
Nova: Continuous Pig/Hadoop Workflows

Christopher Olston
Yahoo! Research, Sunnyvale, CA 94089, USA olston@yahoo-inc.com

Greg Chiou, Laukik Chitnis, Francis Liu, Yiping Han, Mattias Larsson,
Andreas Neumann, Vellanki B. N. Rao, Vijayanand Sankarasubramanian,

Siddharth Seth, Chao Tian, Topher ZiCornell
Yahoo! Nova Development Team, Sunnyvale, CA 94089, USA

{gic, laukik, fcliu, yhan, mlarsson, anew, balav,
vsankar, sseth, tianchao, topher}@yahoo-inc.com

Xiaodan Wang
∗

Johns Hopkins University, Baltimore, MD 21218, USA xwang@cs.jhu.edu

ABSTRACT
This paper describes a workflow manager developed and
deployed at Yahoo called Nova, which pushes continually-
arriving data through graphs of Pig programs executing on
Hadoop clusters. (Pig is a structured dataflow language and
runtime for the Hadoop map-reduce system.)

Nova is like data stream managers in its support for
stateful incremental processing, but unlike them in that it
deals with data in large batches using disk-based processing.
Batched incremental processing is a good fit for a large frac-
tion of Yahoo’s data processing use-cases, which deal with
continually-arriving data and benefit from incremental algo-
rithms, but do not require ultra-low-latency processing.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Internet companies such as Yahoo, as well as many other

kinds of organizations, continuously process large incoming
data feeds to derive value from them. Examples at Yahoo
include:

• Ingesting and analyzing user behavior logs (e.g. clicks,
searches), to refine matching and ranking algorithms for
search, content and advertising. Many steps are involved,
including session inference, named entity recognition, and
topic classification.

∗Work done during a summer internship at Yahoo!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

• Building and updating a search index from a stream of
crawled web pages. Some of the numerous steps are de-
duplication, link analysis for spam and quality classifica-
tion, joining with click-based popularity measurements,
and document inversion.

• Processing semi-structured data feeds, e.g. news and
(micro-)blogs. Steps include de-duplication, geographic
location resolution, and named entity recognition.

Processing along these lines is increasingly carried out on
a new generation of flexible and scalable data management
platforms, such as Pig/Hadoop [1, 4]. Hadoop is a scalable,
fault-tolerant system for running individual map-reduce [10]
processing operations over unstructured data files. Pig adds
higher-level, structured abstractions for data and processing.
In Pig, a language called Pig Latin [21] is used to describe
arbitrary acyclic data flow graphs comprised of two kinds of
operations: (1) built-in relational-algebra-style operations
(e.g. filter, join); and (2) custom user-defined operations
(e.g. extract web page hyperlinks, compute quantiles of a
set of numbers).

Despite the success of Pig/Hadoop, it is becoming appar-
ent that a new, higher, layer is needed: a workflow man-
ager that deals with a graph of interconnected Pig Latin
programs, with data passed among them in a continuous
fashion. Given that Pig itself deals with graphs of inter-
connected data processing steps, it is natural to ask why
one would layer another graph abstraction on top of Pig.
It turns out that this two-layer programming model enables
key scheduling and data handling capabilities:

• Continuous processing. The outer workflow manager
layer can simulate temporally-evolving data on top of the
inner Pig/Hadoop layer, which merely deals with trans-
forming static input data into static output data. In the
simple case, input data is replaced in a wholesale fashion,
and processing is restarted from scratch. In advanced
cases, workflow components are structured as incremen-
tal view-maintenance algorithms [14], with the workflow
manager keeping track of “delta” data sets along various
input, intermediate and output points, routing them to
the workflow components in the right order and in ap-

propriate batches, and folding them into base data sets
as needed.

• Independent scheduling. Different portions of a work-
flow may be scheduled at different times/rates. For ex-
ample, global link analysis algorithms may only be run
occasionally due to their costly nature and consumers’
tolerance for staleness. On the other hand, the pathway
that ingests new news articles, tags them with (some-
what stale) link analysis scores, and folds them into an
index for serving, needs to operate (almost) continuously.

Other important capabilities that are a good fit for the
workflow layer include:

• Cross-module optimization. An overarching work-
flow manager can identify and exploit certain optimiza-
tion opportunities. For example, given two workflow
components that consume a common input and wind up
being scheduled around the same time, it can be bene-
ficial to merge them dynamically to amortize the data
reading cost. Other, more aggressive multi-query opti-
mization [26] strategies can be employed, as well as au-
tomatic pipelining: connecting the output of one module
directly to the input of a subsequent module (subject to
scheduling and fault-tolerance considerations), to avoid
the overhead of materializing the intermediate result in
the file system1.

• Manageability features. It can help human operators
manage the workflow programming, execution and de-
bugging lifecycle by keeping track of versions of workflow
components [11], capturing data provenance and making
it easily queriable [8], and emitting notifications of key
events such as a workflow component finishing or failing.

We have built a system at Yahoo called Nova that provides
these features, and is used in production. For practical rea-
sons, Nova was designed as a layer on top of an unmodified
Pig/Hadoop software stack. We believe Nova is a good de-
sign given this constraint. It is likely that, given the ability
to modify the underlying Pig/Hadoop systems, one would
find more efficient designs, e.g. more efficient ways to man-
age state for continuous processing [17].

1.1 Related Work
Data processing workflows have been studied extensively

in the scientific workflow literature [18], including a recent
project that integrates Hadoop with a scientific workflow
manager [27]. In the Internet data processing space, moti-
vated by some of the points listed above, several Hadoop-
based workflow managers are starting to emerge (e.g. Cas-
cading [22] and Oozie [3]). What sets Nova apart is its sup-
port for stateful continuous processing of evolving data sets.
To avoid replicating basic workflow capabilities, Nova is lay-
ered on top of Oozie, which handles dependency-aware batch
execution of sets of workflow elements, automatic retry and
failure management, and many other core features.

Non-workflow-based approaches to continuous processing
in a map-reduce-like environment include [15, 17, 25]. Map-
reduce-style systems cannot achieve the ultra-low latencies
required in some contexts; data stream management sys-
tems [12] are a better fit there. The recent MapReduce

1A less invasive alternative is to lower the level of redun-
dancy for intermediate files.

Online system [9] is an attempt to unify the stream and
map-reduce paradigms.

Google’s Percolator [24] performs transactional updates to
BigTable [7] data sets, and uses triggers to cascade updates
in a manner similar to a workflow. Like data stream sys-
tems, Percolator targets applications that require updates
to be applied with very low latency, and so Percolator ap-
plies updates in an eager fashion (although under the covers,
BigTable worker nodes buffer recent updates in memory).
Nova, on the other hand, opts to accumulate many updates
and apply them in a lazy, batched (and non-transactional)
fashion with the aim of optimizing throughput at the ex-
pense of latency. Also, Nova sits on top of Pig and hence
re-uses the Pig Latin data processing abstraction.

1.2 Outline
The remainder of this paper is structured as follows. We

begin by describing Nova’s abstract workflow model in Sec-
tion 2, and then tie the model to Pig/Hadoop in Section 3.
The architecture of the Nova workflow manager is described
in Section 4. Some performance measurements are reported
in Section 5. There are many avenues for future work, and
we list some of them at the end of the paper in Section 6.

2. ABSTRACT WORKFLOW MODEL
A workflow is a directed graph with two kinds of vertices:

tasks and channels. Tasks are processing steps. Channels
are data containers. Edges connect tasks to channels and
channels to tasks; no edge can go from a task to a task or
from a channel to a channel.

Figure 1 shows an example workflow, with tasks depicted
as rectangles and channels depicted as cylinders. This work-
flow identifies unique news articles in an incoming RSS feed.
The “template detection” task looks at all articles from the
same web site and identifies common template patterns,
which are to be factored out of the de-duplication process
(i.e. two news articles are considered duplicates if they have
different template content but the same “main content”).
“Template tagging” tags the portion of each article that is
thought to be a template, according to the site templates
output by “template detection.” “Shingling” applies a hash
digest technique used extensively for de-duplication in the
web domain, called shingling [6], to the non-template con-
tent of each article. Finally, the “de-duping” task compares
each incoming article’s shingle hash against the hashes that
have been seen previously; if the article’s hash is new the
article is sent to the output (and the hash is stored in the
“shingle hashes seen”channel for future reference); otherwise
the article is discarded.

The behavior of each task, in terms of how new input
data is folded into the computation, is dictated by the edge
annotations (all, new, B and ∆), which are called con-
sumption and production modes. Informally speaking, all
reads a complete snapshot of the data from a given input
channel; new only reads data that is new since the last in-
vocation; B emits a new, full snapshot to a given output
channel; and ∆ emits new data that augments any exist-
ing data. The workflow in Figure 1 illustrates four common
patterns of processing:

• Non-incremental (e.g. template detection). Process
input data from scratch every time.

Figure 1: Example workflow.

• Stateless incremental (e.g. shingling). Process just
the new input data; each data item is handled indepen-
dently, without reference to any state.

• Stateless incremental with lookup table (e.g. tem-
plate tagging). Process just the new input data indepen-
dently of prior input data items; a side “lookup table”
may be referenced.

• Stateful incremental (e.g. de-duping). Process just
the new input data, but maintain and reference some
state about prior data seen on that input.

Sections 2.1 and 2.2 are dedicated to explaining the data
model and task consumption/production modes in detail.
The rest of Section 2 discusses task scheduling policies, and
some important space and time optimizations.

2.1 Data and Update Model
A channel’s data is divided into blocks, each of which con-

tains a set of data records or record transformations that
have been generated by a single task invocation. Blocks
may vary in size from kilobytes to terabytes. For the pur-
pose of workflow management, a block is an atomic unit of
data. Blocks also constitute atomic units of processing: a
task invocation consumes zero or more input blocks and pro-
cesses them in their entirety; partial processing of blocks is
not permitted.

Data blocks are immutable, and so as channels accumulate
data blocks their space footprint can grow without bound.

This situation is addressed by special compaction and garbage
collection operations, described in Section 2.4.

There are two types of blocks: base blocks and delta blocks
(bases and deltas, for short). A base block contains a com-
plete snapshot of data on a channel as of some point in time.
Base blocks are assigned increasing sequence numbers, and
are denoted B1, B2, . . . , Bn. Every channel is seeded with
an initial, empty base block B0.

Delta blocks are used in conjunction with incremental pro-
cessing. A delta block contains instructions for transforming
a base block into a new base block, e.g. by adding, up-
dating or deleting records or columns. A delta block that
transforms base Bi into base Bj (where i < j) is denoted
∆i→j .

The process of applying a delta block to a base block,
to form a new base block, is called merging, written
M(Bi,∆i→j) = Bj . The reverse transformation, whereby
two base blocks are compared to create a delta block that
transforms one to the other, is called diffing: D(Bi, Bj) =
∆i→j . Lastly, a chain function C(·) is used to combine mul-
tiple delta blocks: C(∆i→j ,∆j→k) = ∆i→k. A common
pattern is for merging and chaining to be used together, to
combine a base block with a sequence of delta blocks, as in
M(Bi, C(∆i→j , C(∆j→k,
∆k→l))) = Bl.

Each channel has associated merge, chain and diff func-
tions. These functions may vary from channel to channel,
depending on the type of data and data updates each chan-
nel supports. A common and simple situation is for a chan-
nel to support only appending of records, in which case the
merge and chain functions are both bag union (typically
achieved via simple file concatenation) and the diff func-
tion is bag difference. (Our example workflow in Figure 1
requires only append-based channels.) However Nova sup-
ports general merge, chain and diff functions, as long as they
adhere to some basic rules: The chain function is required
to be associative, merge and diff must be inverses, and the
following relationship must hold between merge and chain:
M(M(Bi,∆i→j),∆j→k)) = M(Bi, C(∆i→j ,∆j→k)) = Bk.

Aside from append-only data, perhaps the most common
scenario is the upsert model, which leverages the presence
of a primary key attribute to encode updates and inserts in
a uniform way. With upserts, delta blocks are comprised
of records to be inserted, with each one displacing any pre-
existing record with the same key. Upserts are convenient
in many situations, e.g. a crawler might emit upserts con-
sisting of (url, content) pairs, which eliminates the need for
the crawler to remember whether a particular URL is being
visited for the first time or revisited, because in the latter
case the new content snapshot automatically supersedes the
old one in the output channel. The upsert merge and chain
functions perform co-group [21] on the key attribute, and
retain only the most recent record with a given key. The
diff function performs a set difference.

2.2 Task/Data Interface
A task must declare, for each incoming edge from a data

channel, its consumption mode: one of all or new2. Con-

2To support incremental join algorithms, Nova also offers a
special old mode, which can only be used in conjunction
with a new-mode connection to the same input channel.
old yields a complete snapshot as of the point reached by
the new-mode connection in the previous invocation.

sumption mode all denotes that each time the task is exe-
cuted, it is fed a complete snapshot of the data residing on
the input channel in the form of a base block. If the channel
contains a base block followed by one or more deltas, the
latest base snapshot is created automatically on the fly via
application of the merge and chain functions. This process
is transparent to the task. In our example workflow in Fig-
ure 1, whenever the “template detection” task is invoked the
system merges all accumulated deltas from the RSS feed to
form a single, latest, base block to feed into template detec-
tion.

Consumption mode new denotes that each task execution
is to be fed just new data that has not been seen in prior
invocations, in the form of a delta block ∆i→j , where i is the
highest sequence number read in the most recent successful
execution and j is the highest sequence number available on
the channel. If it does not exist explicitly, the block ∆i→j

can be created on the fly using the diff or chain function, as
needed. For each task input that uses consumption mode
new, Nova maintains an input position cursor, in the form
of the highest read sequence number. (To handle cases in
which i = j, Nova keeps a special zero-byte file to feed to
tasks as an empty delta block.3) In our example workflow
(Figure 1), if “shingling” is invoked less often than “template
tagging,” then multiple template tagging output delta blocks
will be chained into a single delta block to feed into shingling.

Tasks must also declare a production mode for each outgo-
ing edge to a channel—either B or ∆—to indicate the type
of block the task emits to that channel. In our example, each
invocation of “template detection” emits a new base block
that replaces any prior data in the “news site templates”
channel. In contrast, each invocation of “de-duping” merely
emits a delta block that augments prior data in the “unique
articles” output channel.

2.3 Workflow Programming and Scheduling
Workflows are programmed bottom-up, starting with indi-

vidual task definitions, and then composing them into work-
flow fragments called workflowettes. Workflowettes are ab-
stract processing components that are not attached to spe-
cific named data channels—instead they have ports to which
input and output channels may be connected. Channels
are defined via a separate registration process from work-
flowettes. Once workflowettes and channels have been reg-
istered, a third process, called binding, attaches channels to
the input and output ports of a workflowette, resulting in a
bound workflowette.

The last step is for the user to communicate scheduling re-
quirements, by associating one or more triggers with a bound
workflowette. There are three basic types of triggers:

• Data-based triggers. Execute whenever new data ar-
rives on a particular channel (typically a channel bound
to one of the workflowette’s input ports).

• Time-based triggers. Execute periodically, every t
time units.

• Cascade triggers. Execute whenever the execution of
another bound workflowette reaches a certain status (e.g.
launched, completed successfully, failed).

3It is not always valid to cancel execution of a task when
there is no new data on one of its inputs, e.g. consider a
task that performs set difference.

Once triggered, execution of a bound workflowette is atomic,
i.e. any results of executions that fail mid-way are erased
and never become visible to users or other workflowettes.

Our example news de-duplication workflow (Figure 1)
might be implemented as two bound workflowettes: (1)
template detection; (2) template tagging, shingling and de-
duping. A weekly time-based trigger might suffice for re-
freshing the site templates (first workflowette), whereas the
tagging-shingling-de-duping pipeline (second workflowette)
would likely use data-based triggers so that new news arti-
cle batches are processed quickly.

Nova also permits compound triggers, which combine two
or more triggers of the above types. A compound trigger
fires once all of its constituent triggers have fired. And of
course, a user can always manually request to execute a
particular bound workflowette.

Notice that the notion of a “full workflow” is not explicitly
captured here. In Nova, a workflow is a behavior produced
by a collection of bound workflowettes that exchange data
via shared channels and coordinate their execution via data-
based or cascading triggers.

2.4 Data Compaction and Garbage Collection
Nova performs an important data representation opti-

mization called compaction, which memoizes the result of
a merge (and chain) operation. For example, if a channel
has blocks B0,∆0→1,∆1→2,∆2→3, the compaction opera-
tion computes and adds B3 to the channel.

Another operation, garbage collection, removes unneeded
blocks. In our example, after compaction is used to add
B3 to the channel, the old blocks B0,∆0→1,∆1→2, and
∆2→3 may become eligible for garbage collection. Of course,
garbage collection is constrained by the cursors of tasks that
consume from the channel in new mode (see Section 2.2).
For example if a consumer has a cursor at sequence number
2 then only B0,∆0→1, and ∆1→2 can be garbage-collected;
∆2→3 must be retained until the cursor advances. Nova also
supports provenance querying (not discussed in this paper),
which places additional constraints on garbage collection.

Compaction, coupled with garbage collection, has two po-
tential benefits: (1) if delta blocks contain updates and/or
deletions, then the compacted data may take up less space
than the non-compacted representation; (2) all-mode con-
sumers do not have to merge (as many) delta blocks on the
fly. In the current Nova implementation, compaction and
garbage collection are triggered manually. We are working
on automated techniques to determine the best time to per-
form these operations, in view of optimizing certain space
and/or time costs.

3. TYING THE MODEL TO PIG/HADOOP
As mentioned earlier, Nova implements the data and com-

putation model described in Section 2 on top of Pig/Hadoop.
The content of each data block resides in an HDFS4 file (or

perhaps a directory of “part” files, which is the unit of data
output by a Hadoop map-reduce job). Nova maintains the
mapping from data blocks to HDFS files/directories in its
metadata (see Section 4). HDFS file names are hidden from
users, and Nova generates unique file names by incrementing
a global counter, e.g. /nova/block_0, /nova/block_1, etc.
The notion of a channel exists solely in Nova’s metadata.

4HDFS is the Hadoop filesystem.

Each task in a workflowette is specified by a Pig Latin
program with open parameters for its input and output data
sets, denoted by strings beginning with $. For example, the
Pig Latin code for the “template tagging” task in our news
de-duplciation workflow (Figure 1) might look like this:

register news_processing_udfs.jar;

articles = $RAW_ARTICLES;

templates = $TEMPLATES;

joined = join articles by site, templates by site;

tagged = foreach joined generate TagTemplates(*);

store tagged into $TAGGED_ARTICLES;

where TagTemplates() is a user-defined function whose code
resides in the JAR file imported in the first line.

Each time Nova invokes a task it binds to the task in-
put and output parameters dynamically-constructed Pig
Latin expressions. In our example, suppose the latest base
block for “news site templates” is stored in HDFS loca-
tion /nova/block_25, and there are two delta blocks in
the append-based “news articles” channel that have not yet
been sent through the template tagging task, stored at
/nova/block_31 and /nova/block_32. If execution of the
tagging task is triggered, its parameters will be bound as
follows:
$RAW_ARTICLES = union (load ‘/nova/block_31’),

(load ‘/nova/block_32’);
$TEMPLATES = load ‘/nova/block_25’;
$TAGGED_ARTICLES = ‘/nova/block_33’,

where /nova/block_33 is a placeholder for the output block
that the task execution will produce.

As we saw in the above example, for append-based chan-
nels Nova implements delta block chaining via Pig Latin’s
union operator. In general, Nova supplies a set of templates
for specifying each channel’s merge, chain and diff functions.
Currently Nova supports two templates for merge and chain
functions: (1) union all n input blocks; (2) cogroup the n
input blocks by a given key attribute k, and then apply a
given user-defined function f that performs a per-key merge
operation (k and f are parameters to the template). For up-
serts, k is the channel’s primary key attribute and f chooses
the record residing in the right-most non-empty bag from
among the n bags created by cogroup. The diff templates
for append and upsert follow a similar pattern.

As mentioned in Section 1.1, Nova relies on a system called
Oozie [3] to execute DAGs of Pig Latin scripts, including
some important details such as sandboxing the Pig client
code, automatically re-trying failed scripts, and capturing
and reporting status and error messages. Nova executes a
bound workflowette by first associating Pig Latin expres-
sions with each input and output parameter of each of the
workflowette’s tasks (as described above), and then send-
ing the resulting DAG of parameter-free Pig Latin scripts to
Oozie for execution and monitoring. Oozie reports the final
status (success or error) back to Nova. If the bound work-
flowette execution results in an error, Nova erases any output
blocks generated during its execution, to achieve atomicity.

3.1 File Formats and Schemas
An important detail we have glossed over is how file for-

mats and schemas are handled. Pig does not have a system

catalog, and it expects5 file formats and schemas to be spec-
ified in load statements, either via an explicit in-line schema
description or via a special “load function” that reads some
catalog or self-describing data file and passes the schema in-
formation to Pig. Zebra [5] is a self-describing format that
comes with such a Pig load function.

Nova supports both manual and Zebra-based file for-
mat and schema specification. In the manual case, the
user must annotate each task’s output parameter (e.g.
$TAGGED_ARTICLES) with a file format and schema. Nova
keeps track of each block’s file format and schema in its
metadata, and passes this information to downstream Pig
tasks in the generated load expressions.

In principle, this mechanism facilitates schema (and file
format) evolution, whereby a new version of a task can emit
a different schema than an old version, resulting in blocks
with different schemas on the same output channel. A down-
stream task would be fed the correct schema for each block.
Nova also allows the merge, chain and diff functions to be
specified at a per-block granularity (versus per-channel), so
that task upgrades have the opportunity to adjust these
functions to accommodate the new schema and handle the
boundary case of comparing blocks with different schemas.

Unfortunately, Nova does not currently have support for
automatically synchronizing task upgrades. For example,
suppose task X is upgraded so that new output blocks con-
tain an extra column, and we wish to upgrade a downstream
task Y so that it handles the new column. Currently there is
no automated way to ensure that the switch to the new ver-
sion of Y occurs when the first new X output block reaches
Y. Instead, at present users must synchronize the upgrades
of X and Y using an onerous manual process that disrupts
task scheduling, e.g. (1) de-register all triggers for X and Y;
(2) manually trigger Y to clear out any old blocks between
X and Y; (3) upgrade X and Y; (4) re-register the X and Y
triggers.

4. WORKFLOW MANAGER
ARCHITECTURE

Figure 2 shows the basic architecture of the Nova work-
flow manager, which is divided into several modules. For
the most part, these modules represent software layers, not
independent threads. (The trigger manager module does,
however, run in a separate thread so that it can support
time-based events.)

Most of Nova’s modules are part of a Nova server instance
process. The modules in a server instance are stateless;
they keep their state externally, in a metadata database (cur-
rently, MySQL Cluster [23]). The metadata database can be
shared among multiple Nova server instances, which run con-
currently with no explicit synchronization (the state in the
metadata database effectively synchronizes them). Client
requests are load-balanced among the server instances; any
load-balancing policy can be used—currently we use a sim-
ple round-robin policy. A special watchdog module, man-
aged via ZooKeeper [16] leader election, detects unrespon-
sive server instances, kills them, starts fresh replacements,
and reconfigures the load balancer’s routing table as needed.

Nova supports two types of clients. Human clients have
access to a command-line interface and a web interface.

5Pig can also be used without schemas, using positional no-
tation to refer to fields.

Figure 2: Nova system architecture.

Web-service clients interact with Nova via a SOAP web-
services API. At Yahoo, Nova is deployed as part of a larger
software environment that includes systems for data on-
boarding, data storage and processing (Nova), and data serv-
ing. The onboarding and serving systems interact with Nova
using web services.

The core Nova server modules are:

• User interface: This module provides API methods
for registering (and deregistering) channels and work-
flowettes,6 and for binding workflowettes to channels to
produce bound workflowettes. Other key methods sup-
port registration/deregistration of triggers, insertion of
new blocks into a channel (e.g. from the data onboarding
system), monitoring workflowette execution status, and
of course viewing the registered channels, workflowettes,
bound workflowettes and triggers.

• Process manager: This module keeps track of registered
workflowettes and bound workflowettes. It also responds
to trigger firing events by creating an executable instance
of the bound workflowette that was triggered (with the
help of the data manager), and handing it off to the
process executor to be run and have its execution status
tracked.

• Data manager: The data manager maintains a list of
blocks associated with each channel, as well as the map-
ping from blocks to underlying HDFS files/directories.
It also maintains the task input cursors. When the pro-
cess manager is preparing to execute a workflowette, it
asks the data manager to (1) create Pig Latin expres-
sions for loading the appropriate data from each input
channel, given the current task cursors (as described
in Section 3), and (2) reserve output block positions.7

6Workflowettes are written in a variant of XPDL [28], which
uses XML to describe a directed graph of processing steps.

When the workflowette execution finishes, the process
manager fills in or cancels the reserved output blocks
(depending on whether the execution succeeded).

• Process optimizer: This is a placeholder for various per-
formance optimizations on workflowette execution. One
type of optimization has been implemented so far: merg-
ing pairs of workflowette executions that read the same
input data and run around the same time, to amortize
the data reading cost (see Section 4.2). Other types
of optimizations we may consider in the future include:
pipelining workflowettes that form a “chain,” and adjust-
ing the degree of parallelism to trade resource consump-
tion against execution time.

• Process executor: This module forwards workflowette ex-
ecution requests to Oozie (which in turn runs the con-
stituent Pig jobs, which in turn spawns Hadoop map-
reduce jobs), tracks their status, and reports the status
back to the Nova process manager.

• Trigger manager: This module runs in its own thread,
and fires triggers. As with all Nova modules, it uses
the metadata database to avoid conflicts with other con-
current Nova server instances (so, e.g., if a time-based
trigger fires only one instance will handle it, and oth-
ers will see its status as “being handled”). Most triggers
cause a workflowette to be run, via requests to the pro-
cess manager. Compaction (Section 2.4) is handled by a
special trigger that causes a no-op self-loop workflowette
to run with consumption mode all and production mode
B. The trigger manager also triggers garbage collection
events, which are performed by the data manager.

4.1 Cross-cluster Replication
Nova includes a module, called data & metadata replica-

tor in Figure 2, used to replicate Nova data and state onto
other clusters, generally running in other data centers. This
cross-data-center replication is asynchronous and one-way,
i.e. the recipient is not an active Nova instance, but rather
a (slightly lagging) “stand-by” instance. Cross-data-center
replication is used for two purposes: (1) fail-over in case
the primary data center becomes unavailable; (2) migration
to a new data center, e.g. if the old data center is being
repurposed or decommissioned.

Nova replicates its metadata database using transaction
capture and asynchronous replay, similar to log-shipping.
In Nova, the replication problem is complicated by the fact
that persistent data is stored in two places: the metadata
database and the Hadoop filesystem (HDFS), with numerous
links from the metadata database to HDFS files/directories
(i.e. the filesystem location of each data block). The replica-
tion mechanism carefully avoids creating dangling references
at destination data-center(s), by keeping track of references

7Currently, if two workflowettes that write blocks to the
same channel run concurrently, the output blocks are se-
quenced in the order in which the workflowette executions
began. Also, channel readers are not permitted to read
“across” reserved block slots, so if writers W1 and W2 start
in that order, and W2 emits a block, the block is not visible
to readers until W1 finishes (either succeeds or fails). Other
semantics are possible, of course; if needed we may, in the
future, decide to expose control of block ordering semantics
to applications.

and delaying the replay of a transaction until all referenced
HDFS files have been copied.8

4.2 Scan Sharing
Although workflowettes are scheduled independently (via

separate triggers), due to data- and time-based triggers it
often happens that multiple worfkflowette executions that
read the same data are triggered at (almost) the same time.
Many workflowette tasks spend much of their execution time
reading and writing data—often the processing itself is rel-
atively lightweight. Hence there is an opportunity to save
significant time and resources by amortizing data read costs
across multiple related workflowettes.

We have implemented an experimental scan sharing ca-
pability in Nova’s process optimizer module, which dynami-
cally merges workflowette instances that share common in-
puts. It leverages Pig’s ability to execute scripts containing
multiple“store”operations in such a way that common oper-
ations (e.g. an initial “load”) are only performed once, using
branching pipelines inside the map and reduce steps [13].

Currently, workflowette merging is governed by two spe-
cial annotations in the XML workflowette description: a
boolean “mergeable” annotation that indicates whether it
is okay to merge a given workflowette with others at exe-
cution time, and a “maximum queue time” parameter that
bounds the amount of time a workflowette’s execution can
be delayed while waiting for other workflowettes with which
to merge it.9 Our scan sharing capability presently only sup-
ports workflowettes that use the all consumption mode, for
which it is very easy to identify and exploit sharing oppor-
tunities; support for ones that use new is planned.

In our implementation, mergeable workflowette execution
instances are held in a queue inside the process optimizer
module for as long as their “maximum queue time” param-
eter allows. Whenever two workflowette instances that read
from the same channel are in the queue at the same time,
they are merged into a single workflowette instance using
simple XML and Pig Latin rewriting. The maximum queue
time of a merged instance is based on the minimum of the
constituent instances. When a workflowette instance reaches
its maximum queue time, it is sent to the process executor to
be executed. Status messages flow back through the process
optimizer module, which de-multiplexes them so that a sta-
tus message about a merged instance becomes n messages,
one per original instance. Hence workflowette merging is
transparent to the process manager (and to the user)—in
terms of semantics, but not performance, of course.

An important implication of workflowette merging is that
failure of one workflowette can cause an entire combined
workflowette to fail. We plan to implement a “back-off”
strategy in which whenever a merged workflowette fails,
each constitutent workflowette is automatically re-tried sep-
arately.

8Under this mechanism, destination data-centers may con-
tain HDFS files with no corresponding metadata, but that
does not affect correctness. A simple garbage collection pro-
cedure could, in principle, be used to reclaim the space they
occupy, although we have not implemented such a feature
because data-center transitions are rare.
9As future work, we would like to move to a model that
is based on (soft) deadlines rather than the low-level mech-
anism of bounding the queue time, but a deadline-based
model hinges the ability to model Pig/Hadoop execution
times in a multi-tenant environment, which is elusive.

5. EXPERIMENTS
Our experiments focus on two aspects of Nova that set

it apart from many other systems: incremental processing
(Section 5.1) and scan sharing (Section 5.2).

All of our experiments use a real data set from one of
Yahoo’s document processing workflows. Records contain a
significant amount of document metadata and text snippets,
and hence are rather large: 1.8 KB per record, on average.

The experiments were run on a dedicated Hadoop cluster
with 180 machines, although at any given time only 150–160
of the machines were functional. Each machine has an eight-
core 2.50 GHz Intel Xeon processor with 16 GB of RAM, and
runs Linux.

Hadoop job running times exhibit a fair amount of vari-
ance, which we attempted to mitigate by averaging across
several runs.

5.1 Incremental Processing
Our incremental processing experiments are motivated by

two key relational operations that are amenable to incre-
mental evaluation: distributive aggregation, and join. In-
cremental distributive aggregation is accomplished in Nova
via a task that emits delta blocks that contain (key, numeri-
cal increment) pairs, with the increments applied lazily (via
Nova’s merge feature) whenever a consumer wishes to read
the full aggregate value. Incremental join also accumulates
deltas that may eventually require merging, but the join task
itself is more complex than the aggregation task: in addition
to joining the new data from each input (left and right), it
must join the new data on the left input with the old data
on the right input, and vice versa.

Section 5.1.1 measures the cost to merge data blocks, and
Section 5.1.2 compares the cost of an incremental join task
with that of a non-incremental one.

5.1.1 Merge Overhead
To study the cost of merging data blocks, we use a no-

op workflowette that simply loads and then stores a data
set, and is compiled by Pig into a map-only Hadoop job
(the shuffle and reduce steps are not used). As a baseline,
we run the no-op workflowette over data that has been fully
compacted ahead of time into a single block (i.e. no merging
is necessary).

For this experiment we selected a merge function that
cogroups records by a key, and then applies a UDF that ex-
amines the records associated with each key and elects to re-
tain all of them. This merge function is like the one used for
upserts (Section 3), but modified to have the property that
the compacted data is the same size as the non-compacted
data, thus enabling an apples-to-apples comparison against
our baseline (i.e. all competitors read and write the same
number of bytes).

Pig offers two alternative physical cogroup algorithms: (1)
a reduce-side alternative that uses the Hadoop shuffle phase
to group records by key; (2) a map-side alternative in which
data blocks have been pre-organized by key10 and can be
merged in the Hadoop map phase without any shuffling.

Figure 3 shows the running time (vertical axis) as the
number of blocks to be merged is varied (horizontal axis),
when each block is large (ten million 1.8KB records per

10We use Zebra [5], a Hadoop file format that maintains data
sorted and sparsely indexed by a designated key attribute.

Figure 3: Running times of no-op workflowette
(10M records per block).

Figure 4: Running times of no-op workflowette (1K
records per block).

Figure 5: Join running times.

block). Map-side merging incurs a modest penalty relative
to the pre-compacted baseline, as long as the number of
blocks to be merged is not too high (i.e., less than ten).
Reduce-side merging, on the other hand, is quite expensive
due to hefty shuffle and reduce overheads.

In the case of small blocks, shown in Figure 4 (1000 records
per block), the situation is quite different. Here the per-
block overhead of the map-side alternative dominates, and
even causes it to perform worse than the reduce-side option
when the number of blocks increases beyond about ten. We
have not been able to pin down the source of this per-block
overhead, i.e. whether it lies mostly in opening an HDFS
file or in Pig’s file handling code.

An interesting question is: given a data set of a fixed
size, how much difference does it make whether it is divided
into a large number of small blocks, or a small number of
large blocks. It turns out that for a large, 20-million-record
data set the difference is minor (161 seconds for two 10-
million-record blocks versus 173 seconds for 20 one-million-
record blocks). However, as expected, for a small data set
(20 thousand records) the difference is major: 56 seconds for
two 10-thousand-record blocks versus 108 seconds for twenty
one-thousand-record blocks.

These results, combined with well-known observations
about the high fixed overhead of Hadoop jobs in general,
imply that applications wishing to process data in small
batches will likely not achieve good performance. Unlike
a data stream system, Hadoop, Pig and Nova are more suit-
able for processing data in large batches.

5.1.2 Incremental vs. Non-incremental Join
Given two channels A and B with append-only data, an

incremental join task computes (old A ./ new B) ∪ (new
A ./ old B) ∪ (new A ./ new B), which emits a delta
block of the join result. This experiment compares this in-
cremental join strategy against the non-incremental option:
all A ./ all B, which emits a base block. The physical join
algorithm used in this experiment sorts the data by the join
key and bulk-loads it into Zebra files (a sorted and sparsely-
indexed Hadoop file format), and then runs a map-side join
over the Zebra files.

The experiment assumes that each input channel contains
two fully-compacted blocks: one with the old data and one
with the new data. We fix the size of the old blocks at 100
million records each, and vary the size of the new (delta)
blocks.

Figure 5 plots the performance of the two join strategies,
with the delta block size varied on the horizontal axis using
a logarithmic scale to show several orders of magnitude. As
expected, when the amount of new data is small the incre-
mental strategy is much faster (although of course it gener-
ates delta outputs rather than complete join snapshots, and
obtaining a snapshot from the deltas can be expensive as
we saw in Section 5.1.1). The cross-over point, at which the
two strategies exhibit the same performance, occurs when
the new data has about 20 million records, which is 20% of
the size of the old data.

5.2 Scan Sharing
To examine the maximum potential benefits of work-

flowette scan sharing (Section 4.2), we studied the perfor-
mance of the ideal case for scan sharing: n exact copies of a
workflowette, triggered for execution at the same time. The

Figure 6: Running times with and without scan
sharing.

Figure 7: Resource consumption with and without
scan sharing.

workflowette we used is a news de-duplication workflow used
in production at Yahoo.

Figure 6 shows the total running time as the number of
workflowette copies increases, under three scenarios: (1)
no scan sharing, with the workflowettes run back-to-back;
(2) no scan sharing, with the workflowettes submitted to
Hadoop for execution all at once; (3) a single, scan-shared,
execution. As the number of workflowette copies grows, the
latter two scenarios both vastly outperform back-to-back in-
dependent jobs.

The key difference between the non-merged concurrent
case and the merged case is their resource consumption.
Hadoop manages computation resources by dividing each
physical machine into a fixed number of “slots” available to
run map and reduce work slices (called tasks). Hence a rea-
sonable resource utilization metric is “slot seconds” (similar
to machine seconds), i.e. the sum over all slots of the amount
of time the slot is occupied by a running Hadoop task. Fig-
ure 7 shows the resource utilization (in slot seconds) of in-
dependent concurrent execution versus that of scan-shared
execution. As expected, scan-shared execution has a much
lower resource footprint, and hence enables greater overall
system throughput.

6. SUMMARY AND FUTURE WORK
We have described a workflow manager called Nova that

supports continuous, large-scale data processing on top of
Pig/Hadoop. Nova is a relatively new system, and leaves
open many avenues for future work such as:

• Arbitrary workflow nesting, rather than the current,
rigidly tiered model.

• Better schema migration support, as motivated in Sec-
tion 3.1.

• Investigating H-Base [2], or a similar BigTable [7]-
inspired storage system, as the underlying storage and
merging infrastructure for data channels.

• Scheduling data compaction automatically, based on
some optimization formulation such as minimizing total
cost while bounding wasted space.

• Automatically rewriting non-incremental workflows to
execute in an incremental fashion, and perhaps even
dynamically switching between incremental and non-
incremental execution based on input data sizes and
other factors.

• Keeping track of temporal data inconsistencies that re-
sult from delayed or unsynchronized execution of work-
flow components—and perhaps even incorporating con-
sistency goals/bounds into a workflow scheduler. Pre-
liminary work along these lines is presented in [20].

• Dealing with (minor) changes in workflow structure and
task logic using incremental processing strategies, as ex-
plored in [19].

Acknowledgments
We thank the following individuals who contributed ideas,
feedback, or early prototype development: Su Chan, John
DeTreville, Khaled Elmeleegy, Ralf Gutsche, Christian
Kunz, Patrick McCormack and Andrew Tomkins.

7. REFERENCES
[1] Apache. Hadoop: Open-source implementation of

MapReduce. http://hadoop.apache.org.

[2] Apache. HBase: Open-source implementation of
BigTable. http://hbase.apache.org.

[3] Apache. Oozie: Hadoop workflow system.
http://yahoo.github.com/oozie/.

[4] Apache. Pig: High-level dataflow system for Hadoop.
http://pig.apache.org.

[5] Apache. Zebra: Hadoop self-describing,
column-oriented file format. http://hadoop.apache.
org/pig/docs/r0.6.0/zebra_overview.html.

[6] A. Z. Broder, S. C. Glassman, and M. S. Manasse.
Syntactic clustering of the web. In Proc. WWW, 1997.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Computer Systems,
26(2), 2008.

[8] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance
in databases: Why, how, and where. Foundations and
Trends in Databases, 1(4):379–474, 2009.

[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce online. In
Proc. NSDI, 2010.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. OSDI, 2004.

[11] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E.
Scheidegger, and H. T. Vo. Managing rapidly-evolving
scientific workflows. In Proc. International Provenance
and Annotation Workshop, 2006.

[12] M. Garofalakis, J. Gehrke, and R. Rastogi, editors.
Data Stream Management. Springer, 2009.

[13] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. M. Narayanamurthy, C. Olston, B. Reed,
S. Srinivasan, and U. Srivastava. Building a high-level
dataflow system on top of map-reduce: The Pig
experience. In Proc. VLDB, 2009.

[14] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. IEEE Data Engineering Bulletin,
18(2):5–20, 1995.

[15] B. He, M. Yang, Z. Guo, R. Chen, W. Lin, B. Su, and
L. Zhou. Comet: Batched stream processing for data
intensive distributed computing. In Proc. ACM
Symposium on Cloud Computing (SOCC), 2010.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-scale
systems. In Proc. USENIX Annual Technical
Conference, 2010.

[17] D. Logothetis, C. Olston, B. Reed, K. Webb, and
K. Yocum. Stateful bulk processing for incremental
algorithms. In Proc. ACM Symposium on Cloud
Computing (SOCC), 2010.

[18] B. Ludascher et al. Scientific process automation and
workflow management. In Scientific Data
Management: Challenges, Technology, and
Deployment, chapter 13. Chapman & Hall/CRC, 2009.

[19] C. Olston. Graceful logic evolution in web data
processing workflows. Technical report, 2011.
http://i.stanford.edu/~olston/publications/

workflowEvolutionTR.pdf.

[20] C. Olston. Modeling and scheduling asynchronous
incremental workflows. Technical report, 2011.
http://i.stanford.edu/~olston/publications/

asynchronousWorkflowsTR.pdf.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In Proc. ACM SIGMOD, 2008.

[22] Open-Source Community. Cascading.
http://www.cascading.org/.

[23] Open-Source Community. MySQL Cluster: A
synchronously-replicated, shared-nothing database
management system. http:
//www.mysql.com/products/database/cluster/.

[24] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In Proc. OSDI, 2010.

[25] L. Popa, M. Budiu, Y. Yu, and M. Isard. DryadInc:
Reusing work in large-scale computations. In Proc.
USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2008.

[26] T. K. Sellis. Multiple query optimization. ACM Trans.
on Database Systems, 13(1), 1988.

[27] J. Wang, D. Crawl, and I. Altintas. Kepler+Hadoop:
A general architecture facilitating data-intensive
applications in scientific workflow systems. In Proc.
Workshop on Workflows in Support of Large-Scale
Science, 2009.

[28] Workflow Management Coalition. XPDL: XML
process definition language.
http://www.wfmc.org/xpdl.html.

