massive tables. All experiments reported in this section were
performed on a multi-processor (4 700MHz Pentium processors)
Linux server with� GB of main memory.

4.1 Experimental Testbed and Methodology
Compression Algorithms. We consider three compression algo-
rithms in our experimental study.

� Gzip. gzip is the widely used lossless compression tool based on
the Lempel-Ziv dictionary-based compression technique [18]. We
compress the tablerow-wise usinggzip after doing a lexicographic
sort of the table. We found this to significantly outperform the cases
in which gzip was applied to a row-wise expansion of the table
(without the lexicographic sort).

� Fascicles. In [12], Jagadish, Madar and Ng, describe two algo-
rithms, Single-k andMulti-k, for compressing a table using fasci-
cles. They recommend theMulti-k algorithm for small values ofk
(the number of compact attributes in the fascicle), but theSingle-k
algorithm otherwise. In our implementation, we use theSingle-k
algorithm as described in [12]. The two main input parameters to
the algorithm are the number of compact attributes,k, and the max-
imum number of fascicles to be built for compression,P . In our
experiments, for each individual data set, we used values ofk and
P that resulted in the best compression due to the fascicle algo-
rithm. We found theSingle-k algorithm to be relatively insensitive
toP (similar to the finding reported in [12]) and choseP to be�		
for all three data sets. However, the sizes of the compressed tables
output bySingle-k did vary for different values ofk and so for the
Corel, Forest-cover and Census data sets (described below), we set
k to �, �� and 9, respectively. Note that these large values ofk
justify our use of theSingle-k algorithm. We also set the minimum
sizem of a fascicle to 0.01% of the data set size. For each numeric
attribute, we set the compactness tolerance to two times the input
error tolerance for that attribute. However, since for categorical at-
tributes, the fascicle error semantics differs from our’s, we used a
compactness tolerance of 0 for every categorical attribute.

� SPARTAN . We implemented all components of theSPARTAN
system as described in section�. For theGreedy CaRT-selection
algorithm, we used value of 2 for the relative benefit parameter�. In
theMaxIndependentSet CaRT-selection algorithm, for finding the
WMIS of the node-weighted graphGtemp, we used theQUALEX
software package (www.busygin.dp.ua/npc.html). This soft-
ware implements an algorithm based on a quadratic programming
formulation of the maximum weighted clique problem [9]. The
running time isO�n�� (wheren is number of vertices in the graph).
In all our experiments,QUALEX always found the optimal solu-
tion and accounted for a negligible fraction of the overall execution
time. We also implemented the integrated building and pruning al-
gorithm in theBuildCaRT component, and used a simple lower
bound of� � minflog�jXij�� log�jdom�Xi�j�g for every “yet to
be expanded” leaf node. Finally, in the ROWAGGREGATORcom-
ponent, we employed theSingle-k fascicle algorithm, withP set to
�		 andk equal to two-thirds of the number of attributes inT�. In
order to be fair in our comparison with fascicles, we set the error
tolerance for categorical attributes to always be 0.

Real-life Data Sets. We used the following real-life data sets with

very different characteristics in our experiments.

� Census. (www.bls.census.gov/) This data set was taken from
the Current Population Survey (CPS) data, which is a monthly sur-
vey of about 50,000 households conducted by the Bureau of the
Census for the Bureau of Labor Statistics. Each month’s data con-
tains around 135,000 tuples with 361 attributes, of which we used
7 categorical attributes (e.g., education, race) and 7 numeric at-
tributes (e.g., age, hourly pay rate). In the final data set, we used
data for 5 months (June through October 2000) that contained a
total of 676,000 tuples and occupied 28.6 MB of storage.

� Corel. (kdd.ics.uci.edu/databases/CorelFeatures/)
This data set contains image features extracted from a Corel image
collection. We used a�	�� MB subset of the data set which contains
the color histogram features of 68,040 photo images. This data set
consists of 32 numerical attributes and contains 68,040 tuples.

� Forest-cover. (kdd.ics.uci.edu/databases/covertype/)
This data set contains the forest cover type for�	 
 �	 meter cells
obtained from US Forest Service (USFS) Region� Resource Infor-
mation System (RIS) data. The
��� MB data set contains 581,000
tuples, and�	 numeric and�� categorical attributes that describe
the elevation, slope, soil type, etc. of the cells.

Default Parameter Settings. The critical input parameter to the
compression algorithms is the error tolerance for numeric attributes
(note that we use an error tolerance of 0 for all categorical at-
tributes). The error tolerance for a numeric attributeXi is speci-
fied as a percentage of the width of the range ofXi-values in the
table. Another important parameter toSPARTAN is the size
of the sample that is used to select the CaRT models in the final
compressed table. For these two parameters, we use default val-
ues of 1% (for error tolerance) and 50KB (for sample size), re-
spectively, in all our experiments. Note that 50KB corresponds to
0.065%, 0.475% and .174% of the total size of the Forest-cover,
Corel and Census data sets, respectively. Finally, unless stated oth-
erwiseSPARTAN always usesMaxIndependentSet for CaRT-
selection and the integrated pruning and building algorithm for con-
structing regression trees.

4.2 Experimental Results
Effect of Error Threshold on Compression Ratio. Figure 5 de-
picts the compression ratios forgzip, fascicles andSPARTAN
for the three data sets. From the figures, it is clear thatSPARTAN
outperforms bothgzip andfascicles, on an average, by 20-30% on
all data sets, even for a low error threshold value of 1%. The com-
pression due toSPARTAN is especially striking for the Corel
data set that contains only numeric attributes. For high error tol-
erances (e.g., 5-10%),SPARTAN produces a compressed Corel
table that is almost a factor of 3 smaller than the compressed ta-
bles generated bygzip and fascicles, and a factor of 10 smaller
than the uncompressed Corel table. Even for the Census data set,
which contains an equal number of numeric and categorical at-
tributes,SPARTAN compresses better than fascicles for smaller
and moderate error threshold values (e.g., 0.5% to 5%); only for
larger error bounds (e.g., 10%) do fascicles perform slightly better
thanSPARTAN .

The reasongzip does not compress the data sets as well is that
unlike fascicles andSPARTAN it treats the table simply as a se-
quence of bytes and is completely oblivious of the error bounds
for attributes. In contrast, both fascicles andSPARTAN ex-
ploit data dependencies between attributes and also the semantics
of error tolerances for attributes. Further, compared to fascicles
which simply cluster tuples with approximately equal attribute val-
ues, CaRTs are much more sophisticated at capturing dependencies
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Figure 5: Effect of Error Threshold on Compression Ratio.

between attribute columns. This is especially true when tables con-
tain numeric attributes since CaRTs employ semantically rich split
conditions for numeric attributes likeXi � v. Another crucial
difference between fascicle- and CaRT-based compression is that,
when fascicles are used for compression, each tuple and as a con-
sequence, every attribute value of a tuple is assigned to a single
fascicle. However, inSPARTAN , a predictor attribute and thus a
predictor attribute value (belonging to a specific tuple) can be used
in a number of different CaRTs to infer values for multiple different
predicted attributes. Thus, CaRTs offer a more powerful and flex-
ible model for capturing attribute correlations than fascicles. As a
result, a set of CaRT predictors are are able to summarize complex
data dependencies between attributes much more succinctly than
a set of fascicles. For an error constraint of 1%, the final Corel
SPARTAN -compressed table contains 20 CaRTs that along with
outliers, consume only 1.98 MB or 18.8% of the uncompressed ta-
ble size. Similarly, for the Forest-cover data set, the number of
predicted attributes in the compressed table is 21 (8 numeric and
13 categorical) and the CaRT storage overhead (with outliers) is a
measly 4.77 MB or 6.25% of the uncompressed table.

The compression ratios forSPARTAN are even more impres-
sive for larger values of error tolerance (e.g., 10%) since the storage
overhead of CaRTs + outliers is even smaller at these higher error
values. For example, at 10% error, in the compressed Corel data
set, CaRTs consume only 0.6 MB or 5.73% of the original table
size. Similarly, for Forest-cover, the CaRT storage overhead re-
duces to 2.84 MB or 3.72% of the uncompressed table. The only
exception is the Census data set where the decrease in storage over-
head is much steeper for fascicles than for CaRTs. We conjecture
that this is because of the small attribute domains in the Census data
that cause each fascicle to cover a large number of tuples at higher
error threshold values.

Effect of Random Sample Size on Compression Ratio. Figure 6(a)
illustrates the effect on compression ratio as the sample size is in-
creased from 25KB to 200KB for the Forest-cover data set. In-
terestingly, even with a 25KB sample, which is about 0.03% of
the total data set size,SPARTAN is able to obtain a compres-
sion ratio of approximately 0.1, which is about 25% better than
the compression ratio forgzip and fascicles. Further, note that in-
creasing the sample size beyond 50KB does not result in significant
improvements in compression quality. The implication here is that
it is possible to infer a good set of models even with a small random
sample of the data set. This is significant since using a small sample
instead of the entire data set for CaRT model construction can sig-
nificantly improveSPARTAN ’s running time (see running time
experiments described later).

Effect of CaRT Selection Algorithm on Compression Ratio /
Running Time. In Table 1, we show the compression ratios and

running times ofSPARTAN ’s CaRT-selection algorithms for the
three data sets. We consider three CaRT-selection algorithms –
Greedy, MaxIndependentSet with theneighborhood for a node
set to it parents andMaxIndependentSet with theneighborhood
for a node set to it Markov blanket (in the Bayesian graph). From
the table, it follows that theMaxIndependentSet algorithms al-
ways compress better than theGreedy algorithm. This is because
the Greedy algorithm follows a very “local” prediction strategy
for each attribute, basing the decision on whether or not to predict
an attribute solely on how well it is predicted by its materialized
ancestors in the Bayesian network graph. In contrast, theMaxIn-
dependentSet algorithm adopts a more “global” view when mak-
ing a decision on whether to predict or materialize an attribute –
specifically, it not only takes into account how well an attribute is
predicted by attributes in its neighborhood, but also how well it pre-
dicts other attributes in its neighborhood. Observe that, in general,
the version ofMaxIndependentSet with the Markov blanket as a
node’sneighborhood performs slightly better thanMaxInde-
pendentSet with parents as theneighborhood.

With respect to running times, in general, we found thatMaxIn-
dependentSet with parents performs quite well across all the data
sets. This is because, it constructs few CaRTs (18 for Census, 32 for
Corel and 46 for Forest-cover) and since it restricts theneighbor-
hood for each attribute to only its parents, each CaRT contains few
predictor attributes. WhileGreedy does build the fewest CaRTs in
most cases (10 for Census, 16 for Corel and 19 for Forest-cover),
all the materialized ancestors of an attribute are used as predic-
tor attributes when building the CaRT for the attribute. As a re-
sult, since close to 50% attributes are materialized for the data sets,
each CaRT is built using a large number of attributes, thus hurt-
ing Greedy’s performance. Finally, the performance ofMaxInde-
pendentSet with Markov blanket suffers since it, in some cases,
constructs a large number of CaRTs (56 for Census, 17 for Corel
and 138 for Forest-cover). Further, since the Markov blanket for
a node contains more attributes than simply its parents, the num-
ber of predictor attributes used in each CaRT for Markov blanket
is typically much larger. As a result, CaRT construction times for
Markov blanket are higher and overall execution times for Markov
blanket are less competitive.

Data Set Compression Ratio/Running Time (sec)
Greedy WMIS(Parent) WMIS(Markov)

Corel 0.352 / 148.25 0.292 / 97.44 0.287 / 80.73
Forest-cover 0.131 / 932 0.106 / 670 0.1 / 1693
Census 0.18 / 205.77 0.148 / 153 0.157 / 453.35

Table 1: Effect of CaRT Selection Algorithm on Compression
Ratio/Running Time.

Effect of Error Threshold and Sample Size on Running Time. In
Figures 6(b) and 6(c), we plot the running times forSPARTAN
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Figure 6: Effect of Error Threshold and Sample Size on Compression Ratio/Running Time.

for a range of error threshold values and sample sizes. Two trends
in the figures that are straightforward to observe are thatSPARTAN ’s
running time decreases for increasing error bounds, and increases
for larger sample sizes. The reason for the decrease in execution
time when the error tolerance is increased is that for larger error
thresholds, CaRTs contain fewer nodes and so CaRT construction
times are smaller. For instance, CaRT construction times (which
constitute approximately 50-75% ofSPARTAN ’s total execution
time) reduce by approximately 25% as the error bound increases
from 0.5% to 10%. Note the low running times forSPARTAN
on the Corel data set.

In Figure 6(c), we plotSPARTAN ’s running time against the
random sample size instead of the data set size becauseSPARTAN ’s
DEPENDENCYFINDERand CARTBUILDER components which ac-
count for most ofSPARTAN ’s running time (on an average,
20% and 75%, respectively) use the sample for model construction.
SPARTAN makes very few passes over the entire data set (e.g.,
for sampling, for identifying outliers in the data set for each se-
lected CaRT and for compressingT� using fascicles), the overhead
of which is negligible compared to the overhead of CaRT model
selection. Observe thatSPARTAN ’s performance scales almost
linearly with respect to the sample size.

Finally, in experiments with building regression trees on the data
sets, we found that integrating the pruning and building phases can
result in significant reductions inSPARTAN ’s running times.
This is because, integrating the pruning and building phases causes
fewer regression tree nodes to be expanded (since nodes that are go-
ing to be pruned later are not expanded), and thus improves CaRT
building times by as much as 25%.

5. CONCLUSIONS
In this paper, we have described the design and algorithms under-

lying SPARTAN , a novel system that exploits attribute seman-
tics and data-mining models to effectively compress massive data
tables.SPARTAN takes advantage of predictive correlations be-
tween the table attributes and the user- or application-specified er-
ror tolerances to construct concise and accurate CaRT models for
entire columns of the table. To restrict the huge search space of pos-
sible CaRTs,SPARTAN explicitly identifies strong dependen-
cies in the data by constructing a Bayesian network model on the
given attributes, which is then used to guide the selection of promis-
ing CaRT models. Unfortunately, as we have demonstrated in this
paper, this model-selection problem is a strict generalization of an
NP-hard combinatorial problem (WMIS); thus, we have proposed
a novel algorithm forSPARTAN ’s CaRT-selection component
that exploits the discovered Bayesian structure in the data in con-
junction with efficient, near-optimal WMIS heuristics.SPARTAN ’s
CaRT-building component also employs novel integrated pruning

strategies that take advantage of the prescribed error tolerances to
minimize the computational effort involved. Our experimentation
with several real-life data sets has offered convincing evidence of
the effectiveness ofSPARTAN ’s model-based approach.
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