Graceful Logic Evolution in
Web Data Processing Workflows

Christopher Olston
Yahoo! Research

ABSTRACT

Data processing workflows evolve over time. For example,
operators of web information extraction workflows change
them continually by retraining classifiers, adjusting confi-
dence thresholds, extracting additional structured data fields,
and incorporating new information sources. In most work-
flow systems, even minor workflow logic changes trigger re-
computation of derived data products from scratch. When
data volumes are large this approach is grossly wasteful and
generates huge latency hiccups.

This paper develops a model and implementation of a work-
flow system that processes data incrementally in the face of
workflow logic evolution, in addition to data evolution. Ex-
periments on real data demonstrate large performance gains
from this kind of incremental processing.

1. INTRODUCTION

Data-intensive workflows are important in many domains,
including e-science and web data processing. When pos-
sible, workflows incorporate new and updated input data
incrementally, as in view maintenance and data stream pro-
cessing, to update the output data without re-processing all
input data from scratch. Hence data evolution is handled
gracefully, without introducing major hiccups in resource
usage or output data freshness.

In addition to data evolution, it is common for the logic
of the workflow to change over time. For example, ad-hoc
scientific workflows are subject to a series of adjustments
(some of them minor, some major) as the data analysis pro-
cess is refined [11]. This paper was inspired by web infor-
mation extraction [7] workflows, which continually evolve
by retraining classifiers, adjusting confidence thresholds, ex-
tracting additional structured data fields, and incorporating
new information sources.

To our knowledge no existing systems handle workflow logic
evolution gracefully. For data processing purposes, a mod-
ified workflow is treated as a new workflow, and data is

re-processed from scratch. Derived data sets created by the
old version of the workflow are either re-used as-is, or are
thrown out—mno matter how closely related to the output of
the modified workflow. Meanwhile, new data accumulating
on the inputs is forced to wait, resulting in an unacceptable
freshness bubble. The waste and delay incurred by work-
flow modifications becomes arbitrarily bad over time, as the
amount of already-processed data grows.

1.1 Problem Statement

This paper focuses on large-scale data processing workflows,
and in particular ones that:

e follow the “synchronous data-flow” (SDF) model of com-
putation [19],

e are deployed for an extended period of time in a produc-
tion environment, and

e incorporate newly-arriving input data in large batches
using incremental algorithms!.

Examples of this scenario include continuously-running SDF
scientific workflows [19], incremental extract-transform-load
(ETL) processes [16], web information extraction workflows [7],
and continuous bulk processing models for map-reduce-like
environments [2, 15, 18, 21].

In that context, the problem addressed by this paper is the
following: Consider workflow W that transforms input data
I into output data O, and along the way stores intermediate
data L—i.e. W(I) = (L,0). The standard incremental
processing goal is that if I changes to I’ = f(I, AI) for some
data update AI and update application function f(-), such
that W(I') = (L', 0"), we wish to produce O’ (and perhaps
also L', in anticipation of future incremental processing) at
minimal cost from some combination of I, AI, I’, L, and
O. Our goal is to handle the I — I’ case, and additionally
handle the case in which W is changed to a new (but related)
workflow W’ where W'(I) = (L"”,0"), by finding a minimal-
cost way to produce O” (and L”, perhaps) from I, L and
O. Moreover, we wish to handle simultaneous evolution of
data and logic, i.e. compute W’(I’) incrementally.

IThe incremental algorithms can be stateless (e.g. extract
noun phrases from every newly-crawled web page) or stateful
(e.g. maintain a running total of the number of occurrences
of each extracted phrase).
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Figure 1: Restaurant extraction workflow fragment.

1.2 Related Work

Prior work on evolving business and scientific processes [4,
6, 10, 12] focused on avoiding re-running steps that have
already been run by a prior incarnation of the process, i.e.
re-using derived data sets. Under that approach, data sets
that do not exactly match what the revised workflow would
produce are discarded. This paper considers how to carry
old derived data sets forward by updating them to bring
them into alignment with the revised process description
(workflow). This capability is important when derived data
sets grow very large, and the updates required are cheap rel-
ative to full re-computation. The presence of large derived
data sets that are cheaper to update than recompute mo-
tivated the incremental view maintenance problem [13], in
which derived data sets are updated in response to changes
to input data sets (not workflow logic changes).

Many aspects of our work, e.g. temporal data management
and schema evolution, have been studied extensively in prior
work [9, 22], but not to our knowledge in the context of in-
cremental updating of data produced by evolving workflows.
Our aim is not to innovate on these topics per se, but rather
to use simple temporal data and schema evolution models as
part of a novel framework for evolving data-intensive work-
flows.

In the context of schema evolution, there is work on incre-
mental data updating for workflows that perform schema
restructuring, e.g. [17]. However, these are static workflows
whose purpose is to transform data from one schema to an-
other (e.g. for data integration), not workflows that evolve
over time.

1.3 Example

Consider the workflow fragment shown in Figure 1, which is
based on a real web information extraction workflow from
the Yahoo! Purple SOX project [5]. The workflow fragment
takes a set of URLs that a prior classifier (not shown) has
determined may correspond to places (e.g. they main con-
tain an address and/or a map), and reads the correspond-
ing page content from a web crawl repository. The con-
tent is fed to a restaurant classifier and extractor, which
determines whether a page describes a restaurant, and if so
extracts features such as name, address, and hours of opera-
tion; each output restaurant record is assigned a confidence
score. Lastly, restaurant records are filtered according to a
confidence threshold (e.g. only records with confidence at
least 0.9 are retained).

This workflow fragment may undergo the following changes
over time:

e Raise or lower the confidence threshold, to adjust the
incidence of false positives/negatives in the output.

e Change the way one of the extracted fields (e.g. hours
of operation) is computed, while leaving the other fields
unaltered.

e Add or remove fields, e.g. restaurant menus.

In principle, many workflow modifications can be handled
by transforming the existing output data. We call such a
transformation a migration plan. For example, an efficient
migration plan for raising the confidence threshold simply
filters the output using the new threshold.

The case of lowering the threshold is harder: one possible
migration plan is to re-process the input data after anti-
joining it with URLs in the old output, and adding the new
output records to the old ones. (If the original threshold
was 0.9 and the new threshold is 0.8, this plan avoids re-
processing items with confidence above 0.9; if most of the
cost is in the extraction step (vs. classification), the savings
may be large.)

Upgrading the hours-of-operation extraction module can be
handled by re-processing the entire input but only running
that extractor, and emitting a replacement column for the
output data. Addition of a menu field can be handled sim-
ilarly. A migration plan for removing a field is analogous
to raising the confidence threshold, except that it removes a
column from the output rather than removing rows.

1.4 A Framework for Evolving Workflows

It should be evident from the example in Section 1.3 that
some migration plans could easily be generated automati-
cally, e.g. exploiting easy-to-detect query containment sit-
uations arising from simple filter adjustments?; other cases,
such as modifying a black-box classification/extraction op-
erator, require the user to supply a migration plan. Fur-
thermore, some migration plans are extremely efficient com-
pared to re-processing from scratch, whereas others are less
advantageous, or may even be worse depending on the avail-
able access methods. Lastly, some workflow changes af-
fect the schema of data flowing to subsequent operations
(e.g. a downstream workflow component that associates re-
views with restaurants), requiring synchronization of logic
upgrades across multiple workflow components.

We set aside for now the issues of generating migration plans
and performing (cost-based) plan selection. The first step
is to develop a framework for workflows that evolve incre-
mentally in two dimensions (data and logic), and can ac-
commodate a broad range of automatically- or manually-
constructed migration plans. There are several challenges
in developing such a framework, including:

e Accommodate dynamic data flow structure. A
migration plan for a given workflow step may have dif-

’In general, this problem is closely related to the one of
answering queries using views [14].



ferent data flow structure than normal processing. For
example the migration plan may read data from the out-
put channel. Hence, unlike in traditional systems the
data flow structure of the workflow is not static, and the
framework must accommodate this dynamicity.

e Permit flexible workflow scheduling. Some work-
flow elements process data in an intentionally delayed
fashion, due to resource contention and/or relaxed appli-
cation semantics. For example, arrival of newly-crawled
web pages may trigger immediate news extraction, but
the less-critical restaurant extractor might only be run
occasionally on large input batches. Workflow logic up-
dates should not interfere with this careful scheduling
by forcing all data to be “flushed” through the workflow
to achieve a synchronization barrier between data evolu-
tion and logic evolution. Instead, the framework should
accommodate arbitrary scheduling in the presence of in-
terleaved data and logic changes, and still offer clean
semantics.

e Coordinate schema changes across the workflow.
Some workflow logic changes alter the schema of interme-
diate data products, in turn affecting downstream logic.
To avoid “breaking” a downstream operator that expects
a certain schema but receives a different one, the frame-
work must support synchronization of logic upgrades in
multiple parts of the workflow. Again, this support must
not impose restrictions on workflow scheduling by flush-
ing and quiescing the workflow prior to a logic upgrade.

This paper addresses these challenges by proposing a for-
mal framework for workflows with evolving data and logic,
with incremental processing in both dimensions and flexi-
ble scheduling. The framework is implemented in a proto-
type workflow system on top of the Pig/Hadoop [1, 3] data
processing environment. Experiments on real data show
the benefits of incremental data migration as workflow logic
evolves.

1.5 Outline

The remainder of this paper is organized as follows. Sec-
tion 2 gives our model of data processing workflows whose
processing logic evolves incrementally. Section 3 extends the
model to handle changes in the workflow structure and data
schema. Several topics that are important but largely or-
thogonal to the workflow evolution model (scheduling, prove-
nance and space management) are discussed afterward in
Section 4. Section 5 introduces our prototype system, and
Section 6 describes experiments run using the prototype.
Avenues for future work are discussed in Section 7.

2. CORE MODEL

Rather than choosing a specific workflow model from one
of the data-intensive workflow contexts mentioned in Sec-
tion 1.1 (scientific workflow, ETL, information extraction,
map-reduce workflows), we use a generic model intended to
capture the key elements common to these environments:

A workflow is a directed acyclic graph, with two types of
vertices: processing tasks and data channels (tasks and chan-
nels, for short). A task is a data processing step, e.g. restau-
rant extraction; a channel is a data container, e.g. extracted
restaurant records. Edges connect tasks to channels; no edge
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Figure 2: Formal workflow.

goes from a task to a task or from a channel to a channel.

Figure 2 shows an example of a workflow fragment with tasks
drawn as rectangles and channels drawn as cylinders. Fig-
ure 2 is based on Figure 1 but drawn in accordance with our
formal model. Note that we have elected to group the join,
extract and threshold steps into a single task. The choice
of task boundaries is important, because tasks serve as the
unit of scheduling (tasks may be invoked at different times
and with different frequencies), checkpointing and sharing
(task outputs are materialized on data channels).

As the reader has probably noticed in Figure 2, to simplify
the formalism data sources are modeled as special source
tasks that have no input channels—they inject data into
the workflow (e.g. web pages from a crawl). Each channel
is written to by exactly one task; if a channel’s writer is
a source task, then we call that channel a source channel.
Channels that are not read by any tasks are called output
channels—they constitute the workflow’s data product.

2.1 Data Versioning

A channel’s data is divided into blocks, each of which con-
tains a set of data records or record transformations that
have been generated by a single task invocation. Blocks
may vary in size from kilobytes to terabytes. For the pur-
pose of workflow management, a block is an atomic unit of
data. Blocks also constitute atomic units of processing: a
task invocation consumes zero or more input blocks and pro-
cesses them in their entirety; partial processing of blocks is
not permitted.

There are two types of blocks: base blocks and delta blocks.
A base block contains a complete snapshot of data on a
channel as of some point in time. A delta block contains
instructions to transform a base block into a new base block,
e.g. by adding, updating or deleting records or columns.
Delta blocks are used for incremental processing; for now
let us focus on non-incremental processing and base blocks.

Each base block on channel C'is identified by a version vector
V = [v1,v2,...,vn]; the block is called B(V). The version
vector length n equals the number of tasks that are ancestors
of C in the workflow graph. Hence, for source channels
n = 1; for the output channel in Figure 2, n = 3. As
we explain below in Section 2.2, version vectors encode the
coarse-grained data- and process-provenance of data blocks.
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Figure 3: Non-incremental processing.

2.2 Process Versioning

A task contains a collection of task instances, which repre-
sent alternative ways to process the data. The alternatives
may correspond to non-incremental vs. incremental process-
ing, or may constitute evolving task logic.

Again restricting our attention for now to non-incremental
processing, task instances correspond to new versions of
the (non-incremental) task logic, and instances of a given
task are assigned monotonically increasing version numbers.
When a task instance is invoked it consumes one base block
from each input channel, and emits a base block to the out-
put channel. The version vector of the output block equals
the concatenated version vectors of the input blocks, aug-
mented with the version number of the task instance.

The user may add new instances to a task at any time.
Arrival of a new task instance does not affect ongoing pro-
cessing of input block(s), because block processing is atomic.
Of course, subsequent input blocks might be processed using
the new task instance, depending on the scheduling decision
(Section 4.1).

Under normal circumstances,® task instances are not re-
moved.

2.3 Example: Non-Incremental Processing
Figure 3 shows a close-up view of the join-extract-threshold
task from Figure 2, with two task instances: instance 0 hav-
ing the initial task logic, and instance 1 with upgraded logic
registered at a later time. The place URLs input channel
contains a single snapshot B([0]), and the crawled pages
channel contains three successive snapshots, B([0]), B([1])
and B([2]), representing a series of complete (“from scratch”)
crawls. The figure shows the final task and data configura-
tions resulting from the following series of events:

e Initial B([0]) input blocks arrive on both input channels.

e Task instance 0 is invoked on place URLs block B([0])
and crawled pages block B([0]), to produce output block
B([0,0,0]).

e Crawled pages block B([1]) arrives.

e Task instance 0 is invoked again, this time on place URLs
block B([0]) and the new crawled pages block B([1]), to
produce output block B([0,1,0]). The second entry in
the version vector indicates that B([0, 1, 0]) contains data
from more up-to-date crawl snapshot than B([0,0,0)].

3Detection of a bug would require removing a task instance,
as well as removing or correcting “polluted” downstream
data using provenance metadata (Section 4.3).

e The user upgrades the task logic by instituting a higher
confidence filter threshold, yielding task instance 1.

e Crawled pages block B([2]) arrives.

e Task instance 1 is invoked on place URLs block B([0])
and the latest crawled pages block B([2]), to produce
output block B([0,2,1]). As the second and third version
vector entries indicate, B([0, 2, 1]) reflects a more recent
crawl snapshot as well as more recent task logic (new
confidence threshold), relative to B([0, 1, 0]).

2.4 Incremental Processing and Migration

Incremental processing deals with delta blocks. A delta
block is denoted A(Vi — V2), where Vi < V2.* The block
A(V1 — Va) contains instructions and data for transforming
B(V1) into B(V2). The process of applying a delta block
to a base block, to form a new base block, is called merg-
ing, written M (B(V1), A(Vi — V»)) = B(V2).® The reverse
transformation, whereby two base blocks are compared to

create a delta block that transforms one to the other, is
called diffing: D(B(Vh), B(V2)) = A(Vi — V3).

A task instance that produces one or more delta blocks is
termed incremental. One that produces only base blocks is
non-incremental. An incremental task instance [ is correct
iff for all delta blocks A(Vi — V2) that I emits to channel
C, if we were to generate base blocks B(V1) and B(V2) for
channel C' using non-incremental instances it would be the
case that M(B(V1),A(Vi — Va)) = B(V2).

When we include incremental processing options, task in-
stances are no longer identified by a single version number.
Instead, a task instance has a signature that specifies:

e the number of base and delta blocks to read from each
channel sharing an edge with the task,

e zero or more constraints on the version vectors of the
blocks to be read,
e the type of block to be written (base or delta), and

e output block version vector(s) as a function of the input
block version vector(s).

2.5 Example: Incremental Processing

Figure 4 adds incremental task variants to our example join-
extract-threshold task from Figure 3, and illustrates the fol-
lowing sequence of events (the first two of which are the
same as in Figure 3):

e Initial B([0]) input blocks arrive on both input channels.

e The non-incremental variant of task version 0 is invoked
on place URLs block B([0]) and crawled pages block
B([0]), to produce output block B([0, 0, 0]).

e Crawled pages block A([0] — [1]) arrives from an in-
cremental crawler [8] that has found additional pages,

4The partial order < is defined on a pair of equal-
length version vectors Vi = [v1,1,v1,2,...,01,n] and Vo =
[v2,1,v2,2,...,v2.n], as follows: Vi < Va iff for all 1 <14 < n,
v1,; < v2,; and for some 1 < j < n, v1; < v2,5.

°In general, merging is performed over one base block
and n > 1 delta blocks: M(B(V1),A(Vi — Va),A(Va —
V3), ey A(Vn — Vn+1)) = B(V»,hq).
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Figure 4: Incremental processing, without migration
plan.

and has re-crawled some previously-crawled pages to find
changed content and “dead” pages (404 errors). The
delta block contains upserts (insertions and replacements)
and deletions, using URL as a key.

e The incremental variant of task version 0 is invoked on
place URLSs block B([0]) and crawled pages delta block
A([0] — [1]), producing an output delta block A([0,0, 0] —
[0,1,0]) that inserts, replaces and deletes® restaurant
records using URL as a key.

e The user upgrades the task to version 1, by supplying
non-incremental and incremental variants of the new task
logic.

e Crawled pages block A([1] — [2]) arrives from the crawler.

o The non-incremental variant of task version 1 is invoked
on place URLs block B([0]) and the on-the-fly merge
of all three crawled pages blocks, M (M (B([0]), A([0] —
1)), A([1] = [2])), to produce output block B([0,2,1]).”

2.6 Example: Incremental Migration

Figure 5 adds another task variant to our running example,
which performs incremental migration from version 0 to 1 by
filtering the old output based on the new, higher, confidence
threshold. In our model, a migration task instance is no dif-
ferent from any other task instance. (Therefore incremental
migration instances are subject to the same correctness cri-
terion as regular incremental task instances (Section 2.4),
i.e. the emitted delta blocks must correctly transform the
old output data to the new output data.) Of course, mi-
gration instances typically read from the output channel,
whereas most non-migration instances read solely from in-
put channels.

5In this incremental processing strategy, records that do not
pass the confidence filter are sent to the output as deletions,
and deletion is treated as an idempotent operation in the
output channel merge operation. (The overhead of these
conservative deletions can be eliminated via a more com-
plex incremental task variant that reads the URL column
of the prior output. While our model supports such vari-
ants, exploring the tradeoffs between different incremental
processing strategies is outside the scope of this paper.)

“If a consumer of the extraction output channel wishes
to consume data in the form of deltas, the delta block
A([0,1,0] — [0,2,1]) can be generated from the ex-
isting output blocks using diffing (combined with merg-
ing): D(M(B([0,0.0]), A(0,0,0] - [0, 1,0])), B([0,2, 1])) =
A(]0,1,0] — [0,2,1
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plan.

In Figure 5 the migration instance has been invoked on ver-
sion 0 output data M (B([0,0,0]), A([0,0,0] — [0,1,0])) to
produce output delta block A([0,1,0] — [0,1,1]), which
deletes records with confidence values that are below the
version 1 threshold.

2.7 Discussion of Incremental Migration

As stated in Section 2.6, migration task instances are not
treated as special cases in the model—they behave just like
other task instances. Our intent is to constrain the structure
of migration plans as little as possible, in view of accommo-
dating a wide variety of incremental migration strategies
that might be devised to handle various kinds of workflow
logic changes.

Of course, the potential for real-world impact of our ap-
proach hinges on the ability to devise efficient migration
plans for common workflow evolution scenarios. Fortunately
there appears to be some “low-hanging fruit” in terms of
minor, transparent logic changes that occur frequently in
practice, e.g.:

e Changes to, additions of, and removal of filter conditions,
such that there is a query containment relationship be-
tween the old and new output data sets that implies com-
pact delta blocks for inserting or removing the affected
output records.

e Changes to column projection lists, which can be han-
dled efficiently via delta blocks that add/drop columns,
especially if the underlying storage system uses columnar
storage.

We also anticipate that in many cases, changes to black-box
workflow steps (e.g. custom information extraction func-
tions) can be paired with manually-written incremental mi-
gration plans, e.g. if the new extraction function just ex-
tracts an additional attribute, or extracts an existing at-
tribute differently but leaves the other attributes unaffected.
(Note that manually-supplied migration plans facilitate in-
cremental processing just as well as automatically-generated
ones—the only difference is that the incremental data pro-
cessing algorithm has been written by hand.)



Lastly, as we show next in Section 3 our model can be ex-
tended to accommodate addition and removal of data sources,
which enables efficient incremental migration in common
scenarios such as:

e Adding an input data source that is “unioned” with ex-
isting sources (e.g. extending the scope of movie data
extraction from { IMDB, Yahoo! Movies } to { IMDB,
Yahoo! Movies, Netflix }).

e Inserting a foreign-key join to create an additional de-
rived attribute (e.g. “geo-tagging” to convert IP ad-
dresses to zip codes via a foreign-key join with an IP-
to-zipcode lookup table from a new source).

3. MODEL EXTENSIONS

Having presented our basic model, we introduce two im-
portant extensions: accommodating workflow structure evo-
lution and schema evolution. We first give brief, informal
overviews of each topic and our approach (Section 3.1), and
then supply the details for readers who are interested (Sec-
tions 3.2-3.3).

3.1 Overview

3.1.1 Workflow Structure Evolution

So far we have focused on evolution of an existing workflow
task’s logic. The structure of the workflow may also evolve
(adding and removing task nodes; connecting and discon-
necting channels from tasks). It is worth noting that addi-
tion of tasks is not common, because it implies creating an
additional channel which adds materialization overhead—
instead, new processing steps (e.g. a spam filter) are gener-
ally incorporated into existing tasks. That said, our frame-
work does handle adding new tasks, as well as the other
structural evolution scenarios mentioned.

Our general strategy is to reduce workflow structure evolu-
tion to task logic evolution, and thereby leverage the task
logic evolution machinery we have already developed (Sec-
tion 2). For example, we can pretend that a new task has
always existed, but until now it only performed no-ops. Sim-
ilarly, we can pretend that a newly-created channel has al-
ways existed and been attached to a particular task, but
thus far the task has only read the initial, empty data snap-
shot. The details of how we extend our framework to handle
structural evolution are given in Section 3.2.

3.1.2  Schema Evolution

As discussed in Section 1.4, workflow logic upgrades may
alter the schema of derived data. Some modeling and ma-
chinery is required to coordinate schema evolution across
multiple workflow tasks. At a minimum, we need to ensure
that downstream tasks do not “break” when upstream tasks
alter their output schemas.

Our framework for managing schemas and synchronizing
task upgrades is described in Section 3.3. It has two at-
tractive properties: (1) The user does not need to submit
a set of task upgrades as some sort of transaction; instead
she can upgrade the tasks one-by-one without fear of schema
mismatch errors; (2) The system does not need to “flush” old
data through the workflow prior to installing a task upgrade

that induces a schema change; data conforming to the old
and new schemas can be present at the same time without
causing problems.

3.2 Workflow Structure Evolution

To help us deal with workflow structural changes, we intro-
duce two special version numbers, s (for start) and e (for
end), which act as extrema in the version number ordering:
s<0<1<2<...<e We will use these special version
numbers to treat structural changes as if they were task logic
changes (e.g. pretend that a new task has always existed in
the form of a no-op as version s). This approach allows us to
leverage the task logic evolution machinery we have already
developed (Section 2).

The remainder of this subsection explains how each struc-
tural evolution case is handled.

3.2.1 |Inserting a Task

When a new task is inserted into a workflow, the channel at
the insertion point is split into two channels (becoming the
input and output channels of the new task). Both channels
contain copies of the blocks present on the original channel.®
Then, the version vectors of all blocks downstream of the
new task are augmented to make it appear as though the new
task had always been there in the form of a no-op instance,
with version s—i.e. an s is added to each version vector
at the appropriate position. After that, the user may begin
registering instances of the new task, starting at version 0
(perhaps including a migration plan from version s to 0).
Other than the brief pause to modify downstream version
vectors, workflow processing proceeds in the normal fashion
as described in Section 2.

In our running example, suppose a web page spam filter-
ing task is inserted between the crawl source and the main
join-extract-threshold task. (Perhaps the user chose to per-
form the spam filtering in a separate task, rather than at
the beginning of the existing join-extract-threshold task, to
enable its output to be multiplexed to multiple consumers
in the future.) Consider the execution sequence illustrated
in Figure 4, and suppose that at the time of the task inser-
tion only the first block on each channel is present. In-
sertion of the new task causes a new channel to be cre-
ated at the left input to the join-extract-threshold task,
with a copy of the crawled pages block B([0]) renamed to
B([0, s]). The extraction output block B(]0, 0, 0]) is renamed
to B([0,0,s,0]). Assuming a migration plan is provided for
the new spam filter task, when it is invoked it reads block
B([0, s]) from its output channel and produces a delta block
A([0, s] — [0,0]) that eliminates spam pages from B(]0, s]).
This delta block can be consumed by the incremental vari-
ant of the join-extract-threshold task, resulting in an output
block A([0,0,s,0] — [0,0,0,0]). From there, the workflow
behaves as if the spam filter had always been present. No-
tice that the spam filter was incorporated in an incremental
fashion, i.e. the non-incremental variant of the join-extract-
threshold task did not have to be invoked.

8Since blocks are read-only, copy-by-reference may be used,
i.e. both channels “point to” the blocks, although they must
keep separate version vector metadata.



Inserting a multi-input task is accomplished by first inserting
a single-input variant (as just described), and then attaching
additional inputs (as described in Section 3.2.3).

3.2.2  Removing a Task

A task can only be removed from a workflow if it has at
most one input. A multi-input task can be retired by first
reducing it to a single-input task by detaching inputs (see
Section 3.2.4), and then removing the task.

The system handles a task removal request by registering a
no-op instance of the to-be-removed task with version e (the
user is given the opportunity to supply a migration plan from
the last version to e). To avoid unnecessary processing and
space overhead, the no-op instance uses copy-by-reference
to transfer input blocks to the output, as described in Sec-
tion 3.2.1. The no-op task may remain in existence for some
time (masked from the user by the system), which is of little
concern since it incurs almost no processing and space over-
head. Eventually, when no version numbers from that task
other than e still linger in the workflow (i.e. they have been
garbage collected; see Section A.2), the task and its output
channel are eliminated, and its input channel is connected
to the downstream task. At that point, the e version vector
entries are removed from all block metadata.

3.2.3 Attaching a Task Input

One may wish to add an input to an existing task. For
example, restaurant address extraction may be made more
accurate by referencing a city name data set, supplied on a
new input channel. This scenario is handled by augmenting
downstream version vectors with s entries at the appropri-
ate positions. The user is then free to register instances of
the task that read from the new input, including migration
plans.

3.2.4 Detaching a Task Input

To detach a task input I, the user first registers task in-
stance(s) that ignore I (i.e. they do not request any blocks
from I). The system automatically pads version vectors pro-
duced by such instances with e entries in the position(s) cor-
responding to I. Eventually, when no downstream blocks
remain that do not have e entries in those position(s), the
e entries are removed and I is detached from the task. As
in the task removal case (Section 3.2.2), in the mean time
the system may give the user the illusion that I has already
been detached from the task, by masking I and the e entries.

3.3 Schema Evolution

To detect and react to schema changes resulting from work-
flow logic changes, the system maintains a global schema
function S(C, V') that associates a schema S with version
vector V' on channel C'. The schema function is constructed
from schema specifications supplied by the tasks. Source
tasks declare the schema of every version (by default, the
schema of version ¢ 4+ 1 is the same as that of version 7).
Non-source tasks supply schema transformation functions,
which give the output schema as a function of the input
channel schema(s).

As an aside, the output schema need not be closely related
to the input schema—in such cases the schema transforma-

tion function can ignore the input schema and simply return
a constant representing the output schema. The reason for
encoding schemas as transformations, rather than represent-
ing each task’s schema independently, is to minimize the
schema encoding work for operations like filtering and pro-
jection, whose output schema is identical or closely related
to the input schema.

Formally, each task 7' maintains a schema transformation
function Tr(v) that consumes a version number v of task
T and returns a function f : (S1,Se,...,S%) — S where
51,82, ..., 51 are the schemas of the I(T') input channels
and S is the output schema. If T is a source task, I(T) = 0
and 77 (v) returns a constant function; in other words the
schema “transformation” simply emits the schema of version
v of the source data.

The global schema function S(C,V) is defined recursively
over the task schema transformation functions:

8(07 V) = [TW(C)(VIVI)] (8(C<1>7 V<1>)7 8(C<2>7 V<2>)7 .- )

where V; gives the ith element of V, W(C) is the task that
writes to channel C, C(i) gives the ith input channel of
W(C), and V(i) gives the subrange of V' that comes from
C(i).

This model is agnostic to the schema representation and
schema transformation algebra. The schema may include
logical elements only (i.e. field names and types, and in-
tegrity constraints such as uniqueness and functional de-
pendencies), or it may also incorporate physical properties
like ordering and partitioning. Tracking physical properties
enables optimizations whereby a downstream task algorith-
mically exploits a physical property of the incoming data.
Designing a schema transformation algebra is straightfor-
ward; it would have operations for adding and removing
fields, integrity constraints and physical properties.

With a simple representation in which a schema just consists
of a set of field names, with no data types or physical prop-
erties, the schema transformation functions for the tasks in
our running example from Figure 2 are:

® /place source (0) = f . () — {UTZ}
® Terawi source(0...2) = f: () = {url, content}

° ﬁoin—eztmct—thr@shold (0 ce 1) = f : (Sly SQ) —
(S2 \ {content}) U {name, address, hours, confidence }

and the global schema function evaluates to:

o S(place URLs, [0]) = {url}
o S(crawl source, [0...2]) = {url, content}
o S(extraction output,[0,0...2,0...1]) =

{url, name, address, hours, confidence}.

If, starting with version 3, the crawl source were to add a
new attribute to indicate the time at which the content was
crawled, we would have:

® Terawi source(3) = [+ () = {url, time, content}



o S(crawl source, [3]) = {url, time, content}

o S(extraction output, [0,3,0...1]) =
{url, time, name, address, hours, confidence}.

3.3.1 Synchronized Upgrades and

Schema Constraints

Continuing our example, suppose the user does not wish to
include crawl time in the extraction output, so she supplies
a new version (version 2) of the join-extract-threshold task
that projects out that attribute, which has schema trans-
formation function Tjoin— estract—threshotd(2) = f : (S1,S2) —
(S2 \ {time, content}) U {name, address, hours,

confidence}. Clearly, we must ensure that version 2 of the
join-extract-threshold task instance is not invoked on data
that predates version 3 of the crawl source, because the pro-
jection step would throw an error.

In our framework, synchronization of multiple task upgrades
is achieved via schema constraints, whereby task instances
specify which logical and physical schema characteristics are
relied on. In our example above, version 2 of the join-
extract-threshold task would include crawl time among the
schema constraints of its second input. The system will au-
tomatically switch to version 2 at the appropriate time, i.e.
after any enqueued data from prior versions of the crawl
source has been processed.

Another scenario is when the user who programs a given
task is not aware that an upstream schema change has oc-
curred. If the system detects a situation in which data is
“stuck” in front of a task because no instance of the task
accepts the data’s schema, an alert is generated prompting
the user to upgrade the task. In fact, using the schema
function, the system can anticipate and generate an alert
for this situation as soon as an upstream task is upgraded
such that a schema incompatibility with a downstream task
is induced. An alternative rule would be to reject the up-
stream upgrade if there is no downstream instance that can
accept the new schema. (These choices are reminiscent of
alternatives for handling data deletions in the presence of
referential integrity constraints.)

Schema transformations and constraints may be supplied
by hand or inferred from the task logic. If the task logic
is written in a high-level language like SQL or Pig Latin,
this inference should be fairly straightforward. However,
user-defined functions (UDFs) may require manual schema
specification, and although their schema constraints can be
inferred, the inferred constraints might be conservative (e.g.
field X is input to the UDF but not actually used by the
UDF, perhaps for historical reasons or because the UDF’s
input was set to “x” for simplicity). Physical constraints
(e.g. merge join requires inputs to arrive sorted on the join
keys) may be more difficult to infer automatically.

4. SCHEDULING, PROVENANCE AND
SPACE MANAGEMENT

This section covers topics that are not central to the frame-
work but are nonetheless very important in practice. Since
these are not core topics to the paper, we give only a high-
level overview here; some details are found in Appendix A.

4.1 Task Scheduling

One of our stated goals (Section 1.4) is to permit workflow
task invocations to be scheduled in a flexible manner. The
only constraint we impose is version monotonicity, defined
with respect to each channel’s frontier. Channel C’s fron-
tier F(C) is the set of maximal® version vectors found in a
base block, or chained from a base block through a series of
deltas. Under the version monotonicity constraint, no task
invocation may emit a block B(V) or A(Vo — V) to channel
C if for some F € F(C), V < F.

Many conceivable scheduling objectives and algorithms ex-
ist, including ones that trade off latency and consistency,
and ones that defer expensive task upgrades until a time at
which system load is low. This paper does not introduce any
special scheduling methods. The simple scheduling heuristic
we implemented in our prototype is described in Section 5.

4.2 Data Compaction

As delta blocks accumulate on a channel, it is generally de-
sirable to compact the channel’s data by running a merge
operation (Section 2.4) and materializing the result in a new
base block. Compaction reduces the on-the-fly merge over-
head for subsequent non-incremental task executions. More-
over, if the delta blocks include updates and/or deletions
of existing data items, the compacted representation saves
space. Of course, the space reduction is not realized until
the old base and delta blocks are removed—our next topic.

4.3 Data Provenance and Garbage Collection
Over time, as data accumulates on a channel and old data
is compacted (Section 4.2), it becomes necessary to remove
old blocks; this process is called garbage collection. The for-
mal rules for garbage collection, along with an example, are
presented in Appendix A. The general idea is that a block
is eligible for garbage collection if it is redundant with an-
other block (e.g. following a compaction event, the old base
and deltas are redundant with the new compacted base),
and is not needed for future incremental processing by a
downstream task (redundant deltas might still be kept if a
downstream incremental task has not yet read them).

Another constraint imposed on garbage collection is that it
cannot leave dangling data provenance references. As with
many workflow environments, our framework tracks coarse-
grained data provenance, in the form of directional refer-
ences between pairs of blocks. In the context of incremen-
tal processing, there are two types of provenance references:
physical references and logical references. Physical prove-
nance traces the actual sequence of intermediate data prod-
ucts that led to a particular piece of data, whereas logical
provenance traces the equivalent non-incremental path (for-
mal definitions and examples are found in Appendix A).

Physical provenance is useful for debugging errors in the in-
cremental processing logic, and for understanding the way
the workflow has been scheduled. Logical provenance is
much simpler in that it does not require understanding in-
cremental processing semantics, and it also enables much
more aggressive garbage collection, as we demonstrate in

9Maximality is defined with respect to the partial order <
defined in Section 2.4.



Section 6.5. We expect that real systems would offer two
modes of operation:

e Test mode: Test the workflow on a small amount of
data, with garbage collection disabled, to debug the in-
cremental processing logic.

e Production mode: Run the workflow on large data in
a production setting, with garbage collection constrained
only by logical provenance.

5. PROTOTYPE WORKFLOW MANAGER

Our prototype workflow management system is implemented
in Java, on top of the Pig/Hadoop [1, 3] data processing en-
vironment. The workflow system manages metadata about
tasks, channels, blocks, version vectors, logical and physi-
cal provenance, and schemas. Our prototype uses a simple
schema model (a set of field name/type pairs) and schema
transformation algebra (add field and drop field). To link
the metadata to the underlying Hadoop system, the work-
flow manager maintains a mapping from data blocks to files
in the Hadoop file system (HDFS), along with each block’s
storage format (e.g. binary or text, compressed or uncom-
pressed).

The workflow manager permits new task instances, includ-
ing migration plans, to be registered at any time (work-
flow evolution). Task instances take the form of Pig Latin
scripts [20], but rather than referencing specific input and
output HDFS files, channel name placeholders are used.
When the workflow manager invokes a task instance, it sub-
stitutes these placeholders for specific block file names or,
in the case of on-the-fly merging, Pig Latin expressions that
merge several block files.

The system follows a simple task scheduling heuristic: It
visits workflow tasks in a round-robin fashion, and consid-
ers task instances that are eligible for execution (i.e. all
required input blocks are present, or can be created via on-
the-fly merging). The highest priority eligible instance is
selected for execution, with migration plan instances given
top priority, followed by incremental instances, and finally
non-incremental instances. If there is a tie (e.g. no migra-
tion instances and multiple incremental instances), then the
one that advances the frontier (Section 4.1) of the task’s
output channel by the greatest amount (using L1 distance)
is chosen.

Data compaction is scheduled at fixed intervals, and the
garbage collector is invoked after each round of compaction.
Three garbage collection (GC) options are supported: (1)
no GC, (2) GC constrained by physical provenance, and (3)
GC constrained by logical provenance.

6. EXPERIMENTS

We built a prototype workflow management system on top
of the Pig/Hadoop [1, 3] data processing environment, and
conducted a series of experiments. Our experiments are de-
signed to quantify the benefit of incremental data migra-
tion when workflows evolve, and to measure space footprint
growth under various compaction and garbage collection
strategies. They use two realistic workflows over real web
data, running on an eight-node Hadoop cluster.

Before describing our experiments and results, we give the
details of our data, workflows and execution environment.

6.1 Data

Our workflows use two input data sets:

e Pages: A 9 GB web page sample containing metadata
about ten million URLs, such as their file type (HTML,
PDF, etc.), language (English, French, etc.), sets of out-
going and incoming hyperlinks, and a quality score g €
[0, 1] (computed from URL features and other evidence).
To simulate incremental arrival from a crawler, we di-
vided this data set into ten roughly equal-sized chunks,
each stored in a separate HDFS file.

e Sites: A 43 MB site-level data set that contains one
record per web site that appears one or more times in
Pages, with each site’s quality score (computed using
link analysis and other methods).

6.2 Workflows

Our experiments are over two workflows, each having a sin-
gle non-source task:

e Workflow 1 filters incrementally-arriving Pages delta blocks

by quality (¢ > T, for some threshold T"), and performs a
join with Sites to pick up the site-level quality score of
each page that survives the page-level quality filter. The
page-level quality threshold is initially set to T = 0.6,
and later lowered to 7" = 0.5. When the threshold is
lowered, a migration plan is supplied that reads the old
Pages data, filters by 0.5 < ¢ < 0.6, and joins with Sites
to produce an output delta block.'®

e Workflow 2 groups Pages deltas by site, finds the num-
ber of distinct incoming hyperlinks (c) to each site, filters
by hyperlink count (¢ > T'), and emits the site/count
pairs.'’ The link count threshold is initially set to T' =
200, and later adjusted to either T' = 100 or T' = 400 (our
experiments cover both scenarios). In the case of rais-
ing the threshold, the migration plan simply filters the
output data by the new, higher, threshold. In the case
of lowering the threshold, the migration plan re-runs the
task on the merged view of the entire accumulated input
data, but inserts an anti-join with the old output data
to avoid re-processing sites whose count is above the old
threshold of 200; the result is an output delta containing
sites with 100 < ¢ < 200.

6.3 Execution Environment

In our experiments we ran our prototype workflow manager
(Section 5) on a machine with a 2.53 GHz dual-core CPU
and 4 GB of RAM. The workflow manager connects over
TCP to a Hadoop cluster with one master node (running the

0The case of raising the threshold results in a migration
strategy that is identical except that the output delta tuples
are marked as “negative tuples,” so we did not study it as a
separate experiment.

This efficient incremental strategy for distinct counting as-
sumes that the blocks from the crawler do not overlap by
site—e.g. the crawler explores one site at a time (or a small
set of sites at a time to spread out requests for politeness),
which is the pattern Googlebot apparently follows [23], and
emits blocks at site boundaries.
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map-reduce JobTracker and HDFS NameNode) and eight
slave nodes (each running a map-reduce TaskTracker and
an HDFS DataNode). Each of the Hadoop cluster nodes
have 2.13 GHz dual-core CPUs and 4 GB of RAM, and run
the Linux operating system.

6.4 Running Time Measurements

Figures 6 and 7 show the running times of Workflows 1 and
2, respectively, with compaction and garbage collection dis-
abled to isolate the task running times. In each graph the
horizontal axis plots the workflow epoch (processing associ-
ated with each of the ten incoming Pages blocks). The ver-
tical axis of plots the running time for the work performed
in a given epoch (averaged over five runs, with outliers re-
moved).

Figure 6 shows three cases: one in which the migration plan
is disabled, one with the migration plan is enabled, and one
with the migration plan enabled and the Pages data indexed
by quality score. (We simulated the index in Hadoop by
dividing the data into ten quality-score buckets, and storing
each bucket’s data in a separate file.) Figure 7 also shows
three cases, but they are different: the first case has the
migration plan disabled, the second case has a migration
plan for raising the count threshold, and the third case has
a migration plan for lowering the count threshold.

The per-epoch processing time is nearly constant except in
the ninth epoch, when the workflow evolution occurs. With-
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out migration, there is a major hiccup to re-process all ac-
cumulated input data from scratch. In our scenarios the
hiccup amounts to a five-fold processing time increase for
that epoch. In general there is no bound to the data re-
processing overhead: the more time has elapsed the more
accumulated input data would need to be re-processed.

As Figures 6 and 7 show, migration plans greatly reduce the
overhead of adapting to an evolving workflow. Of course,
the magnitude of reduction depends on the way in which
the workflow has evolved (as shown in Figure 7) and the
physical database design (Figure 6).

In some cases the asymptotic running time is also reduced
compared with re-processing from scratch. For example,
for raising the threshold in Workflow 2, the running time
becomes a function of the output data size rather than the
input size, and the output is much smaller than the input.

6.5 Space Footprint Measurements

To create a situation in which compaction reduces the data
size, we artificially modified Workflow 1 to allow merging
(and thus compaction) of the output channel by site. Fig-
ure 8 shows the total space footprint (vertical axis) over time
(horizontal axis). (Workflow 2’s output is very small and
the space footprint is dominated by the input data, making
it uninteresting in this experiment.) The lowest curve shows
the size of the input data, which grows linearly. The other
three curves show the total data size, under three scenar-
ios: (1) no compaction or garbage collection (GC); (2) com-
paction with GC constrained by physical provenance; and
(3) compaction with GC constrained by logical provenance.

As expected, constraining GC by physical provenance elim-
inates most garbage-collection opportunities, and leads to
multiple redundant copies of the data following compaction.
Constraining GC by logical provenance leads to much more
sensible space footprint characteristics, with the combina-
tion of compaction and garbage collection actually saving
space as time goes by.

7. SUMMARY AND FUTURE WORK

We have described a model and system for processing work-
flows incrementally as their data and logic both evolve. Our
approach handles very general categories of workflow changes,
including ones that impact the workflow graph structure



or data schema. Additionally it can handle a wide array
of incremental processing strategies, including ones that re-
process old output data. Lastly, it does not interfere with
workflow scheduling, e.g. it does not require workflow pro-
cessing to be “flushed” or “paused” to accommodate a work-
flow logic upgrade.

By preserving scheduling flexibility, we leave the question
of optimal scheduling, including how often to perform com-
paction, to be addressed in separate work. One can imag-
ine a cost-based scheduler that aims to minimize latency or
maximize throughput. Since migration plans are no different
from regular workflow operations in our model, they should
not present a major complication for scheduling.

Automatic migration plan generation was left as future work.
There appears to be some low-hanging fruit in this area.
For example, it should be fairly easy to generate migra-
tion plans for filter or projection logic changes using basic
query-containment-style reasoning. In general, this prob-
lem is closely related to the one of answering queries using
views [14], and techniques from that area are likely to be
applicable.
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APPENDIX
A. DATA PROVENANCE AND GARBAGE
COLLECTION

A.1 Provenance
Physical and logical provenance are defined formally as fol-
lows:

e Physical provenance: If block X is part of block Y’s
physical provenance, that indicates that a task instance
or compaction operation was executed with X as part of
its input, and with Y as its output.

e Logical provenance: Logical provenance references only
apply to base blocks. If base block Bj is part of base
block Bs’s logical provenance, that indicates that there
exists a non-incremental task instance that would pro-
duce B; if executed with B; as part of its input. Using
the notation introduced in Section 3.3, the logical prove-
nance of block B(V) on channel C, which we’ll denote
Be(V), is {Beg (V1) Bog) (V(2)), . .}.

As an example, consider the blocks shown in Figure 4, and
let us use the channel abbreviations p = place urls, ¢ =
crawled pages and e = extraction output. The physical prove-
nance of output block B.([0,2,1]) is {B,([0]), B:([0]),
Ac([0] — [1]),Ac([1] — [2])}, whereas its logical prove-
nance is { B, ([0]), Bc([2])}. As a second example, if one were
to compact output blocks Be([0,0,0]) and A.([0,0,0] —
[0,1,0]) to produce M (B.([0,0,0]), Ac([0,0,0] — [0,1,0])) =
B.([0,1,0]), that block’s physical and logical provenance
would be {BE([Ov Oa O])a Ae([07 03 0] - [07 17 0])} and {BP([O})v
B.([1])}, respectively.

In a workflow with only non-incremental task variances,
physical and logical provenance are the same. In an in-
cremental workflow, it may often happen that a block refer-
enced by another block’s logical provenance does not exist.
However in such cases it is always possible to construct the
non-existent block via an on-the-fly merge of existing base
and delta blocks (assuming that they have not been garbage-
collected; see Section A.2).

A.2 Garbage Collection

A base or delta block b on channel C (i.e. b = Bo(V) or
b= Ac(Vo,V)) is eligible for garbage collection iff all of the
following conditions hold:

1. Block b is subsumed by another block on C, i.e. there

exists a base block Bo (V') # b such that V X V',
2. Based on the version monotonicity scheduling restric-

tion (Section 4.1), it can be determined that no future

task invocation would read b.
3. No other block b’ has a provenance reference to b.

Condition 1 ensures that we only remove old or redundant
data. Condition 2 ensures that we do not disrupt incremen-
tal processing: Say a task’s incremental variant has pro-
cessed A([0] — [1]) and the next invocation would process
A([1] = [2]). We do not want the existence of a compacted
base B([2]) to trigger garbage collection of A([1] — [2]) and
therefore force the task to revert to non-incremental pro-
cessing of B([2]).

Condition 3 avoids dangling provenance references. This
condition can be enforced with respect to either physical
or logical provenance. The logical-provenance enforcement
option enables much more aggressive garbage collection, as
illustrated in the following example and quantified empiri-
cally in Section 6.5.

In Figure 4 blocks B.([0,0,0]) and A.([0,0,0] — [0,1,0])
are eligible for garbage collection because they satisfy Con-
dition 1, and Conditions 2 and 3 are not applicable because
no tasks consume data from the extraction output channel.
Suppose that the crawled pages channel is compacted, yield-
ing block M (Be([0]), Ac([0] — [1]), Ac([1] = [2])) = Be([2])-
If Condition 3 is enforced with respect to logical provenance,
then blocks B.([0]), Ac([0] — [1]) and Ac([1] — [2]) become
eligible for garbage collection. However, if Condition 3 is
instead enforced with respect to physical provenance, these
blocks must be retained because they are part of the physical
provenance of blocks B.([2]) and B.([0,2,1]).



