
Parallel Evaluation of Composite Aggregate Queries
Lei Chen #1, Christopher Olston ∗2, Raghu Ramakrishnan ∗3

#Computer Sciences Department, University of Wisconsin - Madison
1210 West Dayton Street, Madison, WI, 53705, USA

1chenl@cs.wisc.edu
∗Yahoo! Research

2821 Mission College Blvd. Santa Clara, CA 95054 USA
2olston@yahoo-inc.com

3ramakris@yahoo-inc.com

Abstract— Aggregate measures summarizing subsets of data
are valuable in exploratory analysis and decision support, espe-
cially when dependent aggregations can be easily specified and
computed. A novel class of queries, called composite subset mea-
sures, was previously introduced to allow correlated aggregate
queries to be easily expressed.

This paper considers how to evaluate composite subset mea-
sure queries using a large distributed system. We describe a
cross-node data redistribution strategy that takes into account
the nested structure of a given query. The main idea is to group
data into blocks in “cube space”, such that aggregations can
be generated locally within each block, leveraging previously
proposed optimizations per-block. The partitioning scheme allows
overlap among blocks so that sliding window aggregation can be
handled. Furthermore, it also guarantees that the final answer is
the union of local results with no duplication and there is no need
for the expensive data combination step. We identify the most
important partitioning parameters and propose an optimization
algorithm. We also demonstrate effectiveness of the optimizer to
minimize the query response time.

I. INTRODUCTION

Organizations rely heavily upon decision support tools that
aggregate operational data. Aggregated data is also used, e.g.,
to construct prediction models, which are extensively used in
online services such as item recommendation (Amazon.com)
or targeted advertising (Yahoo.com). Such real-world tasks
require the computation of multiple correlated aggregates.

We use a weblog analysis problem to illustrate the concept
of queries with correlated aggregates. In this task, the goal
is to understand users’ behavior on the search results and the
advertisements by analyzing massive web search session logs.
The data have the following schema: (Keyword k, PageCount
p, AdCount a, Time t). Each record indicates an instance that a
user submitted a single keyword query k at time t and clicked
p search result links and a associated advertisement links. We
are interested in the correlation between the number of the
result clicks and the ad clicks from different keyword groups
during various time windows. Following measures have to be
computed as a part of the analysis.

M1: For every minute and keyword, find the median of
page count.

M2: For every hour and keyword, find the median of ad
count.

M3: For every minute and keyword, find the ratio between
M1 of that minute and M2 of the corresponding hour.

M4: For every keyword and a ten-minute sliding window,
find the moving average of M3.

All the above measures are correlated with each other.
Further, the results of all queries are required, not just the
“final” measure of M4. In [4], we introduced a novel class
of queries called composite subset measures to express a
collection of correlated aggregates, including the dependencies
among them. We also described an algorithm that can compute
the aggregations altogether using single pass of sorting and
scanning. In this paper, we will study how to evaluate such
queries in a parallel manner; this is essential in order to scale
to the data sizes we seek to handle.

A composite subset measure query can be evaluated by com-
puting components one at a time, respecting the dependency
ordering among those components. For the example analysis
task, the query can be evaluated in the following manner:

Step 1. Repartition the data by keyword and minute, com-
pute M1 in parallel.

Step 2. Repartition the data by keyword and hour, com-
pute M2 in parallel.

Step 3. Perform parallel join over the results of M1 and
M2, group the join results by keyword and hour, and
compute the aggregated value of M3 for each group.

Step 4. Perform a sliding window aggregation over the
result of M3 to generate the result of M4.

Such evaluation requires repartitioning and processing the
raw data twice (Steps 1 and 2), which can be very expensive.
Further, the results of M1 and M2 can be large, which makes
the join operation costly. Instead, knowing that all the measure
components should be evaluated together, we can use the
following more efficient algorithm, which repartitions data
only once and performs all the aggregations/joins locally
within each partition block:

Step 1. Repartition data into blocks based on the keyword
values.

Step 2. Compute M1–4 locally at each resulting block,
using the previously proposed algorithm [4].

Step 3. Combine the local results as the final answer.

The degree of parallelism is limited by the number of
keywords, and performance might level off if the number of
available machines is high and the number of unique keywords
is low. There is an alternative approach to evaluate this query:

Step 1. Repartition the raw data into sliding windows.
Each window block contains data records for 25 con-
secutive hours. The last hour of a given block overlaps
with the first hour of the next block.

Step 2. In each window block, compute M1–4 for the first
24 hours. Use the data in the last hour only to support
the computation of the 24th hour.

Step 3. Merge the local results as the final answer.

In this overlapping data distribution scheme, each result
block contains all the data required for some parts of the
final answer. All the measures can be evaluated using one
iteration of data redistributing and processing. Furthermore,
the distribution granularity for this algorithm can be finer than
that of the second algorithm, assuming there are more distinct
days than the distinct keyword values. There will be more
blocks, allowing more parallelism.

Finding a good data distribution scheme that guarantees the
feasibility of local evaluation is a challenge. We also want to
utilize work done for an operator for evaluating subsequent
operators in the composite query workflow, as in [4]. Our
approach uses the observation that composite measure queries
group by regions in “cube space” induced by the dimension
hierarchies. The data can be partitioned by region to allow
localized evaluation.

A. Contributions

Our first contribution in this paper is to identify what
constitutes a feasible distribution, given the data schema
and the query. We allow the result distribution blocks to
overlap with each other, so that queries with sliding window
aggregation component can be handled seamlessly. To our
knowledge, this is the first work studying the overlapping
data distribution scheme to handle correlated aggregations with
sliding windows.

Our second contribution is to address the problem of finding
the distribution scheme that minimizes the query response
time. A cost model is presented to show how query response
time is affected by the granularity of blocks as well as the
overlap among blocks. An optimization algorithm is presented
to search for the optimal values for the key parameters, and is
evaluated using various metrics such as scalability, speed-up,
and sensitivity to data skew.

B. Paper Outline

The rest of the paper is organized as follows. We review the
query model of composite subset measures in Section II. In
Section III, we present the parallel evaluation algorithm based
on feasible data distribution. We discuss the optimization
problem in Section IV, and present the experimental results
in Section VI. Sections VII and VIII cover the related work
and the conclusion.

Name Domains

Keyword word, group, ALL
PageCount value(0..200), level(low, medium, high), ALL
AdCount value(0..20), level(low, medium, high), ALL
Time hour, day, month, year, ALL

TABLE I
ATTRIBUTE DOMAINS

II. CONCEPTS AND NOTATIONS

We now review the concept of composite subset measure
queries, first introduced in [4]. Composite subset measure
queries are applied to a table that is a bag (multiset) of records.
Each attribute is associated with a set of hierarchical domains.
For example, the values of the time attribute are drawn from
the domains of minutes, hours, days, months, and years. Any
value defined in a domain can be mapped to a unique value
defined in any of the more general domains. For example,
the value 02/07/2007 can be mapped into Feb. 2007 in month
domain. The domain types can be either nominal or numeric.
Table I shows domain descriptions for the sample analysis
task. The special notation “ALL” refers to the most general
domain which contains a unique value ALL, following [7].

Each data record can be mapped into a point in the space de-
fined by the dimension attributes, called cube space. A region
is a hyper-rectangle in cube space, and many natural regions
arise because of the hierarchical value domains associated with
dimensions. For example, [“baseball”, 10, 10, 02/20/2007] is
a region which represents all the records generated on Feb.
20, 2007 for keyword query “baseball,” such that PageCount
and AdCount are both 10. A data record is contained in region
r if its corresponding point in cube space is covered by the
hyper-rectangle of r.

The granularity of a region is described in terms of the
domains from which attribute values are drawn. For exam-
ple, the granularity of region [SPORT, 10, 20, 02/20/2007]
is <K:group, P:value, A:value, T:day> , assuming SPORT
refers to a group of keywords. Those attributes defined in
domain “ALL” can be omitted when the context is clear.
So <K:keyword, P:ALL, A:ALL, T:ALL> is equivalent to
<K:keyword>.

A region r1 is the child region of another region r2 if
any data record contained in r1 is also contained in r2.
Such “containment” implies the following properties: For any
attribute, its domain in r1 is more specific than that in r2. The
value of each attribute of r1 can be mapped into the value of
the corresponding attribute in r2. r2 is called the parent region
of r1.

Two regions are siblings if they share the same granularity
in cube space. A specific set of siblings for a given region
can be specified by adding range annotations to numeric
attributes. For example, [badger, 20, 20, 2001:(0,3)] indicates
the collection of siblings for region [badger, 20, 20, 2001].
They refer to regions with the same keyword, PageCount, and
AdCount from year 2002 to 2004. Note that we cannot add
an annotation to a nominal attribute because the meaning of
“closeness” is not defined. The sibling set of a given region

<K: Keyword, T: Minute>

Median (P)

<K: Keyword, T: Hour>

Median (A)

M1
M2

<K: Keyword, T:Minute>

M1 / M2

<K: Keyword, T: minute>
Average(M3)

M3

M4

Parent/Child
Self

Sibling
{Time(0,10)}

Fig. 1. Example Aggregation Workflow

Relation Meaning

self The measure of a region is computed from the other
measures of the same region

child/parent The measure of a region is computed by aggregating
the measures of its children

parent/child The measure of a region is derived from the measure
of its parent region

sibling The measure is computed by aggregating the mea-
sures of sibling regions. The match condition for
sibling is expressed as {X(l, h)}, where X is the
attribute name, (l,h) is the value range.

TABLE II
MEASURE RELATIONSHIPS

can be defined using {Xi : (li, hi)}, where Xi is the attribute
name and li and hi are the lower and upper bounds.

A region set is the set of all regions with the same
granularity, and can be uniquely identified using that common
granularity. A region set is more general than the another
region set if all attribute domains in the first region set are
more general than the corresponding domains in the second
region set.

A. Query Model

A composite subset measure query consists of multiple
correlated measure components. It can be expressed using a
pictorial query language called aggregation workflows (see
Figure 1). Each measure, illustrated as a node in the ag-
gregation workflow, is defined over a region set and is an
aggregation of data records contained in the region, or an
aggregation of the result measures from related regions. The
granularity and aggregation function for a given measure are
shown in the node. The value dependencies among measures
are shown as edges. Four relationships are used to establish
the connections between measures. Table II summarizes the
meaning of each relationship.

In an aggregation workflow, measures that do not depend
on other measure components are called basic measures.
Measures that depend on other measure components are called
composite measures; the measures a composite measure de-
pends upon are called its sources.

III. PARALLEL EVALUATION ALGORITHM

A. General Evaluation Strategy

In general, the parallel evaluation works as follows. The
data records are stored in a distributed file in a machine
cluster with shared-nothing architecture. Each file block has
multiple replicas in the system to achieve better accessibility.
The evaluation of a query involves two groups of machines:
mappers and reducers. At the beginning of the evaluation, a
given number of machines are assigned as the mappers and
the reducers.

Each mapper fetches part of the datasets and generates
key/value pairs from individual record. The key field is
computed by applying the transformation function on the data
record, which will be described in Subsection III-B. The
value field is the exact copy of the original data record.
Multiple key/value pairs might be generated from one single
data record, which enables overlapped data redistribution.

The result pairs are shuffled and dispatched to reducers, with
the constraint that those with the same key are dispatched to
the same reducer. The reducers collect pairs and use external
sorting to group pairs with the same key value. After the
sorting, reducers process groups one at a time and produce
aggregated results from each group. In [4], an algorithm
was proposed to evaluate composite measure queries with
centralized storage. This algorithm can be used as a subroutine
to compute the local result from each group. The distribution
scheme is designed in such a way that the final result is the
simple union of local results without duplications.

Notice that we used the terms introduced in MapReduce [6],
which is a large scale data processing framework for grouped
aggregation. However, the algorithm can be implemented in
any OLAP system which supports scatter-and-gather evalua-
tion paradigm.

B. Data Distribution Scheme

In order for the parallel algorithm to run correctly and
efficiently, we set the following rules for a desirable data
distribution scheme:

1. The union of the local results should be the final query
answer.

2. There is no overlap among results generated from
different blocks.

3. Overlaps among blocks are allowed, but should be
minimized to ensure good performance.

In the rest of this section, we first consider the case when
there is no sibling relation, which implies sliding window con-
dition, in the query. This problem is relatively easy, because
no overlap is required among the distributed blocks. Then we
consider the more interesting case when sibling relations are
used and overlapping data distribution might be needed, which
is common when the query includes sliding windows.

1) Non-Overlapping Distribution: For multidimensional
data set, it is straightforward to distribute the data records
based on the grid of cube space. Data records which belong
to the same region with a given granularity will be grouped

into the same distribution block. The region granularity serves
as the distribution key, representing how the data records are
grouped. We can efficiently identify the block a data record
belongs to, by looking at the region that record resides in.

A distribution key is feasible if the value for any component
measure in the given composite subset measure query can be
evaluated based on the data records from a certain distribution
block alone. For example, for the query in the example analysis
task, <K:keyword> is a feasible distribution key since any
measure can be computed from records with same keywords.
On the other hand, <K:keword, T:minute> is not feasible,
because the second measure (M2) is computed based on
records from the entire hour.

To formally define the feasibility of a distribution key, we
introduce the concept of the coverage set for a measure result.
For a given measure result mr =< r, v > , where r is a region
and v is the associated measure value, the coverage set of mr,
denoted as coverage(mr), is the collection of data records
that affect the value of mr.v. If a measure record is derived
from other measures, then its coverage set is the union of the
coverage sets for all source measure records. A distribution key
DK is feasible, if for any measure record in the result of the
query, there exists a region rp with granularity DK such that
coverage(mr) ⊂ rp. We have the following theorem about
the feasible distribution key.

Theorem 1: If X is a feasible distribution key and X ′ is a
generalization of X , then X ′ is a feasible distribution key as
well.

Proof:
Since X is feasible, for any measure record mr, there exists

a region r1 with granularity X such that coverage(mr) ⊂ r1.
X ′ is the generalization of X , which means there exists a
region r2 with granularity X ′ such that r1 ⊂ r2 for every
r1. This implies that coverage(mr) ⊂ r1 ⊂ r2. so X ′ is a
feasible distribution key as well.

The following theorem shows how to identify a feasible
distribution key for composite subset measure queries without
sibling relationships, based on the feasible distribution keys
for its source measures. Furthermore, all the other feasible
distribution keys can be derived from this particular key.

Theorem 2: If the composite subset measure does not in-
clude sibling relationships, then the least common ancestor
of all measure granularities is a feasible distribution key.
Furthermore, all the other feasible distribution keys are gener-
alizations of this key, and the least common ancestor indicates
a minimal key.

The proof of this theorem is in Appendix VIII.
Figure 2 shows how the data will be distributed based on

key <K:keyword, T:hour>, which is feasible for the collection
of M1, M2 and M3, but is not feasible if M4 is included.

2) Overlapping Data Distribution: For composite subset
measure queries which contains sibling relations, the value
of a measure record might depend on data records from its
neighboring regions. Take M4 as an example, the result value
is computed by combining the results from ten neighboring

<eclipse, ALL,ALL, 02/08/2007 7pm >

.

.

<eclipse, ALL,ALL, 02/09/2007 7pm >

<Java, ALL,ALL, 02/08/2007 7pm >

<Java, ALL,ALL, 02/08/2007 7pm >

Fig. 2. Non-Overlapping Partition

regions with granularity <K:keyword, T:minute>. If we divide
the data using distribution key <K:keyword, T:minute>, then
regions with ten consecutive minutes might be assigned to
different partition blocks and this moving window average
measure can not be computed locally from any of these blocks.

One solution for such problem is to use a more general
domain in the distribution key. For example, <K:keyword>
is a feasible distribution key in which the time attribute is
rolled up to the ALL domain. However, we can also solve this
problem by allowing one distribution block to include multiple
sibling regions with the same granularity. The union of such
regions provides all the data records in the coverage set of the
measure records in one given region. As a side effect, there
will be data duplication among neighboring partition blocks,
if we want all the aggregates to be computed locally.

The notation of the distribution key can be extended by
attaching range annotations to individual attributes. The an-
notation indicates the number of preceding and succeeding
regions that should be included in the distribution block.
For example, <K:keyword T:minute(0,10)> is an extended
distribution key. If we want to compute the measures defined
in one region with granularity <K:keyword, T:minute> , the
ten regions with the same keyword should be included in the
same distribution block. Furthermore, the time value for these
regions fall in the range of ten minute time window.

Formally, an overlapping distribution key can be de-
fined using the following expression: <X1:D1(l1,h1), . . . ,
Xd:Dd(ld,hd)>. Xi is the attribute name. Di is the domain
name. li and hi are the lower bound and upper bound for the
range annotation. If an attribute Xi does not have the range
annotation if li = hi = 0.

In order to find the feasible distribution key for a given
query, we can first identify the feasible distribution key for
each individual measure component and then combine all
the results keys together. Given the distribution keys for
the sources measures and the range condition for sibling
conditions, the feasible distribution key for the target measure
can be derived.

We describe an algorithm with two basic operations to
solve this problem. The first operation, called opConvert,
takes the distribution key for the source measures and the
sibling condition and produces a new distribution key, which
is feasible for the target measure. The second operator, called
opCombine, produces a distribution key based on the feasible
distribution keys of all the source measures. The details of

procedure OpConvert(distribution keys k, sibling condition
< x1 : D1(l1, h1), . . . , xd : Dd(ld, hd) >)

1 for each attribute xi

2 D = domain(k.xi)

3 result.xi.domain = D

4 result.xi.low = (k.xi.low − mapD(hi))

5 result.xi.high = (k.xi.high − mapD(li))

TABLE III
ADJUSTING DISTRIBUTION KEY USING SIBLINGS

procedure OpCombine(distribution keys k1, k2, ...)
1 if sibling relationship is used for the ith source
1 ki = opConvert(ki, sibling condition)
2 for attribute x

3 D is the common generalization for domain(ki.x)
4 ki.x.low′ = mapD(ki.x.low), i = 1, 2, ...

5 ki.x.high′ = mapD(ki.x.high), i = 1, 2, ...

6 low0 = min{ki.x.low′}, high0 = max{ki.x.high′}
7 result.x.domain = D

8 if (low0 �= 0) or (high0 �= 0)
9 result.x.low = low0

result.x.high = high0

TABLE IV
CONSTRUCTING A FEASIBLE DISTRIBUTION KEY

these two algorithms are provided in Tables III and IV.
The map function is used in both operations, which converts

the value range from one domain to the other domain. For
example, the annotation T:day(-10,+60) can be converted into
T:month(-1, +3). This is because a ten-day time window
spans at most two month and a 60-day time window spans at
most three months. The annotation of T:month(-1, 2) can be
converted into T:day(-32,+63) following the similar reasoning.

The algorithm starts with basic measures. The feasible
distribution key for each basic measure is the granularity of
the measure. The distribution keys for composite measures are
computed following the topological order of the aggregation
workflow. For each composite measure, if the dependency is
computed based on sibling relationships, opConvert is used to
adjust the distribution key before the operation opCombine is
applied. Otherwise, opCombine will be applied directly.

Once the distribution key for each measure component is
generated, the feasible distribution key of the whole query
can be generated by combining the distribution keys for all the
measure components using opCombine. The distribution key
generated thus is “minimal,” which means all the other feasible
distribution keys for the query have the following property: if
an attribute does not have range annotation in the minimal key,
then the domains of that attribute in other feasible distribution
keys are generalizations for the domain in the minimal key. If
an attribute has a range annotation, then that attribute in all the
other distribution keys either is defined in the ALL domain,
or is defined in the same domain as that in the minimal key,
and has a boarder range annotation.

When overlapping distribution is used, since there might
be duplicated records among distribution blocks, the measure
for a given region can be generated from the different blocks.

Some of these results might not be correct, since not all the
data records in its coverage set reside in the that block. The
cost of removing the incorrect and duplicated results can be
avoided if they can be filtered in the reducers. Such filtering is
done by comparing the region of measure records to the value
of the distribution key. In the key generation process, multiple
key values might be generated from one single data record.
However, there is a unique pair where the key is generated
without being adjusted with a delta value. As a result, we only
output a measure record in the reducer when its associated
region resides in the region specified by the current group.

C. Reducing Redundant Data

When we choose to use an overlapping distribution key,
there are data duplicates between two neighbor blocks. Usu-
ally, these two blocks will be assigned to different reducers
and the duplicated portion has to be transferred and processed
twice. In the extreme example of query M4, if we use the
distribution key <K:keywourd, T:minute(0,10)>, one data
record will essentially be duplicated in ten blocks. The total
workload will be increased approximately by a factor of ten.
Such data duplication can be reduced by forcing neighbor
blocks into one. As the size of each block increases, the portion
of duplicated data is reduced. The number of distribution
blocks to be merged together is called clustering factor.

Figure 3 shows the effect of such overlapping distribution.
The original distribution key is < T : day(0, 2) >. The
gray regions represent those from which the measure results
need to be calculated. The white blocks are regions which are
assigned to the distribution block to provide input data for
the measures in gray regions. No result will be output from
those white regions. Figure (a) shows the case when clustering
factor equals 1 and (b) shows the case when the clustering
factor equals 2. The original dataset consists of six regions. In
case (a), the number of total regions is 12 and for case (b) the
number of such regions is 8. It is clear that scheme in case
(b) results in lower workload.

Fig. 3. Redistribution with Clustering Factor

Certain modification has to be made in the key generation
logic to support such composite blocks. The essential idea is
to use one unique value to represent a range of values for

a given attribute. Suppose time is the annotated attribute in
the distribution key. For a given record, the time value is 100
and the clustering factor equals to 5, then the time value in the
key should be converted to 100 div 5 = 20. After the division,
the same result will be derived from values between 100 to
104, hence those regions with neighboring time values will
be assigned with the same key value and hence be dispatched
to the same distribution block. Since only numeric attribute
is allowed to have range annotation, such value conversion is
always feasible.

By using larger value for the clustering factor, the amount
of data to be duplicated will decrease. This will reduce
the volume of data records to be transferred and processed.
However, such distribution scheme has one side effect: there
are fewer resulting blocks. This limits the degree of parallelism
for the computation. We provide an detailed analytical model
in Subsection IV-B.

D. Other Implementation Considerations

We discuss two additional considerations in this subsection.
First, in the parallel evaluation strategy, the size of data to
be transferred is at least as large as the original data set. In
certain situations the data size can be reduced by performing
early aggregation for the basic measures and transferring the
aggregation results instead. This strategy will be effective
when (1) The number of basic measures is not very high
(2)There is substantial size reduction from the raw data to the
results of basic measures (3)All the basic measures are either
algebraic or distributive so that partial results can be generated
in the early stage of the computation. In such situations it
makes sense to perform early aggregation. We measure the
performance impact on using early aggregation in conjunction
with our evaluation strategy in Section VI.

Secondly, the way MapReduce forms groups at each reducer
is by sorting the data it receives based on the distribution key.
Once the MapReduce system performs this sort, it hands the
content of each group to a user-provided reducing function.
Our algorithm’s reducing function immediately re-sorts the
content of each group, according to the sort key that has been
chosen by the local sort/scan algorithm. Obviously, the two
sort passes could be combined into one (using a composite sort
key). A substantial amount of work can be saved, especially if
the data volume is such that out-of-core sorting is necessary.
Our current implementation uses an unmodified Map/Reduce
implementation that does not support this functionality. The
quantification of the performance impact of such optimization
is presented in Section VI.

IV. DISTRIBUTION SCHEME OPTIMIZATION

In this section, we study the problem of finding the optimal
distribution key and clustering factor to minimized the eval-
uation response time. We focus on the response time since it
is the main factor that affects the efficiency of an interactive
analysis.

During the evaluation of a composite subset measure query,
the data records are distributed among multiple reducers.

The response time for a specific execution plan is due to
the following components: (1)fetching data records in each
mapper, (2)transferring key/record pairs to the reducers, and
(3)processing the data in the reducer using the local sort/scan
algorithm. The first cost is not affected by the distribution
scheme. The second and third factors are proportional to the
heaviest workload assigned to an individual reducer. The total
response time can be reduced by minimizing the heaviest
workload.

There are two possible ways to reduce the heaviest work-
load. First, we can reduce the data which are duplicated
among neighbor distribution blocks. We prefer to use the non-
overlapping distribution key to avoid processing duplicates.
Second, it is desirable to have blocks evenly assigned among
different reducers so that the expected value of the heaviest
workload is minimized. More detailed analysis will be pro-
vided in the following subsections.

A. Non-Overlapping Distribution Keys

We first analyze the case when a non-overlapping dis-
tribution key is used. In this case, each distribution block
contains a single region. The distribution key corresponds to
a region granularity G. nG is the total number of regions with
granularity G in cube space. m is the number of available
reducers. We use Xi to represent the number of data records
within each region. DG is the distribution function of Xi,
Xi ∼ DG. Bi ∈ 1, 2, ...,m indicates the reducer that region i
is assigned to. Then, the number of data records assigned to a
given reducer j is

∑
i=1...nG

Xi × I(Bi = j)), where I(Bi =
j) is the indicator function. If we assume regions are randomly
assigned to reducers following a uniform distribution, the size
of the heaviest workload assigned to an individual reducer is:

maxj=1...m(
∑

i=1...nG

Xi × I(Bi = j)) (1)

where P (Bi = v) = 1/m, for v = 1, 2, ...,m.
In general, it is hard to find the minimal value of For-

mula (1), because the form of DG is unknown. However,
if we assume data records are distributed evenly in cube
space, and hence each region contains exactly N/nG data
records, where N is the total number of data records, X1 =
X2 = ... = N/nG. The expected value for the size of
heaviest workload is then E(maxj=1...m(

∑
i=1...nG

I(Bi =
j)))×N/nG. When the values of N and nG are fixed, the term
E(maxj=1...m(

∑
i=1...nG

I(Bi = j))) is exactly the first mo-
ment of the largest order statistic for a multinomial distribution
M(m, nG). According to [9], [10], this can be approximated
by Formula 2(the constant parameter α = 0.5772) when the
value of nG → ∞.

N

m
+

√
N2

nG × m
× [2 lnm − (ln (lnm)) + ln(4π) − 2α

2
√

2 lnm
]

(2)

This approximate formula will monotonically decrease as
the value of nG increases. As the result, when two distribution
keys are both feasible for the given query, a good strategy is to
pick the one which is more specific in the granularity hierarchy
and produces more regions with smaller sizes. As the number
of blocks increase, the variation among the workloads assigned
to different reducers decreases. Hence, the expected value of
the heaviest workload assigned to an individual reducer will
decrease as well. Using small regions also brings another
benefit in the evaluation: sorting the data records within each
block, which is required by the local algorithm, can be carried
out inside memory without extra I/O.

Based on the above analysis and Theorem 2, we can draw
the following conclusion: For non-overlapping distribution
cases, the optimal distribution key is the granularity of the
least common ancestor for the region sets of all components
in the composite subset measure query, if distribution blocks
are randomly assigned to the reducers and the data records are
uniformly distributed in cube space.

B. Overlapping Distribution Keys

Next, we consider overlapping distribution keys where one
attribute in the key is associated with a range annotation.
We first study the case when the basic granularity of the
distribution key is fixed and the value of the clustering factor
needs to be determined. The clustering factor indicates the
number of neighbor distribution blocks to be merged together.
Larger values for clustering factor will reduce the extra data
duplication among neighbor blocks. However, if the value of
clustering factor is too large, there are too few distribution
blocks. As a result, some reducers might be under-utilized,
which causes overall performance to deteriorate.

Suppose G is the granularity indicated by the distribution
key, d is the difference between the lower bound and the
upper bound of the range annotation. In order to guarantee the
feasibility of local evaluation, there should be at least d + 1
neighbor regions with granularity G in each distribution block.
Suppose the value of the clustering factor is cf . Then each
distribution block will contain d+cf regions and the number of
data records within each block follows the distribution Dd+cf

G .
The total number of distribution blocks is �(nG − d)/cf	,
which can be approximated by �nG/cf	, when the value of
nG is significantly larger than d. We use Xi to represent the
number of data records within block i and Bi to represent the
reducer which block i is assigned to.

If we assume that blocks are to be randomly assigned to
reducers, following the uniform distribution, and data records
are evenly distributed in cube space, Formula (3) is the
expected value of the size of the heaviest workload:

E(maxj=1...m(
∑

i=1...�nG/cf�
Xi × I(Bi = j))) (3)

where Xi = N(d + cf)/nG, i = 1, 2, . . . , �nG/cf	 and
P (Bi = v) = 1/m, for v = 1, . . . , m, i = 1, . . . , �nG/cf	.

Formula (4) gives the approximate value for the heaviest
workload assigned to a reducer. Compared with Formula (2),
this formula is obtained by replacing N with N(d+cf)/cf and
nG with nG/cf . The first replacement indicates that we need
to transfer more data due to the data replication caused by the
overlapping distribution and the second replacement indicates
that the number of blocks in the distribution is reduced. The
optimal value of cf can be found by forcing the derivative of
(4) to be zero, which results in a cubic equation. The optimal
value for cf is either the floor or the ceiling of the root value
of the resulting cubic equation. We omit a detailed evaluation
of cf due to lack of space.

N × (d + cf) × [(
1

m × cf
) +

√
1

nG × m × cf
×√

2 lnm − (ln (lnm)) + ln(4π) − 2α

2
√

2 lnm
] (4)

In the above discussions, we assume the region granularity
G is already identified. The optimal region granularity can
be found as follows: In Subsection III-B.2, we show that a
“minimal” overlapping distribution key can be generated from
the composite subset measure query with multiple alternative
range annotations. In order to find the distribution key with
single annotated attribute, the optimization algorithm will
try to keep one attribute annotated at a time and roll up
the domains of all the others into ALL. For each candidate
key, the clustering factor that minimizes Formula (4) will be
identified and the value of the expected workload computed.
The combination of distribution key and clustering factor that
minimizes the heaviest workload will be used in the execution
plan.

V. HANDLING DATA SKEW

The analyses for both non-overlapping and overlapping
distribution keys are based on the assumption of uniform
data distribution. When this assumption does not hold, we
might not be able to get the optimal parameter values. This
subsection presents run-time solutions to detect and handle
data skew.

The first problem is to detect the existence of data skew.
Notice that in the evaluation process, the mappers have to
acquire the raw data records. Once the data records are
acquired, we can first perform a simulated data dispatch. Each
mapper can sample some records for the data it acquires, and
compute the destination reducers. The workload assigned to
each reducer is then computed. After that, the mappers can
send the workload information to a single machine, which
combines all this information and estimates the final workload
for each reducer. If the workload of a reducer is significantly
higher than the other reducers, this indicates the presence of
data skew.

For queries without sibling conditions, the distribution key
is minimal. All the other possible feasible distribution keys
will use coarser granularities than the identified distribution

key. If the data distribution based on the minimal key is still
not good enough, it is unlikely that other distribution schemes
will perform better. In this case, data skew cannot be resolved
directly using region-based data distribution.

For queries that require overlapping distribution keys in
the evaluation process, the use of a larger clustering factor
makes the algorithm more sensitive to data skew. There are two
approaches to finding the appropriate value of the clustering
factor. The first is heuristical. We impose a lower limit on
the number of distribution blocks assigned to each reducer,
and avoid distribution schemes in which the estimated number
of distribution blocks assigned to each individual reducer is
smaller than a predetermined value X .

In the second solution, instead of using the “optimal”
distribution key found by the optimizer(Subsection IV-B),
we modify the logic of the optimizer to output a list of
candidate distribution keys. The candidate distribution keys
are diversified in the sense that they have different annotated
attributes or significantly different values of the clustering
factor. Simulation data dispatches are performed based on each
of the candidate keys, the key which results in lowest maximal
workload will be selected in the evaluation.

It is worth noticing that the goodness of the distribution
key is not bound with specific composite queries since it only
affects how the raw data are distributed. As long as the value
distribution of original data set does not change, a distribution
key, which was previously identified as a good one, will still
be good candidate, as long as it is feasible for the given
query. That means we can store the good distribution keys
used before, check whether it is feasible for a given query.
and reuse the key in the evaluation of the current query.

VI. EVALUATION RESULT

Our experiments utilize a cluster of 100 machines, running
open-source Map/Reduce implementation called Hadoop [8].
Each machine is equipped with a 2GHz Intel Xeon CPU, 4GB
memory and two hard disks with 7200rpm speed and 200GB
capacity. Up to two map or reduce tasks can be assigned
to a given machine. The amount of memory available to an
individual task is 800MB. The system maintains three replicas
of each file, for fault tolerance.

It should be pointed out that although the algorithm is
implemented and evaluated on the Hadoop platform, it can
also be implemented on other parallel OLAP systems. Due
to the simple evaluation logic, we expect to see similar
performance, with the main difference coming from different
implementations of sorting and data transferral.

We use synthetic data sets that conform to the following
schema: There are four integer attributes drawn from [0, 255 ·
(44 − 1)] with domain hierarchy with four levels, and two
temporal attributes. The domain hierarchy for each of the
temporal attributes is: second, minute, hour and day. The
domain of each temporal attribute spans a twenty-day period.

Two types of data distributions are used: uniform distribu-
tion and skewed distribution with temporal attributes. For the

skewed case, the values of the temporal attributes are picked
from the first five days of the twenty-day range.

Six queries are used in the evaluation, labeled Q1-Q6. Q1
includes three independent measures defined over different
region sets with fine granularities. Q2 includes two measures
where the measures for parent regions are generated from
those of the children regions. Q3 includes five measures; the
measures for parent region sets are the aggregations of two
different measures, both of which are computed by aggregating
measures of their children region set. Q4 includes a measure
which is computed by combining the measure for the same
region and children regions. Q5 utilizes the sibling relations
in the query. The composite measure for each hour is the
summary for the measures of the previous hours. Q6 contains
the mixture of all four relations with a sliding time window
aggregation as the top measure of the query.

Figure 4(a) shows the query response time for date sets
with different sizes. Each execution uses 50 mappers and 50
reducers. For all the queries, we observe that the execution
time increases close to linearly with respect to the size of the
input dataset. The evaluation of Q6 is consistently slower than
other queries. It is due to the reason that there is a sibling
relationship with range in Q6. We have to use overlapping
distribution key which increase the data to be processed. The
sorting within each distribution block is also comparatively
slower because of the large block size.

Figure 4 (b) shows the average data processing rate (data
set size divided by the response time) when we use the dataset
with one billion records and linearly increase the number of
mappers and reducers. The performance curve for Q1 and
Q2 indicates that the system performance increases linearly
as more machines are added. The performance for Q3–5 is
similar to those for Q1–2 and is not shown in the figure. The
curve for Q6 is not as good as the other two queries, this is
because Q6 contains a large siding window with very coarse
granularity and results in smaller clustering factor and more
data overlapping among blocks.

Figure 4 (c) shows the execution time as we vary the value
of the clustering factor. The naive scheme that performs no
clustering (clustering factor = 1) is about twice as slow as
the optimal scheme (clustering factor = 10). However, an
excessively large clustering factor (e.g. clustering factor = 25)
also performs poorly, because the opportunity for parallelism is
reduced. Hence it is crucial to choose an appropriate clustering
factor. In the figure, we overlay our analytical prediction from
Section IV-B. Note the close similarity between the actual
performance curve and the predicted one. Hence, our model
can be used to predict a good clustering factor. As the figure
shows, the optimal value for the clustering factor is 10.

Figure 4 (d) shows the breakdown of the cost for the
different parts of the evaluation. Map-Only represent the case
when we only fetch data via the mappers. MR represents
the case when the data are sent to reducers and sorted by
the mapping key. Sort represents the case when the data are
sorted within each group and Sort+Eval represents the case
when the sorted data are scanned and result generated. The

0

1000

2000

3000

4000

0 500 1000 1500 2000
Data Size (million)

Q1
Q2
Q3
Q4
Q5
Q6

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

0

0.1

0.2

0.3

10 20 30 40 50
#Reducers

Q1
Q2
Q6

P
ro

ce
ss

in
g

R
at

e
(M

illi
on

 re
co

rd
s/

se
c)

0

400

800

1200

1600

2000

0 10 20 30

Clustering Factor

0

0.04

0.08

0.12

Experimental Result

Model Prediction

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
d) P

redicted Tim
e (relative)

(a) System Scaleup (b) System Speedup (c) Impact of Clustering Factor

0

200

400

600

800

1000

Map-Only MR Sort Sort+Eval

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
d)

0

500

1000

1500

2000

2500

3000

DS0 DS1 DS2

Early Aggregation

No Early Aggregation
E

xe
cu

tio
n

Ti
m

e
(s

ec
on

d)

0

500

1000

1500

2000

2500

No-Skew Skew

Normal

2Blocks

4Blocks

Sampling

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
d)

(d) Evaluation Cost Breakdown (e) Effect of Early Aggregation (f) Handling Data Skew
Fig. 4. Experiment Results

cost of the first case is very low, which shows the feasibility
of our run-time solution to handle data skew. There is a
significant gap between the second case and the third case,
such cost is associated with the data sorting within each
group. As discussed in Section III-D, this cost can in principle
be eliminated if the evaluation framework supports features
to combine the distribution key and the key for the local
algorithm together. Finally, the difference between the last two
cases is very small, which implies the low overhead for scan
evaluation.

To illustrate the effectiveness of doing early aggregation in
the mapper, we measure the performance of three composite
subset measure queries, labeled DS0-DS2. Each query consists
of a basic measure and several composite measures. We
constructed the queries such that they differ in the granularity
of grouping. Query DS0 uses a very coarse granularity of
grouping, whereas DS2 uses a fine granularity. DS1 uses an
intermediate granularity.

Figure 4 (e) shows the performance comparison with early
aggregation with data sets containing two billion records.
The performance impact of early aggregation depends on the
granularity of the basic measure. When the basic measure
is defined on a very coarse level (DS0), there is significant
size reduction, and early aggregation is clearly advantageous.
The advantage decreases when the basic measure is defined
at a finer granularity, as in DS1. For the last case (DS2),
the performance of the algorithm with early aggregation is
actually worse than without early aggregation. In this case,
the overhead of performing early aggregation (which requires

a sort or hash on the mappers) outweighs the benefit.
Figure 4 (f) shows results for handling data skew. We use

a data set with one billion records. The “With-Skew” data set
follows a skewed distribution over the temporal attribute and
the “No-Skew” data set follows the uniform data distribution.
Normal is the evaluation plan generated by the unmodified
optimizer. The performance of this plan is compared against
those of plans which enforce minimal number of estimated
distribution blocks for each reducers (2Blocks and 4Blocks),
as well as plans performing run-time data sampling and simu-
lation dispatching (Sampling). By imposing the lower bound,
the optimizer might be able to find a better plan when data
distribution is skewed. However, it can also be too conservative
and pick plans with too much data overlap (4Blocks). In this
case, the performance will be inferior when there is no data
skew. On the other hand, the sampling approach is capable of
finding the optimal evaluation plan with or without skew. The
cost of the sampling is about 100 seconds for each data set,
and is acceptable when compared to the overall evaluation
cost and the performance boost achieved by using the data
redistribution parameter.

VII. RELATED WORK

Most of the prior work either dealt with localized evaluation
of correlated aggregation or parallel evaluation of uncorrelated
aggregations.

[1] presented general strategies to compute multiple
GroupBy aggregations. It showed that multiple aggregates can
benefit from the same sorting order for the input dataset. The

solution did not cover correlated aggregates with complex
match conditions. [5] provided an optimization framework to
evaluate GroupBy queries with different attribute sets. The
solution only considers simple containment relations (chil-
dren/parent) among group set attributes.

[3] proposed a groupwise evaluation strategy that can iden-
tify the subquery from a SQL query which can be evaluated
by partitioning the data based on grouping attribute. The
groupwise strategy only supported equi-join and thus required
the partition to be non-overlapping. Our algorithm is able to
recognize the more complicated scenarios with sliding window
conditions, by using overlapping data distribution.

[11] proposed adaptive algorithms that switch between
aggregation algorithms based on the grouping selectivity. One
of the algorithm, Repartition, is similar to the one proposed in
this paper, where data records in the same region are mapped
to the same machine; however, they do not provide details
about how the partition scheme is identified.

[2] discussed a system that evaluates aggregation queries
in a distributed data warehouse. Data reduction is performed
locally and aggregated results are sent to the centralized
coordinator. Such strategy is applied to the scenario when the
communication cost is high. We are dealing with a different
application, where relocating the raw data can be done with
a reasonable cost. By redistributing the data, we can evaluate
very complicated correlated aggregations.

VIII. CONCLUSIONS

The following contributions have been made in this paper:
1. We identified a general strategy to evaluate correlated

aggregation queries in parallel by redistributing data
into blocks and computing results per-block. Overlapping
redistribution scheme is supported in order to handle
queries that contain sliding window component.

2. We implemented the algorithm using the MapReduce
framework, which runs over clusters with hundreds of
machines.

3. We developed an analytical model to measure the
impact of key parameters over the query response time.
Techniques were identified to find the optimal values for
these parameters. The evaluation results clearly demon-
strate the efficiency of our approach for evaluating queries
with high parallelism.

REFERENCES

[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ra-
makrishnan, and S. Sarawagi. On the computation of multidimensional
aggregates. VLDB’96 , pages 506–521. 1996.

[2] M. O. Akinde, M. H. Böhlen, T. Johnson, L. V. S. Lakshmanan,
and D. Srivastava. Efficient olap query processing in distributed data
warehouses. Information System, 28(1-2):111–135, 2003.

[3] D. Chatziantoniou and K. Ross. Partitioned optimization of complex
queries. Information System, 32(2):248-282, 2007.

[4] L. Chen, R. Ramakrishnan, P. Barford, B.-C. Chen, and V. Yegneswaran.
Composite subset measures. In VLDB’ 06, pages 403–414. VLDB
Endowment, 2006.

[5] Z. Chen and V. Narasayya. Efficient computation of multiple group by
queries. In SIGMOD’ 05, pages 263–274. ACM Press, 2005.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI’ 04, pages 137–150, 2004.

[7] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and sub-
total. ICDE’ 96, pages 152–159., 1996.

[8] Hadoop project. http://lucene.apache.org/hadoop/. 2007.
[9] D. B. Owen and G. P. Steck. Moments of order statistics from the equicor-

related multivariate normal distribution. The Annals of Mathematical
Statistics, 1962.

[10] M. Petzold. A note on the first moment of extreme order statistics from
the normal distribution http://www.handels.gu.se/epc/archive/00001190/,
2000.

[11] A. Shatdal and J. F. Naughton. Adaptive parallel aggregation algorithms.
In SIGMOD ’95, pages 104–114, New York, NY, USA, 1995. ACM Press.

APPENDIX: PROOF OF THEOREM 2

Proof: For a basic measure, the region granularity
associated with the measure represents a feasible distribution
key, because the measure is computed by aggregating records
within the region for given granularity.

When a value of a measure depends on multiple source
measures, the coverage set of the original measure region is
the union of those for the source measure regions. Without
the sibling condition, the smallest region which contains all
the coverage sets is the one with the least common ancestors
granularity for both the original region set and the source
region sets.

Finally, we have multiple component measures m1, m2, ...,
mn and the feasible partition keys for individual component is
k1, k2, ... kn. As the Theorem 2 shows, the common ancestor
of all the distribution keys is a feasible distribution key for
every measure, and hence is the feasible distribution key for
the entire aggregation workflow.

Suppose there exists another distribution key X which is not
a generalization of the least common ancestor X0, there must
exists an attribute a which is defined on more general domain
in X0 than in X . Since X0 is the least common ancestor, there
exists a measure component m′ such that the domain of a for
the feasible distribution key of a is defined in the domain as
specified in X0. So X is not a feasible distribution key for m′.
So such X does not exists and X0 is the “minimal” distribution
key.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

