

THE ETHERNET-TO-PHONE TELEPHONY SYSTEM

By

Susheel Daswani, Sumit Bhansali,
Siva Gaggara, Ashish Shah, Satyam Vaghani

CS344: Projects in Computer Networks
STANFORD UNIVERSITY

Fall 2000

Acknowledgements

We would like to take this opportunity to thank Prof. Nick McKeown for inviting us to participate in the course
‘Projects in Computer Networks’. Prof. McKeown, your thoughtful comments helped us organize ourselves to
undertake a comparatively large-scale project.

Our ‘loud’ Wednesday afternoon meetings with Paul Hartke, the Teaching Assistant for the course, ensured
that our work was evenly paced out during the quarter and there was no need of a last minute rush. Thanks,
Paul.

The team is grateful to Prof. Henning Schulzrinne at Columbia University, NY, for granting us a license to
use the Columbia SIP library in our development. Acknowledgements are also due to Kundan Singh, his
student at Columbia University, for responding to all our SIP library related queries.

- S.D., S.B., S.G., A.S., S.V.

Table of Contents

Acknowledgements 2

1. Introduction 4

1.1 Problem Description and Overview 4

1.2 Our Solution 4

2. System Architecture 6
2.1 Design Choices 6

2.2 Client-Side Architecture 8

2.3 Gateway-Side Architecture 10

3. Implementation 14
3.1 Overall Status 14
3.2 Client-Side Implementation 18
3.3 Gateway Implementation 22

4. Walkie-Talkie Implementation 26
5. Contributions 27
6. Conclusions and Future Work 28

Appendix A. Dialogic Card Linux Software Installation 29
Appendix B. Messages from Dialogic Technical Support 30

References 32

1. Introduction

1.1 Problem Description and Overview

The Eth2Phone project was undertaken to solve a specific problem: the Gates Computer Science building
here at Stanford University affords its tenants a limited range of telephony options. Specifically, offices
shared by groups of graduate students are equipped with one telephone line, adding to the pre-existing
tension amongst this already disgruntled group of people. In stark comparison to this dearth of telephony
lines, offices are equipped with an abundance, if not an overflow, of data lines. Furthermore, these data lines
are serviced by a state of the art, very high performance Ethernet network. Given these parameters, the
Eth2Phone project team undertook the task of alleviating the severity of this situation by leveraging the data
services individual users have for telephony purposes. The Eth2Phone team is adding a high quality
telephony service to specific clients with access to a data line. Using clients supported by the Windows 2000
platform, people can dial into the Stanford University Telephony network, fundamentally turning their PCs
into a telephone.

This problem is an interesting one to solve because it demands that a heterogeneous set of tools be
integrated efficiently in order to provide this high quality telephony service to Gatesians. Modern software
engineering demands an integration of a diverse set of tools, platforms, and applications, as emphasis has
shifted from low-level issues to building larger and larger systems that provide new and once unattainable
features.

Moreover, this project is interesting because it necessitates that Eth2Phone design be an extensible system.
At every step, the team has sought to provide clean interfaces and components that are essentially ‘plug and
play’, allowing future software development teams to build upon our successes.

Lastly, the opportunity for innovation in the telephony field is also present, as we could add capabilities to
this telephony service that existing IP Telephony (Dialpad, Yahoo Messenger, etc.) networks have yet to
provide. In particular, we are building a infrastructure that will either incorporate or be very easy to extend to
support ‘incoming calls’: rather than just allowing PCs at Gates to make outgoing calls, allow these PCs to be
called by any phone.

The field of IP Telephony, though relatively new in the scheme of things, is quite mature. As previously
mentioned, various IP Telephony services exist to this day, the most notable being the DialPad.com and
Net2Phone genre. These services allow PC users to add a telephony interface to their clients, avoiding long-
distance fees. Moreover, various messaging protocols, such as AOL Instant Messenger and Yahoo
Messenger, have incorporated Telephony features. The maturity of this field was a boon to our development
cycle, as pre-existing tools addressed major issues a system of our type faces. Nevertheless, plugging all
these tools together has been the real challenge.

1.2 Our Solution

With our system in place, a Windows 2000 user can make a call from his/her PC to any telephone that the
Stanford telephone system allows one to connect to. The call is routed via a telephony gateway (a Linux box)
that connects to the Stanford PBX (Public Branch Exchange). An extension of our present system would
support incoming calls, where a user can receive a call on his/her PC. Also, PC-to-PC call capability is
automatically supported by the system. We describe the system architecture in detail later.

This project has been a systems-integration project. We wanted to provide a useful system in a short period
of time and did not want to reinvent the wheel. At the same time, we wanted the system to be extensible and
not be limited by the choice or state of the existing components that we decided to use. The project was
intended to be an open-source project that would be freely distributed with a license. We decided to build the
system around SIP (Service Initiation Protocol) and related sets of protocols. (A detailed section on design
choice follows). Columbia University has built an extensive system around SIP and we chose to re-use their
SIP implementation. This choice fulfills multiple goals: their code is under academic license for development,

the architecture is of the plug-and-play nature and is very extensible. We discuss later how we built our
system around the Columbia University’s SIP implementation.

2. System Architecture

A diagram showing the high-level system architecture is shown in Figure 1. Before we dive into the detailed
system architecture and implementation, we will discuss briefly the design choices that we made.

2.1 Design Choices

Why SIP and not H.323? SIP (Service Initiation Protocol) and H.323 are two major suites of protocols that
have been extensively used for IP Telephony systems. In our system, these protocols would be used to
handle call management between the client and the gateway across an IP network. The gateway would then
communicate with the telephony world. SIP comes from the “Internet World” and is the protocol promoted by
IETF, along with SDP (Session Description Protocol) that goes hand-in-hand and supports description and
negotiation of session parameters (media, formats etc.). H.323 is a suite of protocols standardized by ITU-T
(International Telecommunication Union, formerly CCITT). There are tools that support both the protocols
and systems have been built using both of them. One of the major benefits of SIP (and SDP) is that it is very
lightweight, simple and flexible. On the other hand, H.323 incorporates many ideas and is therefore a very
complex and heavyweight protocol. For example, H.323 specifies the protocols to be used for media
transport in addition to the signaling. With SIP/SDP, one can use either RTP/RTCP or any user defined
transport protocol (over, say UDP) for media transport. Another major weakness of H.323 (version 1) is the
call setup delay – it takes about 6 to 7 RTT (round trip times) to set up a call. In case of SIP/SDP, this delay is
just 1.5 RTT. Although H.323 has a huge installed base, more and more people prefer SIP/SDP for new
implementations. There are lots of resources on the comparison of the two protocols. After going over these
resources and talking to people in academia (Columbia University) and industry (Cisco Systems), we
decided to go ahead with SIP/SDP.

Choices for SIP implementations: Given that we had decided to use SIP, we had two main choices: build it
from scratch or use an existing SIP implementation. Various factors we had to consider included time of
development, maintaining the open-source goal of the system, and extensibility and modularity of our
architecture. We looked at a few choices of existing implementations: Columbia University’s SIP library
(libsip++, which is a part of the CINEMA system), DynamicSoft’s SIP user agent, SIP Center’s SIP API,
Vovida’s SIP implementation. We decided to choose Columbia University’s SIP library.

Why Columbia University’s SIP implementation? Columbia University’s CINEMA (Columbia Internet
Extensible Multimedia Architecture) is an extensive system for multimedia communication across the
Internet. It has been principally built around SIP. We decided to license (for academic use) their SIP
implementation library (libsip++) to build our system. The architecture is very modular and it has precisely
the components that were necessary. Also, our system fits very nicely into theirs. For supporting incoming
calls, we will use their implementation of the SIP redirect, proxy and registration server (sipd), which is also a
part of the CINEMA system.

By reusing the SIP code from Columbia, we reduced our development cycle considerably. We did not have
to re-invent what has already been built and tested and is available for non-commercial use. This gave us
time to incorporate interesting features and build a useful system in a short period of time. The library is
supported on Unix, Linux, and Windows NT machines, the systems that we were interested in building our
system around. The implementation is in C/C++, which is good considering the real-time nature of the
system.

Compared to the other choices of SIP implementations, Columbia SIP library fulfilled all the objectives.
DynamicSoft’s implementation is in Java. We considered using it on the client side, but discarded it once we
decided that Java was too slow for voice capturing. Also, they had a limited license of 90 days, after which
there was an “unspecified” amount of fee involved. The Vovida SIP implementation is also in Java. SIP
Center has no SIP implementation yet, just an API. Thus Columbia SIP library was the natural choice.

We should point out that using an existing system and building around it was not as simple as it initially
seemed. Understanding the Columbia system took a considerable amount of time, as did the design of an
extensible system that interfaced to their SIP library.

Soundcard on the
user machine

MMSystem, SIP and Telephony API

UDP based voice
transport

Client GUI

SIP User Agent

Gateway SIP
User Agent

UDP based voice
transport

Glue mechanism Dialogic Service
API

P S T N

Sipd (SIP Server) LDAP

Microphone Input

Speaker Output
Client

Gateway

Figure 1. The Eth2Phone System Architecture

Voice Transport:

Currently we plan to use UDP as the transport protocol. Since the assumption is that the network
communication would be over a fast (10MBPS – 1GBPS) and reliable (department & campus LANs) network,
the chance of packet drops and reordering would be minimal. However, if required, moving to protocols like
RTP/RTCP over UDP would be very simple. RTP/RTCP take care of reliably transferring data across the
network, including taking care of reordering of packets. Between the extremes of RTP/RTCP (a sophisticated
protocol) and UDP (no protocol), we also propose a middle-ground simple protocol over UDP that takes care
of packet reordering using sequence numbers but has no other overhead from RTP/RTCP. The header of
this protocol would look like:

V Seq
? ------------------------------------32 bits-------------------------------?

V = 2 bit version

Seq = 30 bit sequence number

2.2 Client-Side Architecture

In light of our desire to build a component based, ‘plug and play’ system, the client side architecture has
clear division between three elements: user interface, sound capture and playback, and call management
and voice transport. Two Application Programming Interfaces (API) separate these components.

Figure 2. Client-Side Architecture

User Interface (UI)

Our UI will consist of an abstraction of a Telephone. The important thing to point out here is that the User
Interface is not architecturally important to our system – anyone can build any sort of UI once given access to
the Phone API.

Phone API

This API provides a black box that resembles operations one can perform on a phone. All APIs displayed are
not exactly the APIs exposed by our system; rather, they are abstractions that serve the purposes of this
discussion.

Phone API {
 call(PhoneNumber number);
 hangup();
 pickup(); // for an incoming call
}

The API is simple; it provides a neat abstraction for different application developers to deal with.

User
Interface

(GUI) Phone API

Phone API Implementation
Platform

Specific Sound
Capture and

Playback

Call Mgmt. & Voice
Transport API

Call Mgmt.
& Voice

Transport
Impl.

Phone API Design

The design of the conceptually clear Phone API consists of two main components, separated by another
API. We felt this was necessary, as our research showed that sound system access varies among different
platforms. Contrary to the platform specific nature of sound capture and playback, call management and
voice transport could be more easily ported across machines. Nevertheless, strategies for implementing call
management and voice transport can easily vary. This fact further testified to the need to separate these two
components, as new strategies for call management and voice transport implementation should not affect
the implementation of sound capture and playback.

Sound Capture and Playback

This component provided some controversy for our project. At first, it was hoped that a platform independent
solution could be found (i.e. “one client fits all”). The Java Sound API is platform unspecific and easy to use.
Unfortunately, it suffers from performance issues that were deemed too negative to justify its use. In the
future, we hope that new implementations of this API will provide better results; this would more easily
extend use of Eth2Phone across a heterogeneous user base.

With that said, an efficient, platform specific, solution was found. Using the Multimedia Sound System API
(mmsystem.h) under Windows 2000 (Service Pack 1) yields excellent results. It is hard to say at this point
how small the overall voice delay in our system will be, but it is clear that any delay will not originate from the
client application.

A more complete discussion of the Sound Capture and Playback piece, including experimental data, can be
found in the Client Side Implementation section.

Call Management and Voice Transport API

This API hides a lot of the details regarding call setup, teardown, and voice transport during calls. It can be
viewed as an extension of the Phone API with a more details about voice exposed.

TelephonyEnabler API {
 registerCallBack(TelephonyPeer);
 call(PhoneNumber number);
 hangup();
 pickup(); // for an incoming call
 codec(); // for alternate voice representations
 sendVoice();
}

TelephonyPeer API {

sendVoice();
notifyIncoming();

}

The Call Management and Voice Transport component is a TelephonyEnabler, allowing a user to initiate
calls, hang up calls, pickup incoming calls, and send voice data. The sound component is a TelephonyPeer
that registers itself with the TelephonyEnabler; this provides hooks for duplex voice conversations and
incoming calls. The codec() method provides functionality that allows users to convert from a non-supported
sound representation to the one used by the Eth2Phone network.

Call Management and Voice Transport

This component provides a lower level abstraction of a Telephone to the sound component, as can be seen
in the TelephonyEnabler API. Our specific implementation uses a pre-existing tool (SIP) from Columbia
University for call management. The voice transport feature is implemented with a simple, open source,
UDP-based protocol tailored to run on the Gates high performance Ethernet.

2.3 Gateway Architecture

The gateway consists of two major components: the SIP User Agent (sipua) and the Telephony Card
hardware/software (In our case the Dialogic API). The sipua interacts with the client sipua across the
network using SIP/SDP. This is built around the Columbia University’s SIP implementation [Columbia SIP
Library]. The other component is the Dialogic API that talks to the Dialogic card that connects to the Stanford
telephone system on the gateway. For incoming calls, a directory service (e.g. LDAP) that resides on a SIP
server (sipd of Columbia University) can be easily integrated to our system.

The gateway supports multiple simultaneous calls, bounded by the number of telephone channels available
to the dialogic card. The multithreaded implementation of the gateway is described in the implementation
section.

The SIP User Agent (SIPUA)

Outgoing Calls: When a PC user initiates a call, the client side sipua initiates a “sip call” with the gateway
side sipua. The request contains the phone number to be called. Through the SIP library, the gateway code
receives this request and makes a call setup request to the Dialogic API, which checks if there are any
telephone channels available to make a call. If there is one, a telephone call is initiated with the remote
telephone user. If the user picks up, the Dialogic API returns success and in turn, the SIP call between the
client and the gateway sipua’s is set up. At this time, a voice transport channel is also set up between the
two sipua’s and voice transport is activated between the gateway sipua and the dialogic card. Note that the
SIP call between the two sipua’s is set up only after the dialogic card sets up a telephone call to the remote
user. We chose to do the call setup synchronously rather than asynchronously (i.e. complete the SIP call
before the telephone call is setup) because the former is more logical as well as straightforward to
implement: we can use the SIP signaling functions to describe call setup success and failures on the PSTN
side (as in the former case) rather than do it otherwise (as in the latter case).

Either side can terminate a call. If the PC user decides to terminate the call, a SIP “BYE” message is sent via
the client side sipua to the gateway sipua. The gateway terminates the call to the remote telephone user and
also closes the SIP call. If the remote telephone user hangs up the phone, the Dialogic API returns this
condition and a “BYE” message is sent to the client sipua to terminate the SIP call.

Incoming Calls: Incoming calls are handled asynchronously rather than synchronously between the PSTN
and the IP network (using SIP). An incoming call is detected by the dialogic card, which alerts the gateway of
this condition. The gateway completes the telephone call by accepting the call and asks the remote user to
enter an extension number. A telephone number dialed by a caller from the PSTN is used to reach the
gateway. From there on, an extension number is used to identify a specific user. We could also provide an
extensive directory service that uses names to identify a user. Once the gateway has the extension number,
it contacts the SIP server (sipd) to lookup a user’s current location (IP address). We assume that the users
would keep the SIP server up-to-date about their location. After having found the IP address, the gateway
initiates a SIP call to the client sipua on the user’s machine. If the user accepts the call, the SIP call is
successfully set up and voice transport is initiated between the two sipua’s as well as between the gateway
sipua and dialogic. While the call set up is in progress, the telephone user is played a recorded message
(e.g. “Please wait, your call is being processed”). The call termination would work in a similar way as the
outgoing calls.

Transcoding of Media Formats: SDP (Session Description Protocol) can negotiate media formats that must
be used between the gateway sipua and the client sipua. If a client does not support the default media
format, the gateway can transcode the media format to the one supported by the client. Currently, we
assume that the gateway would be powerful enough to do this transcoding on the fly without introducing
huge amount of delay. In future, we might consider putting this functionality to a different machine and use,
for example, RPC to get transcoding done. There is an API built into the Gateway to select appropriate
transcoders as well as add more transcoders.

ACK

200 OK

BYE

ACK

200 OK

180 RINGING

100 TRYING

INVITE

Figure 3: SIP Call - Illustrated

Gates PC Eth2Phone Gateway POTS Access point

Ringing

Call Answered

Dial

Conversation

Hang-up PSTN Circuit
teardown

 Session End

Please note: The transmission delays (slopes) do not represent actual transmission delays on the eth2phone target
network. This diagram is for SIP illustration purposes only. It is not suitable for use as a benchmark. Also, the
transmission sequence illustrates the duration of an ideal call – it does not take into account the intricacies of UDP packet
loss and re-transmissions. These details are not relevant to the topic being discussed in this diagram.

Dialogic :

D/21H and D/41H cards:

The gateway connects to the PSTN (Public Telephone Switched Network) through a card that serves as the
interface between the analog phone line and the gateway. We are using the Dialogic D/21H high-
performance 2-port voice processing board, as the interface between the phone network and the computer.
Though only two simultaneous calls can be supported with the 2-port D/21H card, it is possible to support 32
simultaneous calls by installing 16 D/21H cards in a single host. In fact, it is possible to support up to 64
simultaneous calls by installing 16 D/41H, which have four ports per card.

Voice encoding and sampling rates:

D/21H card provides flexible voice coding at dynamically selectable data rates. Four data rates are
supported: 24Kbps, 32Kbps, 48Kbps, and 64Kbps. Two voice coding schemes are supported:
ADPCM (Adaptive Differential Pulse Code Modulation) and PCM (Pulse Code Modulation). 6 KHz and 8 KHz
sampling rates at 4-bit and 8-bit per sample encoding are supported. Several flavors of PCM are supported.
These include linear PCM, ? -law PCM, and A-law PCM. ADPCM is the default encoding for recording and
playback; however, with its 2:1 compression, ADPCM is not as good as linear PCM as far as voice quality
goes and so, we decided to support linear PCM as the default. We record in wave format to send to the client
and play back in vox format to the person on the phone. Vox is a special dialogic format that is suited for
playing digital voice on the phone line. It is important to use the same sampling rates and encoding schemes
in both recording and playback. The gateway must transcode the voice data from the client to what is
supported on dialogic. For example, if the client transmits voice data using GSM encoding which is
unsupported on dialogic, the codec in the gateway must convert the voice data from GSM to one of the
formats supported by dialogic.

Hardware architecture:

The card communicates with the host through the PC XT/AT bus. There are two on-board processors:
control processor and the Motorola DSP processor. The control processor that serves as the central control
point (brain) of the card connects to the XT/AT bus through the IRQ line. Multiple cards if used will all share
the same IRQ line. The DSP processor connects to the control processor through a control bus on the board.
Both the DSP processor and the control processor have their own RAM. The DSP performs the following key
functions:

- Expansion of stored, compressed audio data for playback.
- Compression of audio data captured during recording.
- Generation of DTMF tones.

The DSP processor connects to the CODEC (coder/decoder) that in turn connects to the line interface, which
is connected to the PSTN network. The CODEC filters, samples, and digitizes the incoming analog signal
and also converts the outgoing digital signal into analog form. When the card is initialized (turned on), the
dialogic SpringWare firmware is downloaded from the host to the on-board data RAM and DSP RAM to
control all board operations. Before running any application, it is important to turn on the card by running a
particular command (described in the implementation).

How the dialogic card works?

The D/21H card can place outgoing calls and receive incoming calls.

Outgoing calls:
The card can dial out an ASCII string of digits by generating the DTMF tones corresponding to the digits.
The phone is set off-hook before dialing out the string of digits. If there is some problem in setting up the call
and call analysis feature has been enabled, the reason for failing to finish the call-setup is returned to the

application. There are several reasons for call-setup failure. The called party could be on the phone already,
in which case a busy tone would be detected. The dialed number given is not a valid number. Nobody picks
up the phone on the other hand, in which case there is a timeout after a certain number of rings. Appropriate
error codes are returned in each of the above cases to signal to the application the cause
of failure.

Once a call is setup, it is possible to play voice data from the host buffers to the callee and record voice data
to the host buffers from the callee. The firmware buffer, whose size is programmable from 128 to 512 bytes,
captures the voice from the callee. The data is then transferred to the driver buffer before being recorded to
the application buffer (host buffer). The size of the driver buffers is also configurable to any value between
256 bytes and 16KB. The voice data from the caller follows the same path in the opposite direction (from the
host buffer to the driver buffer to the firmware buffer). Since the D/21H card is half-duplex, it cannot play and
record sound data on the same channel simultaneously. So, play and record operations need to be
alternated in the same thread. Even with alternating play and record, the quality is very bad, because the
same buffers are apparently used for both recording and playback. The call is terminated when either party
hangs up. The card then performs any necessary cleanup to prepare for the next call.

Incoming calls: The card can receive incoming calls by waiting on the channel for a ring. Once the call has
been received, voice recording and voice-playback is the same as the recording and playback in the
outgoing calls case. The call is terminated when either party hangs up. When the call is terminated, the
dialogic card performs any necessary cleanup to prepare for the next call.

 Why use a hardware-independent API?

We have created a hardware-independent API to allow the gateway SIP user agent to seamlessly integrate
with the telephony card that interfaces to the PSTN network. A hardware-independent API makes the
system more usable by removing any dependence on a particular card. A module that satisfies the defined
API can be written for a particular telephony card and plugged into the system. The hardware-independent
API thus makes our system a plug-and-play system that is extremely flexible and highly usable. The API
makes no reference to any of the hardware-specific features, and the hardware-specific module does all
hardware-related initialization and control. The API increases the readability of the main gateway program
and provides a useful layer of abstraction by hiding away the hardware details from the SIP user agent.

The implementor of the hardware module also needs to provide the header file that will be included by the
main program. Since dialogic does not run in its own process and communication between the card and the
main program occurs through callbacks, a call-information structure defined in the hardware-specifc header
file needs to be passed with each function call made by the main program to the card. However, the main
program does not ever need to look inside the structure or do anything else with it. The structure is merely to
help the card keep track of which call is being referred to by the main program. For all intensive purposes,
the structure serves as the call identifier.

3. Implementation

3.1 Overall Status

On the client side, every piece has been completed. The sound capture & playback component and the SIP
component have been successfully integrated: Full duplex PC-to-PC calls are a reality. On the gateway side,
we have completed the testing of signaling (call setup and teardown) between a client sipua and a remote
telephone. The client and the gateway have been integrated; a PC can, via the gateway, call a phone. So,
outgoing calls from the client to the phone are now supported. We have implemented the incoming call
handling functionality on the gateway. At the time of writing this report, the incoming call implementation was
being tested.

Client
GUI +
Audio

Handler

Client -
side SIP

User
Agent

SIP
Gateway

Agent

Main Call
Handler
Thread

(one per
call)

Recorder
Thread

(one per
call)

Player
Thread
(one per
call) +
codec

Dialogic
Card

Service

PSTN

(Telephone/

Legend:

 Direction of flow of voice data

 Control signal pending/ waiting to be serviced

 Direction of flow of control information (session initiation, media setup, signaling)

Components not present (instantiated) at a particular point of time

At a given instance, components which are instantiated but are passive/listening for activity

Figure 5. Thread interaction on a synchronized timeline

Please Note: This diagram illustrates the capability of the architecture. There is a provision for all the
illustrated components in our current implementation but some components (for e.g. dual threads for voice
transport on the gateway are not used in the light of the hardware used).

1
A user dials a number to set up a call. The eth2phone gateway is listening for new
connections. No other threads except the listener threads exist in the system. The
telephone network is on standby with respect to the eth2phone system. The client
side GUI requests the client side SIP user agent to contact the gateway and set-
up the call. The GUI can request call setup services through predetermined
access points in the API.

2
The client side SIP user agent contacts the gateway UDP listener with a SIP
INVITE. Meanwhile, the request from the GUI is considered to be pending
because the reply to that request depends on the result of the gateway response
to the client side SIP user agent. In effect, the client side SIP user agent has
forwarded the call request to the gateway and blocked the client side GUI until
response is received.

3
A call handler thread is spawned on the gateway to try to complete the client
request. The call handler, in turn, checks with the dialogic card whether phone
lines are available to serve the client.

4
Now that a separate thread is servicing the client request, the gateway listeners
switch back to ‘listening’ state. Provided a channel is available to make the call on
behalf of the client, the call handler thread routes a call through the dialogic layer
into the PSTN. Please note that the column marked ‘Dialogic Card Services’
presents itself as a black box to the eth2phone system through a standardized
API. For practical purposes, the gateway calls can be considered to be tunneled
through the Dialogic card.

5
If the Dialogic service is able to setup a call, it’ll signal the call thread to finish the
call setup on the Ethernet side.

6
The client request is serviced and acknowledged. The player and recorder threads
handle voice data throughout the duration of the call. The two threads
communicate with Dialogic on one side and with the client voice transport handler
on the other side. The main call thread still maintains a control channel with the
client. This channel will be used to signal the end of call later. The main thread
also maintains a control channel with Dialogic so that it can be notified if the call
ends from the PSTN side.

Figure 6: Thread Synchronization explained

3.2 Client Implementation

Client Installation

To use the Eth2Phone client, perform the following steps:

1. Install Windows 2000 on your T1 enabled PC.
2. Go to www.microsoft.com and download Windows 2000 Service Pack 1. Install it.
3. Get the Eth2PhoneClient.ZIP file and use WINZIP to unpack it to any directory you wish. Copy the

DLLs provided in the zip file to your WINDOWS/SYSTEM32 directory.
4. Run Eth2PhoneGUI from the directory you unpacked the ZIP file in.

To develop client applications and/or modify the SIP or sound code, follow steps 1 and 2 from above. Then:

1. Unpack the Eth2PhoneClientCODE.ZIP file into the directory of your choice. Be sure to read
README.TXT.

2. Install Microsoft Visual C++ on your system (6.0 or higher).
3. To modify the sip portion of the client, open libsipclient/libsipclient.dsw. Any new library file produced

by this compilation should be copied to the Eth2PhoneGUI/LIBS directory. Then, build a new
executable of the client; open Eth2PhoneGUI/Eth2PhoneGUI.dsw.

4. To modify the GUI, open Eth2PhoneGUI/Eth2PhoneGUI.dsw. This code links with the libraries in the
LIB directory.

User Interface

The layout of the Graphical User Interface is very simple and intuitive.

This tool will allow convenient access to the Eth2Phone network.

Sound Capture and Playback Implementation

Java Sound API: Even though the Java Sound API was not used in our implementation, it is instructive to
talk about our experiences with it. The Java Sound API allows application developers to write sound
applications that are portable and hardware unspecific. The three major Operating Systems – Windows,

1 2 3

4 5 6

7 8 9

* 0 #

7322137928

Dial Hangup
/Quit

Phone ready: dial number

Answer

Solaris, and Linux – all have a Java Sound API implementation. Given this fact, it is obvious that we thought
first of using this package to implement the Sound Capture and Playback portion of our client; supporting a
heterogeneous client base would be trivial. Nevertheless, the client needed to capture and playback any
sound data without noticeable delay.

To test the efficiency of the Java Sound API, we built an experimental application called SpeakPlay. The
SpeakPlay application used the Java Sound API to capture one’s voice from the PC’s microphone input and
immediately send this data to the speaker output. The implementation of this application was ‘no frills’; any
delay experienced would be inherent in the Java Sound API Package.

The results of this test showed that Java Sound API, while extremely easy to understand and use, is not the
best solution to problems that demand real time sound sensitivity. The simple SpeakPlay program would
exhibit delays from anywhere between 500ms and 1.5 seconds (i.e. when you spoke into the microphone,
the playback of your voice noticeably lagged). Voice quality and continuity were good, but the latency issue
effectively overruled using the API for our client implementation.

MMSystem Sound API: The implementation of the Sound Capture and Playback piece is highly dependent
on the Windows MMSystem API. This interface allows two important operations to be carried out:
WaveInWrite(DataBuffer b) and WaveOutWrite(DataBuffer b). The WaveInWrite function writes the
DataBuffer buffer with WAV data from the system’s microphone. The WaveOutWrite function writes (plays)
the DataBuffer WAV buffer to the system’s speakers.

The basic operations of this component consist of filling an array of buffers with microphone WAV data
(voice capture via WaveInWrite) and then funneling this data to the telephone session peer via the
TelephonyEnabler interface (via sendVoice() method). Moreover, playback is accomplished via registration
of a local object (a TelephonyPeer) as a callback to TelephonyEnabler. The TelephonyEnabler
implementation then calls the TelephonyPeer sendVoice() method to affect playback of the telephone
session’s peer input data. In turn, WaveOutWrite is called with this data.

Direct access to the sound system via the MMSystem API is a mixed bag. The API is not the most easy to
use, and as has been previously noted, it is hardly portable. This portability isn’t only a problem for Linux and
Unix platforms; older versions of Windows do not seem to provide the same results we have witnessed on
the Windows 2000 (Service Pack 1) system. Given that, performance on this restricted platform is excellent.

The SpeakPlay application that was implemented using the MMSystem API exhibited the precise behavior
that was necessary. As you speak, the speakers more or less instantaneously playback your voice. The key
to discovering this good performance has to do with n-buffering, a variation of the common double buffering
strategy. It is common when accessing low-level devices to double buffer; to provide a buffer to the device
for writing its data to, while processing a buffer that was already filled by the device. We provide more than
two buffers to the sound device; 128 buffers results in great performance. Moreover, the size of the buffers
provided affects voice quality and latency. A larger buffer size would result in higher voice quality while
increasing the playback latency, and vice versa. The magic buffer size we discovered is 160. 128 buffers of
length 160 bytes resulted in the low latency telephony client.

In the future, we hope to support more platforms, either via use of an efficient, portable sound API or adding
support on a platform-by-platform basis.

Call Management and Voice Transport Implementation

The implementation of call management is dependent upon the libsip++ API provided by the Columbia
group. The underlying API implements SIP protocol for call management.

The handle provided by the API is the class SIPCall with virtual methods for application specific
implementation. So our implementation extends the above class and overwrites the virtual methods
according to our needs. Some of the important virtual methods of the SIPCall class are

OnNewIncomingCall: The library calls this when the remote user attempts to call the local user.
OnHangup: The library calls this when remote user hangs up the ongoing call.
OnCallEstablished: The library calls this when the remote user accepts the requested call and call is
established.
OnCallRejected: The library would calls this when the remote user rejects the requested call.

The above methods are passive methods and are initiated by the remote user. There is a set of active
methods provided by the API for actions initiated by the local user. Some of the important methods are

Initiate: This sends an invite to the specified location.
Accept: This accepts the incoming call.
Reject: This rejects the incoming call.
Reinvite: This sends duplicate invite to the same location. This is helpful in dialing extra digits like PAC.

The classes provided by the API that deals with the session description and media formats are
SessionDescription and MediaInfo respectively.

The implementation of Voice Transport has been done using a simple UDP-based protocol. The voice
transport provides an API for the call management. The important methods provided by this API are

RegisterCallBack: This registers a call back object required for dealing with the received voice data.
StartListenerThread: This starts a thread that listens for the incoming voice data at the specified port.
SendVoice: This method sends the voice data to the specified location.

Platforms on which the code is compiled and tested: Solaris, Linux and Windows NT.

In the future, we plan to expand the API provided by the call management to include features like multiple
simultaneous calls, call waiting, answering machine etc. We are also planning on providing a Java API using
JNI in order to integrate with already implemented Java sound clients.

The following figure shows the interaction between call management, voice transport, and sound
component.

The Gates Ethernet

Figure 7: The Client Implementation

Sip Library Voice Transport

Initiate Call Call Response

Call Management

Windows sound system

SendVoice

Callback Function

SendVoice

PlaceCall

SIP

Voice

3.3 Gateway Implementation

SIPUA

The Columbia sip library (libsip++) is a C++ interface to a C implementation. The library supports SIP RFC
2543. The Columbia package also includes a sample SIP user agent built using the SIP library. We have
built our gateway based on this user agent. Specifically, the library supports multiple simultaneous calls, but
the example sipua supports only one. We have modified that to support multiple simultaneous calls. Also,
there is a sample implementation of RTP (without RTCP) for voice transport. We have re-written the voice
transport part to use UDP. Also, we have integrated this gateway code with the dialogic API.

Multithreaded Architecture of SIPUA: Libsip++ functions are thread-safe. In other words, it supports a
multithreaded SIP service implementation. When the gateway starts, it instantiates a UDP and a TCP
listener threads, which wait for incoming client requests (we use only the UDP listener thread).

OutGoingCalls: For every request from sipua client (including one for a new call setup, call teardown,
acknowledgements etc.), the library spawns a new thread for processing it. In case of a new call request, a
CallThread is instantiated, which stays until the call terminates (successfully or unsuccessfully). This
CallThread is responsible for handling all requests for this call from the client side as well as those from the
Dialogic side. Thus, there is one thread per call that stays until the call terminates.

After the CallThread is created for a new request, it requests dialogic to setup the telephone call. If the call
setup succeeds, the CallThread sends acceptance (a SIP “OK” message) to the client side sipua using the
library API. (Note that the library creates a new thread for handling every request and response). At this
time, the CallThread starts voice transport thread(s). Since the dialogic card is half-duplex, in the current
implementation, there is only one thread that handles communication from the network to the dialogic card
(play) as well as the communication from dialogic to the network (record). In the ideal case if a full-duplex
telephony card that supports streaming of voice, there will two independent voice transport threads: one for
voice transport in each direction. Currently we have written a voice transport implementation for the walkie-
talkie application (described later). We have written a skeleton implementation for the full-duplex streaming
case.

While the call is active, the CallThread thread simply waits for more signaling commands and don’t play a
part in the call. If the PC client terminates a call, the CallThread receives a “BYE” message. It terminates the
call on the PSTN side as well as the SIP call between the two sipua’s and stops the voice transport
thread(s). Similarly, if the PSTN user hangs up the call, dialogic card calls a callback function in the gateway,
which terminates the call on the PSTN side, stops the voice transport threads and sends a BYE via the
CallThread to the PC client and terminates the SIP call.

Incoming Calls: For every incoming call the Dialogic thread would create a new gateway object. The
gateway object in turn would create the Call Thread which stays till the end of call. Then the Dialogic thread
would call the appropriate method of the created object for completing the call from sip gateway to sip client.
This method would lookup for the IP address of the given extension number and place a call to that sipua
client. The rest of the communication would be similar to the out going call described above.

Note that the multithreaded architecture of the library was already present. Our contribution is to implement the
multithreaded gateway. Although small in terms of amount of code, the design took lots of time and thinking. We made
sure that the design was as clean and extensible as possible. Another thing we decided was not changing the sip library
code. We, instead, used the existing API to build the gateway. This would aid to us to easily interface our code with
other parts of the Columbia’s CINEMA system and any of the future additions to the sip library.

On incoming call

Current implementation

Dialogic
Services

Incoming
Call

SIP Gateway Main Thread

TCP
Listener

UDP
Listener

Incoming
TCP/UDP
SI Requests

Incoming Call
Listener

Main Call Processor
Thread (one per call)

One set of call processor threads

Play Thread + Codec

Record Thread

Buffer

Components not yet implemented

Figure 6: The Eth2Phone Gateway

Library

Application

This is
supported

Dialogic Module Implementation

The card allocates the physical channels to the calls and frees them when the calls are terminated. A global
channel-array structure is used to keep track of the channel states. Since the card needs to support multiple
calls at the same time, the channel-array structure needs to be thread-safe. To allow only one thread to
update the state of the channels, locking mechanisms are employed. Simple mutexing is sufficient to ensure
the integrity of the channel-array structure.

The dialogic module adopts a combination of synchronous and asynchronous programming models. In the
synchronous programming model: all calls are blocking i.e. they return only when the function terminates
normally. In an asynchronous programming model, all calls return immediately. In an asynchronous
environment, the dialogic module will be registering event handlers to handle the termination of function
calls. The module needs to poll the system for events, since the termination of function calls is
communicated as events. When the events are received, the event handlers are called and appropriate
actions are taken. We have used synchronous play, which means that the call to play returns only when the
buffer has been completely played out. On the other hand, we use asynchronous record, which means that
the call to record returns immediately. The card then waits for a record-termination event. A record-
termination event could be something like the buffer is completely filled up or the user pressed a number on
the phone. These events are specified in a special termination-events-specification structure. An event-
handler that had been registered with the card before the call to record is invoked when one of the
termination events is received. The handler can recognize which channel the event was received on and
also what specifc event caused it to be invoked. It can then take appropriate steps to handle the specific
event.

The dialogic module registers handlers for hangup events (that is indicated by zero loop current) to handle
call-termination and ring events to receive incoming calls. A number is dialed through a synchronous dial-out
function call. With call-analysis enabled, the dial-out function returns the status of the call. So, information
like the line is busy, there is no ringback, nobody is picking up the phone can be obtained and passed on to
the client.

Outgoing calls:

When the client wants to dail out a number, the card is given an ascii string of digits to dial and set up the
call. First the channel is opened and set on hook to get ready to dial out the number. If the number is
succesfully dialed out, the channel is placed off-hook and the call-setup completes. If either party hangs up,
all I/O on the channel is immediately stopped and the channel is placed on-hook.

Incoming calls:

The dialogic module waits for a ring event on the channel. When the ring is received, the ring-handler is
invoked, which picks up the call by placing the phone off-hook. If either party hangs up, all I/O on the
channel is immediately stopped and the channel is placed on-hook.

The dialogic card does all the channel-state-management: before dialing out or picking up an incoming call,
the module makes sure that the channel is free. Similarly, the channel is freed when a hang-up event occurs.

The gateway application can be run from user-level; however, only an administrator with root privileges can
start the dialogic card (turn it on). More information about installation and turning on the card will be included
in the appendix.

The following functions are provided by the hardware-independent API.
int initialize_hardware()
Input : None
Output : Error code (0 if Success and –1 if Failure)
Function : The telephony card module is initialized using this function. Any configuration or setting of
 global variables are done by this module.

int dial_out(char *dial_out_num, CIB *cib, int *call_status)
Input : String of digits, pointer to Call-Information-Block (CIB) and pointer to the status of the call.
 The CIB structure is used by the hardware-specific module to store all the information related to
 the call. Each call is associated with its own CIB structure.
Output : Error code (0 if Success and –1 if Failure)
Function : This function is used to dial out a telephone number. The result of dialing is returned in the
 call_status parameter. If the call is setup, appropriate structures are modified to indicate that the
 channel that the number was dialed out on is now in use.

int end_call(CIB *cib)
Input : Pointer to the Call-Information-block.
Output : Error code (0 if Success and –1 if Failure)
Function : This function is used to terminate a call. Any cleanup associated with the termination of the call
 needs to be done by this function.

int play(char *buf, int buf_length, CIB *cib)
Input : Pointer to the buffer that contains the voice data to be played out, length of the buffer, and
 pointer to the call information block.
Output : Error code (0 if Success and –1 if Failure)
Function : This function is used to play out the data contained in the PC host buffer on the phone line.

int record(char *buf, int buf_length, CIB *cib)
Input : Pointer to the buffer that the voice data will be recorded to, length of the buffer, and pointer to
 the call information block.
Output : Error code (0 if Success and –1 if Failure)
Function : This function is used to record the voice data from the phone line to the PC host buffer.

4. Walkie-Talkie Implementation

There were several obstacles that we faced during our implementation of the gateway. Originally, we had
planned to support PC-phone calls, where two parties would be able to speak to each other as in a normal
phone conversation. However, late in the quarter, we realized that the D/21H card that we had was a half-
duplex (e-mail from Dialogic folks is in the appendix) card that could not simultaneously support recording
from and playing to the PSTN network. We also realized that the card that we had was incapable of playing
recorded voice immediately to the client, because there seemed to be no internal buffering of the recorded
data between subsequent calls to the dialogic record function, and the switching time from one record call to
another was substantial enough to cause a drastic degradation in the quality of the voice received on the
client. In our experiments, we also tried out a rapidly alternating play and record sequence on the same
channel, but the quality was unacceptable. The experiments also confirmed our doubt that the card was half-
duplex. Though we had implemented a hardware-independent API and we could have substituted the
Dialogic card with a Teltone card, we decided against doing it, as we were short of time, and we believed
that notwithstanding the hardware-independent API, it would take us at least two weeks to become familiar
with the Teltone card and implement the hardware-specific Teltone module that would implement the
required API. Also, the Teltone modem routes voice through the sound-card of the server. This essentially
means that only one call can be supported at a given time. Such a setup would do injustice to the
multithreaded nature of our gateway. In light of the above reasons and because we wanted to demonstrate
signaling and basic PC-phone voice transport before the quarter was over, we went ahead and implemented
a restricted form of walkie-talkie that had the following functionality:

The client would be able to dial out a phone number and connect to a person on a phone. The person on the
phone would then speak and end his/her voice recording by pressing a button on the phone. The button-
press would terminate the recording and send the recorded data to the client for immediate playback. After
the voice data from the gateway would have been played to the client, the client would be able to start
recording on its end and terminate the recording with a number-press. The recorded data would then be sent
to the gateway, which will play out the recorded voice on the phone line immediately. The back-and-forth
one-way conversation would continue until either party would decide to hang up.

The gateway would also be able to receive an incoming call from the PSTN network. The functionality in this
case would be the same as in the outgoing calls case except for two details: first, the person on the phone
would be required to enter four digits (to identify the callee) and second, the PC client and not the person on
the phone would begin the conversation in this case. So, it is always the callee who is allowed to record first.
The digits entered by the caller to identify the callee form a string, which is used to lookup a table that
contains the mappings between the strings and the IP addresses of the clients.

Since our client can play linear PCM (Pulse Code Modulation), we record in linear PCM (WAV format) on the
gateway. For playback on the phone line, we use the linear PCM VOX format. For both playback and record,
we use 8-bit encoding at 8KHz sampling rate. The playback on both the client and the phone line is of
reasonable quality.

A reason why the D/21H card might have been unsuitable for our project is because the card is primarily
intended for IVR (Interactive voice response phone applications) that do not involve bi-directional
conversations.
To be able to implement the complete eth2phone functionality, we would need a full-duplex card meant
specifically for CT (computer-telephony). Dialogic industry-grade SCSA™-architecture-based voice
processing boards with resource sharing CT Bus™ for call switching and resource-sharing applications
would be ideal for our CT application. An example of such a board is the D/120JCT-LS™ . A much better card
solution would be the Dialogic DM3 IPLink that is a single-board solution for voice and fax over PSTN and
IP.

5. Contributions

The team as a whole played a role in the important aspect of the design of the whole system, including the
choice of the platforms (with guidelines from the Professor and the TA), the choice of the programming
language(s), the choice of SIP as the protocol, Columbia SIP library as the choice of SIP library. Various
members also worked on tasks like Linux and Windows installation and in general, getting things to work.

Client : Susheel and Siva
Gateway: Ashish, Satyam, and Sumit.

Susheel: Designed and implemented the voice capture and playback module on the client.
Siva : Designed and implemented a SIP user agent on the client.
Ashish : Designed and implemented multithreading of the gateway sipua.
Satyam: Designed and implemented the voice transport module on the gateway.
Sumit : Designed and implemented the dialogic services on the gateway.

6. Conclusions and Future Work

The Eth2Phone team views this project as a success. While we were not able to achieve our original goal of
implementing full duplex calls between a PC and the PSTN, we feel our architecture is capable of such
behavior. Given more time and some more advanced hardware, the telephony gateway would be a reality.
Moreover, PC-to-PC phone calls are well supported by our clients, and the walkie-talkie application we’ve
built to utilize our half-duplex dialogic card is a testament to the adaptability of our gateway architecture.
Lastly, the completion of incoming calls to a PC is a significant accomplishment.

In the future, we’d like to make full duplex calls a reality, probably by integrating available hardware (i.e.
Teltone Modem) into our system. Moreover, there are some novel application areas we’d like to explore.

All members of the Eth2Phone team thoroughly enjoyed this project. Though there were some issues that
we’d rather have avoided (i.e. installation problems, half duplex nature of the dialogic card), we all learned a
lot. In the area of IP telephony we are all a great deal more knowledgeable. Furthermore, we all got hands-
on experience on the process of team-based large-scale software development. All in all, we had a great
time with this project, and hope to steer it further in the future.

Appendix A: Dialogic Card Linux Software Installation

There are two keys steps to installing the Linux software (Release 5.0 for Red Hat Linux 6.2) for the dialogic
card.

Installing Linux Streams

Obtain LiS Version 2.8 from the GCOM, Inc. website at this address: ftp://ftp.gcom.com/pub/linux/src/LiS/
The file is in the form of a compressed file called LiS-2.8.tgz. Place this file in /usr/src/ and unpack it into
directory /usr/src/LiS-2.8 with the command tar -xvzf LiS-2.8.tgz
Detailed instructions about downloading and installing Linux Streams can be found at:
 http://www.gcom.com/LiS/Downloading.html
 http://www.gcom.com/LiS/Installation.html

Choose the default answers to all questions during the installation except for the following question :
When you make STREAMS, do you want to use backward compatible constraints in the file stropts.h?
Though the default answer is ‘N’, choose ‘Y’.

Installing the Dialogic software

You must register on support.dialogic.com before you can download the software. After registration,
download the file (REL50_LINUX.tar.gz) into a temporary directory on your hard drive. Extract the rpm
packages, the install script, and the documentation by unzipping and untarring the .tgz file. It is important to
be root before you proceed with the installation.

Run the installscript (dlgcinstall) from the temporary directory. Choose “ALL” when asked which packages to
install. You may receive some errors, but these should be ignored, because these errors are only for the
packages that are not supported on the card.

You can configure the card immediately after installation (you will be prompted to proceed with the
configuration setup) or at any time by running the mkcfg utility that can be found in /usr/dialogic/bin.
Before you proceed with the mkcfg utility, it is important to note the IRQ number (hardware interrupt
Request number) of the card (in our case it was 9) and the base memory address of the card (in our case it
was D000H). We obtained these values from Windows NT, where the card was initially installed. However,
there might be ways to obtain these values in Linux too. During configuration of the card, you will be asked
to enter the IRQ number and the base memory address for the card that is in your machine.

Starting and Stopping the Card

Before you run the dialogic application., you must log in as root and start (turn on) the card by running
dlstart. The dlstart program downloads the dialogic system software onto the card. To stop the card, run the
dlstop program. The dlstop will unload the dialogic drivers and make the card unavailable to any application.
Both the
dlstop and dlstart programs can be found in /usr/dialogic/bin. If you get the card in some bad state, it is
necessary for you to stop the card before you start the card again.

Appendix B: Messages from Dialogic Technical Support

From bhansali@stanford.edu Tue Nov 21 08:20:27 2000 -0800
Status: R
X-Status:
X-Keywords:
Received: from leland3.Stanford.EDU (leland3.Stanford.EDU [171.64.14.90])
 by pobox1.Stanford.EDU (8.10.1/8.10.1) with ESMTP id eALGKR321924
 for <bhansali@pobox1.stanford.edu>; Tue, 21 Nov 2000 08:20:27 -0800 (PST)
Received: from mail-dns1-nj.dialogic.com (mail-dns1-nj.dialogic.com [146.152.228.10])
 by leland3.Stanford.EDU (8.10.1/8.9.3) with ESMTP id eALGKPx24237
 for <bhansali@Stanford.EDU>; Tue, 21 Nov 2000 08:20:26 -0800 (PST)
Received: from mail4.dialogic.com ([146.152.6.40])
 by mail-dns1-nj.dialogic.com (8.9.1a+p1/8.9.1/d: dialogic.m4,v 1.3 2000/05/05 13:56:23 dmccart Exp
$) with ESMTP id QAA06961
 for <bhansali@Stanford.EDU>; Tue, 21 Nov 2000 16:24:49 GMT
Received: from exchange4nj.dialogic.com (exchange4nj.dialogic.com [146.152.3.19])
 by mail4.dialogic.com (8.9.3+Sun/8.9.3) with ESMTP id LAA12062
 for <bhansali@Stanford.EDU>; Tue, 21 Nov 2000 11:20:15 -0500 (EST)
Received: by exchange4nj.dialogic.com with Internet Mail Service (5.5.2650.21)
 id <WVMLH42L>; Tue, 21 Nov 2000 11:20:39 -0500
Message-ID: <6B0F0A1F0F44D1118BB000A024620EB508601EDE@exchange2nj.dialogic.com>
From: CustEng <CustEng@Dialogic.com>
To: "'Sumit Milap Bhansali'" <bhansali@Stanford.EDU>
Subject: DUS-66595400 - RE: D/21H on Linux
Date: Tue, 21 Nov 2000 11:20:33 -0500
MIME-Version: 1.0
X-Mailer: Internet Mail Service (5.5.2650.21)
Content-Type: text/plain;
 charset="iso-8859-1"
X-UIDL: 0d02fa0484e38711744bd52b2421df78

Sumit,

Sorry about that, I found out that its supported and it should be listed
under supported boards but its not in the relase notes. I will check to see
that this is corrected if not already reported.

The D/21H or other dialogic boards do not have support yet for full-duplex
operation, simultaneous play and record on the same channel is not allowed.
The reason you may be loosing data by using threads is because the use of
threading is not supported under SR 5.0 (linux), but it will be under the
next linux system release for dialogic.

Linux is not thread safe, if you have two different threads calling dialogic
functions at the same time the data might get mixed up or loss, in your case
that would be the play thread and record thread as you had mentioned. As of
now you can only use the synchronous or better yet the asynchronous
programming model without threads.

Regards,
Jeff M.

Technical Support Engineer
Dialogic, an Intel Company
mailto:custeng@dialogic.com
http://support.dialogic.com

-----Original Message-----
From: Sumit Milap Bhansali [mailto:bhansali@Stanford.EDU]
Sent: Sunday, November 19, 2000 1:08 PM
To: CustEng@Dialogic.com
Subject: Re: DUS-66595400 - RE: D/21H on Linux

Hi,
 I finally got Linux to work on D/21H. D/21H and D/41H do have support
for Linux. I have a development question, though.
 Can you play and record data simultaneously on a D/21H channel? I am
writing a telephony application in which I am using two threads (play that
uses dx_play() and record that uses dx_rec()), and I would like to support
two (because D/21H has two ports) bi-directional calls at the same time.
Is this possible? Do I need to use a SC-bus or CT-bus-based card?
 If full-duplex operation is not possible, then I could use alternating
dx_play and dx_rec on the same channel (in the case of D/21H). But, do I
lose data between the calls to dx_rec? Is the data buffered in
the dialogic firmware buffers?
 Thanks.

Sumit.

>
>
> Sumit,
>
> You are getting the WSB0010:Warning No Springware Board(s) found - check
> system configuration error amongst other because the D/21H board is not
> supported under Linux.
>
> As it is not listed in SR 5.0 Linux release notes under supported
hardware:
>
http://support.dialogic.com/documentation/unix/SR50_linux/html_files/catalog
> /1421-01.html
>
> (link may wrap around, if so type it in)
>
> Regards,
> Jeff M.
> Technical Support Engineer
> Dialogic, an Intel Company
> mailto:custeng@dialogic.com
> http://support.dialogic.com
>

References

SIP
[SIP-H.323-1] http://www.fokus.gmd.de/research/cc/glone/projects/ipt/sip.html

A concise comparison of SIP and H.323. Also features articles on why SIP is
better than H.323.

[SIP-H.323-2] http://www.nuera.com/news/iptelephony_072000.cfm
A ‘Telecommunications Online’ article on the contention between SIP and
H.323 as IP Telephony standards. The article outlines the possibility of both
H.323 and SIP co-existing because of the different tastes of the Telephony
industry and the Internetworking industry.

[SDP RFC 2327] http://www.cis.ohio-state.edu/htbin/rfc/rfc2327.html
The Network Working Group description of the Session Description Protocol
(SDP).

[SIP RFC 2543] http://www.cis.ohio-state.edu/htbin/rfc/rfc2543.html
The Network Working Group description of the Session Initiation Protocol
(SIP).

[Columbia SIP Library] http://www.cs.columbia.edu/~kns10/software/siplib/
A description of the Columbia SIP library, the architecture of various
Columbia SIP products like sipd and sipua; and links to the download site.

[H.323] http://www.openh323.org/
A freeware version of the H.323 stack is available here. The aim of the site,
as stated on the home page, is to offload the burden of re-inventing the H.323
stack so that developers can concentrate on writing H.323 applications.

[Internet Telephony] http://www.cs.columbia.edu/~hgs/internet/internet-telephony.html
A collection of links to Internet Telephony articles, jobs in the field, news
related to IP Telephony, standards etc.

Sound
[MMSystem waveform
audio]

http://msdn.microsoft.com/library/psdk/multimed/wave_7jcf.htm
A guide to writing Windows sound applications using the Win32 API. The site
includes a waveform audio programmer’s reference and a discussion on
waveform audio.

[Java Sound API] http://java.sun.com/products/java-media/sound/
The complete reference to using the Java sound API to write platform
independent sound applications. A major drawback of Java sound is the delay
(discussed in the body of this report).

Windows Development
 [MSDN-VC++] http://msdn.microsoft.com

The online reference to writing C/C++ programs in the MS VC++ IDE. The
volume is optionally available with MS-VC++ installations.

Dialogic
 [Product support] http://support.dialogic.com

General information about the dialogic cards and their installation. Drivers and
programs for Dialogic cards can be downloaded from here.

[Unix voice libs 1] http://support.dialogic.com/documentation/unix/voxvol1.pdf
Information on the Unix voice libraries provided by Dialogic.

[Unix voice libs 2] http://support.dialogic.com/documentation/unix/voxvol2.pdf
More information in the Unix voice libraries provided by dialogic.

