web-scale data
processing

Christopher Olston and many others
Yahoo! Research




Motivation

* Projects increasingly revolve around
analysis of big data sets

— Extracting structured data, e.g. face detection

— Understanding complex large-scale phenomena

» social systems (e.g. user-generated web content)
« economic systems (e.g. advertising markets)
« computer systems (e.g. web search engines)

« Data analysis is “inner loop™” at Yahoo! et al.

« Big data necessitates parallel processing

€9



Examples

1. Detect faces
— You have a function detectFaces()
— You want to run it over n images
— nis big

2. Study web usage
— You have a web crawl and click log
— Find sessions that end with the “best” page

!




Existing Work

* Parallel architectures
— cluster computing
— multi-core processors

» Data-parallel software
— parallel DBMS
— Map-Reduce, Dryad

« Data-parallel languages
— SQL
— NESL




Pig Project

» Data-parallel language (“Pig Latin")
— Relational data manipulation primitives
— Imperative programming style
— Plug in code to customize processing

* Various crazy ideas
— Multi-program optimization
— Adaptive data placement
— Automatic example data generator

!




Pig Latin Language

[SIGMOD’08]




Example 1

Detect faces in many images.

I

F = foreach I generate id, detectFaces(image);

load ‘/mydata/images’ using ImageParser() as (id, image);

store F into ‘/mydata/faces’;




Example 2

Find sessions that end with the “best” page.

Visits

user url time
Amy www.cnn.com 8:00
Amy www.crap.com 8:05
Amy www.myblog.com 10:00
Amy  www.flickr.com 10:05

Fred

cnn.com/index.htm 12:00

Pages

url pagerank
www.cnn.com 0.9
www.flickr.com 0.9
www.myblog.com 0.7
www.crap.com 0.2

€9

|



Efficient Evaluation Method

the answer

group-wise processing
(identify sessions;

examine pageranks
repartition by user ‘ >< r pag )

join

repartition by url

Visits Pages




Visits
Visits

Pages

VP
UserVisits

Sessions =

HappyEndings

store

In Pig Latin

= load ‘/data/visits’ as (user, url, time);
= foreach Visits generate user, Canonicalize(url), time;

= load ‘/data/pages’ as (url, pagerank);

= join Visits by url, Pages by url;

= group VP by user;

foreach UserVisits generate flatten(FindSessions(*));

= filter Sessions by BestIsLast(*);

HappyEndings into '/data/happy endings';




Pig Latin, in general

* transformations on sets of records

« easy for users

— high-level, extensible data processing primitives

* easy for the system

— exposes opportunities for parallelism and reuse

operators:

* FILTER

« FOREACH ... GENERATE
« GROUP

binary operators:
« JOIN

« COGROUP

*« UNION




Related Languages

SQL: declarative all-in-one blocks
NESL.: lacks join, cogroup

Map-Reduce: special case of Pig Latin

a = FOREACH input GENERATE flatten(Map(*)):
b = GROUP a BY $0;
¢ = FOREACH b GENERATE Reduce(*):

Sawzall: rigid map-then-reduce structure

!




Pig Latin = Sweet Spot
Between SQL & Map-Reduce

Map-Reduce

Progra

Built-ir
manip!

Execut

"I much prefer writing in Pig [Latin] versus SQL. The step-by-step method of
creating a program in Pig [Latin] is much cleaner and simpler to use than the
single block method of SQL. It is easier to keep track of what your variables
are, and where you are in the process of analyzing your data.”

-- Jasmine Novak, Engineer, Yahoo!

Oppor;
autom

"P1G seems to give the necessary parallel programming construct
(FOREACH, FLATTEN, COGROUP .. etc) and also give sufficient control
back to the programmer (which purely declarative approach like [SQL on top
of Map-Reduce] doesn’t).”

-- Ricky Ho, Adobe Software




Map-Reduce as Backend

automatic l
rewrite + - Pig y
optimize

_____________

Map-Reduce}

L

cluster [VLDBO09]

oogogo
0J0ggno




Pig Latin vs. Map-Reduce:
Code Reduction

Users = load ‘users’ as (name, age)
Fltrd = filter Users by
age >= 18 and age <= 25;
Views = load ‘views’ as (user, url);
Jnd join Fltrd by name, Views by user;
Grpd group Jnd by url;
Smmd = foreach Grpd generate group,
COUNT (Jnd) as clicks;
Srtd = order Smmd by clicks desc;
TopS = limit Srtd 5;
store TopS into ‘topSsites’;

€9



Comparison

1/20 the lines of code 1/16 the development time
180 300
160
140 250
120 + 0 200 ——
100 +— =
30 E 150
60 — s 100 ——
40 +—— N
20 >0
0 0 |
Hadoop Pig Hadoop Pig
Pig Performance vs Map-Reduce
performance @ °°

5.0

1.5x Hadoop | .,

3.0 2.5
1.8 1.6

2.0 - 15

1.0 .

0.0 — [S—— [S— JR—
Sep 11 08 Nov 11 08 Jan 2009 Feb 23 09 Apr 20 09




Ways to Run Pig

Interactive shell

Script file

Embed in host language (e.g., Java)
soon: Graphical editor

9/




Status

* Open-source implementation
— http://hadoop.apache.org/pig
— Runs on Hadoop or local machine
— Active project; many refinements in the works

* Wide adoption in Yahoo

— 100s of users
— 1000s of Pig jobs/day
— 60% of ad-hoc Hadoop jobs are via Pig

— 40% of production jobs via Pig 9




Status

« (Gaining traction externally
— log processing & aggregation
— building text indexes

— collaborative filtering, applied to image &
video recommendation systems

"The [Hofmann PLSA E/M] algorithm was implemented in pig in 30-35 lines of
pig-latin statements. Took a lot less compared to what it took in implementing
the algorithm in Map-Reduce Java. Exactly that's the reason | wanted to try it
out in Pig. It took 3-4 days for me to write it, starting from learning pig.”

-- Prasenjit Mukherjee, Mahout project




Crazy ldeas

[USENIX'08]
[VLDB'08]
[SIGMOD’09]




Crazy ldea #1
Multi-Program Optimization



Motivation

» User programs repeatedly scan the same
data files
— web crawl
— search log

e Goal:

— Reduce redundant |Os, and hence improve
overall system throughput

* Approach:
— Introduce “shared scans” capability

— Careful scheduling of jobs, to maximize benefit
of shared scans 9

'/




Scheduling Shared Scans

looks at queues

- - - antif:?pc.":\tes

[Scheduler] arrivals
0] [9] 8]

Executor
s [- 6. -}

not popular

wom ﬁ




Crazy ldea #2
Adaptive Data Placement




Motivation

« Hadoop is good at localizing computation to
data, for conventional map-reduce scenarios

 However, advanced query processing
operations change this:
— Pre-hashed join of A & B: co-locate A & B?
— Frag-repl join of A & B: more replicas of B?

* Our idea:
— Adaptive “pressure-based” mechanism to move

data s.t. better locality arises ’
!




Adaptive Data Placement

————————————————————————

jobs —— s >| Job Localizer .
: / N\ :
; ‘g (JoinA&B):
execuﬁon: :
. : 1A I
engine
| B -[B
C D
. Worker 1 Worker 2/

o o e o o e e mm e e Em Em Em e e o




Crazy ldea #3
Automatic Example Generator




Example Program (abstract view)

Find users who tend to visit “good” pages.

Load Load
Visits(user, url, time) Pages(url, pagerank)

1

Transform

to (user, Canonicalize(url), time)
Join
url = url
Group
by user

Transform
to (user, Average(pagerank) as avgPR)




Load Load

Visits(user, url, time)

Pages(url, pagerank)

(Amy, cnn.com, 8am)
1 (Amy, http://www.snails.com, 9am)
(Fred, www.snails.com/index.html, 11am)

Transform
to (user, Canonicalize(url), time)

_| (www.cnn.com, 0.9)
(www.snails.com, 0.4)

Join
: url = url

(Amy, www.cnn.com, 8am)

(Amy, www.snails.com, 9am) (Amy, www.
(Fred, www.snails.com, 11am) = === | (Amy, www.

(Fred, www.snails.com, 11am, 0.4)

cnn.com, 8am, 0.9)
snails.com, 9am, 0.4)

Group
by user

(Amy, { (Amy, www.cnn.com, 8am, 0.9),
- (Amy, www.snails.com, 9am, 0.4) })
(Fred, { (Fred, www.snails.com, 11am, 0.4) })

Transform
to (user, Average(pagerank) as avgPR)

(Amy, 0.65)
(Fred, 0.4)

Filter
avgPR > 0.5

1- - — - | (Amy, 0.65)




Automatic Example
Data Generator

* Objectives:
— Realism
— Conciseness
— Completeness

» Challenges:
— Large original data
— Selective operators (e.g., join, filter)
— Noninvertible operators (e.g., UDFs) 9

|




Talk Summary

» Data-parallel language (“Pig Latin")
— Sequence of data transformation steps
— Users can plug in custom code

* Research nuggets

— Joint scheduling of related programs,
to amortize IOs

— Adaptive data placement,
to enhance locality

— Automatic example data generator,
to make user’s life easier



2
9\9'
) \?
po you Pigl? 0010 po yo! Pig

Yahoo! Grid Team
project leads:

Alan Gates
Olga Natkovich

.’v\ .

po you Pig!?

po you Pig!? e

Yahoo! Research
project leads:
Chris Olston
Utkarsh Srivastava
Ben Reed




