
1

InfoSpaces
A Large-Scale Content Classification and Dissemination Network

Satyam Vaghani, Michael Michael, Jairam Ranganathan,
Sujata Kodgire, Armando Fox

{svaghani, michmike, jairam, sujk, fox} @ cs.Stanford.edu

Stanford University
April 2001

Abstract

Public information routing and delivery is
fraught with difficulty. The functionality of
large-scale publish/subscribe systems is of-
ten restricted by the choice of delivery
mechanism and delivery end-point. Schedul-
ing predicates do not hold globally over
concurrent content delivery streams to di-
verse end-points that share resources to dis-
seminate information. We have imple-
mented an alternative information dissemi-
nation model that sheds off a few character-
istics of personalized information delivery in
order to provide ubiquitous, cost-effective
and demographically targeted information.
We try to characterize some important ab-
stractions to achieve these goals and discuss
a scheduler that allows the resources of a set
of end-points to be grouped to display in-
formation of common interest.

1 Introduction

Most publish/subscribe systems [9] must
deal with the issue of categorizing and dis-
seminating large amounts of information to
a group of heterogeneous end-points in a
cost-effective and scalable manner. Previous
work in such systems has focused on effi-
cient multicasting of information to the end-
points and content-based information rout-
ing to interested subscribers [6]. These sys-
tems assume a common application-level
communication substrate (in most of the
cases, the Internet). We designed an end-to-
end solution, called InfoSpaces, for large-
scale classification and dissemination of in-
formation. InfoSpaces is designed to re-
trieve/accept information from various ac-

tive and passive sources, classify it and route
it to diverse physical devices. These devices,
which we refer to as end-points, have differ-
ent display capabilities and modes of con-
nectivity. InfoSpaces handles a large amount
of information that contends for a limited
number of display slots on end-points. This
required us to design a scheduler that makes
in-time delivery guarantees for high-priority
content, preserves the priority order of large
information sets, minimizes persistent state
maintenance, and does not impose too much
overhead to the system.

In subsequent sections, we will discuss the
architecture of our system and the imple-
mentation details. We learnt that the design
of the content delivery scheduler was critical
to the overall performance of the system in
the presence of a large amount of informa-
tion waiting to be scheduled. We modified
the “memory market” scheduling model pro-
posed by Harty and Cheriton [1] to suit our
goals of making a scalable and cost-effective
scheduler. The main challenges posed by
large data sets on the scheduling process are
highlighted in the later section on content
scheduling. We have tested the algorithm to
perform satisfactorily under heavy
workloads, a common characteristic of
public information systems.

Transforming information for delivery to a
heterogeneous group of devices is a well-
researched problem [4, 5, 14, 15]. In order to
support such diversity, InfoSpaces makes
use of existing work on client adaptation.
Device specific proxies are defined for
classes of devices (e.g. Web TVs, Electronic
billboards, Tickers, etc) that perform infor-
mation transformations on behalf of the end-

2

points. In order for the scheduler to work
correctly, these proxies can characterize de-
vices by “information capacity” which de-
fines the amount of information that a de-
vice can process in one display cycle. The
proxy thus presents an abstraction of the
device to the scheduler so that it can deliver
a non-formatted (raw) data-set to the proxy
for subsequent transformation and delivery
to the end-point.

A prototype of the system has been imple-
mented to validate the feasibility of this de-
sign and prove the correctness of the modi-
fied scheduling algorithm. The prototype
manages and schedules information for dis-
play on a restricted class of devices. In our
prototype, we have implemented primitive
ways to classify and tag content because
classification of content based on its seman-
tic analysis does not belong to our problem-
domain. On a similar note, InfoSpaces is not
a real-time information delivery network.

In the next sections we will describe the
InfoSpaces architecture, as modeled in our
prototype, including the content manager,
our scheduling algorithms, and the content
delivery mechanism. A brief commentary on
the information providers, end-points and
administrative features of the system is in-
cluded in the later part of the paper. We dis-
cuss some related work before concluding
with our insights for future work. Some
screen-shots of the system are included in
Appendix A.

2 Terminology

We will first define the terminology that will
be used throughout the paper.

A data-item is a piece of information that is
entered in the system so that it can be dis-
played. Each data-item in the system has a

lifetime, which begins when the data-item
needs to be scheduled for display, and ends
when the current time is past the user-
defined expiry time for the item. The user
can also choose a priority for the data-item
from a three-point scale. The user is also
responsible for classifying data-items based
on their semantic properties into different
channels. Channels represent a topical divi-
sion of the information that allows informa-
tion to be routed to the most appropriate
end-points. We will first describe the system
assuming only a single, global administra-
tive domain. Later, we will relax this restric-
tion to show how distinct administrative
domains, called subnets, share end-point
capacity while maintaining jurisdic-
tion/autonomy over their own content and
the capabilities afforded to their users. The
subnet access hierarchies and topological
organization of users will also be discussed
in later sections.

3 Architecture

InfoSpaces has identified three abstractions,
which interact with each other through well-
demarcated interfaces, and are used to de-
scribe the core of our system. These are:

• Content Creation
• Content Management
• Content Scheduling and Delivery

We have implemented the architecture pre-
sented in Figure 1 using a Windows 2000
Advanced Server running MS-Internet In-
formation Server 5.0 and the ColdFusion
application server. The system stored its
data in a database managed by SQL Server
2000. Security contexts, like the Security
Sandbox, were constructed using the Cold-
Fusion server manager and content adapta-
tion proxies were implemented as server
extensions.

3

Figure 1: The InfoSpaces Architecture

3.1 Content Creation

In order for InfoSpaces to be adaptable to
diverse content types, content is introduced
into the system through several input
streams. We have implemented a web-based
form interface that allows InfoSpaces users
to enter information directly into the system.
An InfoSpaces API has also been defined
for programmatic content input. We have
additionally implemented information ag-
gregators that use pull mechanisms to ex-
tract content from the Internet. These extrac-
tion modules were implemented using Com-
paq’s Web Language [3]. The objective is to
allow content providers to write their own
extraction modules that can be plugged into
the system. Content Creation is further dis-
cussed in the I/O section.

3.2 Content Management

The Content Manager is responsible for
maintaining a consistent state in the content
repository. When new information arrives in
the system, the Content Manager classifies it
and queues it up for approval, by more privi-
leged users, if needed. It maintains the “ac-
tive data item set”, which is the content that
is ready for presentation and can be fed to
the scheduler. When a data item is due to be
scheduled, the Content Manager moves it
into the active set. Once the lifetime of a
data item is over, the Content Manager is
responsible for removing it from the active
set so that it can no longer be scheduled for
presentation.

4

Figure 2. Interaction between entities in the process of forming a valid schedule

In our prototype, we have implemented the
Content Manager with helper threads that
are executed at regular intervals. A helper
thread queries the content repository for data
items that are due to be scheduled and
moves these to the active set. When a data
item is past its expiration time, it is removed
from the active set by another thread.

3.3 Content Scheduling

Once in the active set, data items compete to
‘earn’ a display slot on the end-points. An
active data item cycles between the ‘active’
state and the ‘online’ state until it expires
and is removed from the system by a helper
thread. We shall now describe the ‘modified
memory market’ scheduler that we have im-
plemented.

3.3.1 The Scheduling Algorithm

Many ideas used in designing the scheduler
are borrowed from the ‘memory market’
model proposed by Harty and Cheriton [1].
Consider a set, S, of active data items in a
particular channel. A data item earns
‘money’ in proportion to its priority, P,
while in the active queue. At a given point
of time, an active data item might have a

balance, B, with which it can purchase addi-
tional display slots. The scheduler charges a
fixed amount, A, (equivalent to the least
count of salary distribution) for each display
slot that can be rented out to data items. Sal-
ary is disbursed at the end of a pay-period,
C.

Consider an active data item set

S1 = {d1, d2}
where d1 and d2 are data items with priori-
ties P (d1) = 1 and P (d2) = 3. Taking A to
be 1, we can define the correct behavior of a
priority-based scheduler for this system over
a least-count period of 4 service cycles to be
the allocation:

{#d1, #d2} = {1, 3}
where the numbers represent actual number
of times each data item was displayed. To
generalize:

∑
∈

=
S

PC
i

i

Data items are scheduled in order of their
current balance B. At the beginning of a pay
period,

ii PBSi =∈∀ ,
The scheduler uses LRU semantics to break
contention between equally wealthy data
items. Let the time elapsed in the current

5

cycle be E. At the beginning of a new pay
period,

E = 0
We will represent the state of a channel by
the ordered pair <E, C> and the state of an
active data item by <P, B>.

We maintain an invariant across all state
changes, namely,

C
Si

EBi =
∈

+∑

Four kinds of data-items affect these states:

1. Scheduling of data items in display
slots.

2. Insertion of a new data item into the
active data-item queue.

3. Deletion of a data item from the ac-
tive queue.

4. Update of a data item’s priority or
expiry data while the data item is in
the active queue.

Finally, it is possible that towards the end of
C, the total residual balance remaining with
all the data items eligible for a particular
end-point is lesser than the number of dis-
play slots on the end-point. In this case, we
‘tax’ the data items that have outstanding
balances. This effectively makes E=C and
we can start a new cycle with a bigger eligi-
ble data item set.

3.3.2 Design challenges

In this section we shall document the design
challenges for our scheduler and explain
how our scheduling model successfully ad-
dresses those. One might observe that the
problems discussed below are applicable to
large-scale information dissemination sys-
tems in general.

The scheduler needs to ensure that each
data-item receives its fair share in the
schedule of active data-items across devices
interested in displaying the same informa-
tion. Given the fact that the active data-item
queue is accessed by multiple devices with a
high frequency and hard state maintenance

across requests is prohibitively expensive,
the problem is to calculate a channel specific
predicate which holds over a one-to-many
channel-end-point mapping. According to
our model, every good (data item) figures on
a unique market (channel). Inter-market
transactions are not allowed and they are not
required since the goods are semantically
different. The consumer (end-point) can,
however, buy goods from different markets.
Thus we have the following predicate:
Transactions in a particular market should
take it from one consistent state to another;
and these transactions should not use data
from another market. This predicate local-
izes consistency requirements and since it is
independent of the affiliations of a customer
to other markets.

In order to schedule data-items for a particu-
lar channel, we need to select data-items in
proportion to their priorities, and their last
display time. This would require a history
list of schedules on a per-channel and per-
end-point basis. However, we cannot main-
tain a history of schedules for each channel-
end-point mapping for three reasons:

1. The length of such a history list
would be dependent on the refresh
rate of each end-point and the arri-
val rate of ‘active’ data-items in
each channel.

2. Our system does not put an upper
bound on the number of end-points
or the number of channels. Clearly,
storage and retrieval of a possibly
huge number of schedules per unit
time is inefficient.

3. The channel-end-point mapping is
MxN. Even if we were to optimize
the storage by storing the schedules
either on a per-channel basis or a
per-end-point basis, algorithms to
create history lists on a per-channel
basis from per-channel list, and
vice-versa, are O (mlogn) at best. It
is impractical to run these algo-
rithms on every incoming request
(for e.g., a MS-Web TV device re-
quests data every 10 seconds in our

6

prototype and there are a number of
such devices)

We maintain a cumulative history for each
channel by using two data item specific
variables: B and P and two channel specific
variables: C and elapsed time, E. An algo-
rithm to retrieve the per-channel history is
now constant-time and one to retrieve the
cumulative history for a particular end-point
is now linear in the number of channels to
which it subscribes.

Another observation is that highly persistent
data items tend to occupy a large proportion
of display cycles, thus causing a temporally
localized increase in the degree of conten-
tion. This phenomenon is accentuated by the
presence of high priority, highly persistent
data items. This problem arises because
some of the data items become eligible to
enter the active set a long time before they
are semantically relevant. For example, an
over-publicized data-item may prevent a low
priority current news story from going
online. The solution is to limit the earnings
of long-display-cycle data items in the early
stages of their activation; in other words,
limit the earnings of these data items during
their childhood phase. As a corollary, short
display-cycle data-items do not have a
childhood phase.

Schedules have a service cycle during which
the queue of data items waiting to be sched-
uled is assumed to be stable. Consider a
conventional FCFS single-CPU scheduler. It
maintains an M/M/1 queue where the cus-
tomer (a process) can depart only after being
serviced by the server (CPU). This scenario
has an upper bound on the waiting time and
the length of the queue. The InfoSpaces con-
tent streams present a much more dynamic
queue of data items waiting to be scheduled.
A striking difference arises due to absence
of guarantees on life cycles of data items.
This translates to the fact that with the
InfoSpaces scheduler, customers would be
free to leave the waiting queue at will with-
out informing the scheduler, thus bypassing
the server. This implies that if the scheduler
were to maintain local state, it would be cor-

rupt for the purposes of scheduling in the
next service cycle. To counter the violation
of the strict queuing discipline in the
InfoSpaces scheduler, we take care to see
that the scheduling within a channel is re-
versible. In other words, if a data-item
leaves an active set without going through
the server, the effects of its inclusion can be
undone without disturbing the <P, B> tuples
for other active data-items in the same chan-
nel.

4 Execution Example

We will now walk through an example sce-
nario to show how the concepts presented so
far orchestrate the flow of information from
content providers to content consumers. A
system installed at Stanford University is
used to disseminate information to the stu-
dent body at Stanford. Thus, Stanford Uni-
versity would represent an administrative
body in our domain. Within Stanford, each
department provides content for students of
that department. Thus, there is a ‘Computer
Science’ channel, a ‘Law’ channel, and a
‘Student Affairs’ channel, to name a few.
Consider a Stanford user who logs in to the
system and enters information about a semi-
nar in computer science to be held a week
from now. Content input by authors with
fewer privileges is subject to approval by a
user higher up in the access rights hierarchy.
On approval, the content manager receives
the information. It is responsible for main-
taining and classifying the content according
to channels and subnets. This content would
be classified as part of the Stanford subnet
and belonging to the Computer Science
channel. The next section explains the con-
cept of subnets in greater detail. For the pur-
pose of this example, it is sufficient to know
that a subnet is a high-level administrative
domain. When this content becomes “ac-
tive”, that is, needs to be displayed, the con-
tent manager moves this data item into a set
of active data items. At this point, the
scheduling engine starts using this new data
item while scheduling as well. When an end-
point (e.g. a large-screen TV at the Com-

7

puter Science building) needs to have new
content sent to it, the end-point’s proxy
makes a request for new content to the
scheduler based on the display capacity of
the end-point, demographic characteristics
of the end-point and the channels that the
end-point is interested in displaying. The
scheduler chooses the optimal set of data-
items and returns this to the proxy. The
proxy performs the necessary transforma-
tions and device specific formatting for the
content and sends it to the end-point for de-
livery. Data items remain active until their
expiration time. This means that the content
could be displayed many times in its active
period. Once the content expires, the content
manager is responsible for removing the
information completely from the system.

5 I/O and other machinery

Having explained the core of the system, we
will now move out to the periphery and ex-
amine the information input and output (de-
livery) interfaces.

5.1 Content Providers

Since data sources are varied, we need to
support multiple input methods. Our proto-
type supports the following content input
streams:

Web-based active agents: These can be web
extraction modules, web crawlers, or any
other Information Retrieval (IR) system. For
the purposes of the prototype we used Com-
paq’s Web Language to build our HTML
information extraction modules. An active
agent is run within a security context, the
privileges of which depend on its author.

InfoSpaces API: We can input information
in the form of data feeds or any custom ap-
plication module. For security purposes we
have built in authentication as well as a ses-
sion-specific key exchange.

Web-based interface: This interface is man-
aged through the InfoSpaces web-based au-

thentication scheme and connects to the core
via a web server.

5.2 Content Consumers

InfoSpaces outputs information onto an end-
point. An end-point represents an abstraction
of the actual physical devices used for dis-
playing content (e.g. MS-Web TV, Closed-
Circuit TV, Interactive Kiosks, etc.). End-
points are classified based on their
characteristics with the most metric being
the amount of information that can be dis-
played. Others include the physical
dimensions, media capabilities, processing
power, local storage available, and type of
connectivity to the content adaptation proxy
(CAP).
The end-point either requests data-items
from the CAP or receives data-items from
the CAP depending on whether it is a pull or
push compatible device. Based on the char-
acteristics of the end-point, the CAP will
request the appropriate information from the
content scheduler. The scheduler applies the
algorithm described in the scheduling sec-
tion and will return a generic XML data
stream of the content to be displayed. The
CAP then applies a series of transformations
based on device-specific characteristics and
outputs the content in the desirable format to
the end-point.

5.3 Administrative domains

We now introduce the notion of a subnet.
Subnets are the logical representation of an
organization or a community. Each subnet
forms a common ground that associates
people with shared interests, defines a pool
of devices and associates a concept of own-
ership with them, and organizes people into
groups that have different access rights/roles
within the organization. In addition, infor-
mation is classified into channels, which are
a characteristic of that particular subnet, ac-
cording to semantic content. In our proto-
type, we have used subnets as a means for
demarcating administrative domains.

8

5.4 User Management

InfoSpaces supports access controls for con-
trolling the content that is published to the
various end-points. Currently, the system
provides four different levels of access.
These have been implemented as groups
with a common set of privileges and users
are assigned to these groups.

Administrators: This is the InfoSpaces ad-
ministrator group. It is a globally unique
group that controls the entire system and has
administrative privileges over all Subnets.

Subnet Moderators: Members of this group
can manage the various subnet operations
like creation of channels, approval of new
content providers and content managers in
the subnet.

Content Editors: Members of this group can
approve content submitted by the content
providers. They can disapprove inappropri-
ate content from being published by provid-
ers/users. This additional group allows us to
open up the next category (content provid-
ers) to everyone who wants to participate in
the information network. This is coherent
with the design goal of making InfoSpaces
accessible to all willing participants in an
organization.

Content Providers: These are the InfoSpaces
users who are the primary sources of infor-
mation. Content provided by them is subject
to approval by a group higher up in the
InfoSpaces hierarchy.

Privileges given to the user are checked
upon authentication, and access to the menu
of functions is restricted accordingly on a
per subnet basis. However, different users
can have different privileges across subnets
(since they can belong to different groups in
different subnets).

6 Evaluation

In this section we present our observations
when we tested the InfoSpaces prototype
against our design goals, the main ones be-
ing:

1. Scalability in terms of number of
subnets that can be supported

2. The number of data-items that can
be supported for each subnet and
each endpoint; and for the entire
system

3. The performance of the scheduler in
the presence of heavy load condi-
tions

4. Support for high display refresh
rates on the end-points (and conse-
quently higher scheduling activity)

5. Ability to support diverse device
types and number of configuration
changes required to support a new
device class

6. The ease of use of the system and
the overall cost of deployment of the
system.

The system does not put an upper bound on
1 and 2, consequently their values are con-
strained only by the capability of the data-
base server. Since we are using an industrial
strength RDBMS, 1 and 2 cannot become
bottlenecks to scalability.

The worst-case performance of the schedul-
ing algorithm is of the order of log n, where
n is the number of active data-items in a par-
ticular channel. We have tested our system
with approximately 10000 data-items per
channel, thousands of channels and several
subnets. We gathered the data-items by us-
ing a web extraction module written in
WebL [3]. At the same time, we had several
clients accessing and modifying the content
database, thus checking the performance of
the scheduling algorithm under rapidly
changing load. The system performed as
expected without any noticeable degradation
of performance. Since Quality of Service
and fairness were important issues in our
design, in addition to making sure that the

9

system performed well, we verified that
each end-point receives the content in the
right priority order. In addition, across all
end-points subscribed to the same channel,
content was disseminated in a fair and
timely manner, thus guaranteeing our sched-
uling predicates mentioned in section 3.3.1.

A new class of device requires its own con-
tent adaptation proxy which can receive the
output of the scheduler and format it accord-
ing to the device properties. The cost of im-
plementing such device-class specific con-
tent adaptation proxy is amortized across all
the devices of that particular class.

The interface and the APIs are very simple.
We simplified the user management process
and did not implement finer grain access
rights and event priorities to make the sys-
tem easy to use by a normal user.

7 Related Work

While InfoSpaces differs from other pub-
lish/subscribe systems, such systems are the
foundations for the project in many ways.
The “Information Bus” project headed by
Dale Skeen, now at Vitria, laid some of the
foundations for such work. The Gryphon
Project at IBM TJ Watson Research Center
has also produced interesting results in this
area with a focus on efficient content-based
systems that route information based on the
semantics of the information.

The Infospaces work borrowed heavily from
concepts outside the traditional pub-
lish/subscribe world for issues such as
scheduling and content adaptation. Harty
and Cheriton’s work in memory manage-
ment, while clearly not belonging to this
domain, was highly useful to us in our de-
sign.

Content adaptation proxies have been stud-
ied in detail and are a well-understood sub-
ject. Several companies [Pumatech, Broad-
vision] have created products that use con-
tent adaptation at a proxy to improve avail-

ability of data to clients. Research work in
this area is extensive and well documented
and several pointers to papers in this area are
included in the references.

8 Future Work

Currently, our system has static channels in
each subnet with data-items being assigned
to the channels statically. The publishers
publish the data-items to specific channels
and the end-points subscribe to the channels
of interest. We intend to extend this to pro-
vide interest based dynamic channels with
temporal subscription semantics.

We are also debating on the possibility of
‘short-circuiting’ the information flow path
form the content-provider to the content-
consumer (end-point) to route information
directly onto the end-point and bypass the
scheduling mechanism. Although this ap-
proach might give an extra degree of free-
dom to the content-provider, it decentralizes
device control.

9 Conclusions

The InfoSpaces implementation demon-
strates how a centralized public information
network can be built to cater to the informa-
tion aggregation and dissemination needs of
large organizations. We have successfully
designed and implemented one such net-
work.

Our network aims to deliver data that is
relevant to the majority of the people who
happen to see it. We have achieved this goal
by implementing demographically targeted
information delivery.

In addition, the problem of managing and
scheduling large data sets led us to modify a
scheduling model with successful results.

We removed the dependency of the sched-
uler on device specific parameters by intro-
ducing a level of indirection through the

10

content adaptation proxy. This ensures that
our system scales well to diverse device
types and different device capabilities.

We anticipate our work to form a substrate
on which future work towards public infor-
mation delivery systems can be carried out.
Our platform closes the gap between re-
search focused on information extraction
from diverse providers and research on de-
signing new delivery end-points.

Acknowledgements

We would like to thank Andy Huang and
Emre Kiciman for reviewing this paper.
Andy helped us with the logistics for the
prototype. We have also benefited from dis-
cussing the prototype with Kathy Richard-
son.

References

[1] Kieran Harty, David R. Cheriton. Applica-

tion-Controlled Physical Memory using Ex-
ternal Page-Cache Management. Proceed-
ings of the Fifth International Conference on
Architectural Support for Programming
Languages and Operating Systems, Boston
MA, Vol. 34, No. 5, October 1992.

[2] IBM T.J. Watson Research Center. Gry-

phon: Publish/Subscribe over public net-
works.
http://www.research.ibm.com/gryphon

[3] Compaq Web Language (WebL) Specifica-

tion 3.0h
http://www.research.compaq.com/SRC/Web
L

[4] W3C. Extensible Markup Language (XML)

Specification 1.0
http://www.w3.org/TR/2000/REC-xml-
20001006

[5] Laurence Melloul, Trevor Pering, and Ar-

mando Fox. WeSCoS: A First Step Towards
Web Programming. Unpublished draft.
http://swig.stanford.edu/pub/papers/webc/we
scos.pdf

[6] Banavar et. al., An Efficient Multicast Pro-
tocol for Content-based Publish-Subscribe
Systems. IBM T.J. Watson Research Center.

[7] James Cutler, Charles Fraleigh, Devendra

Jaisinghani, Dora Karali, and Emre Kici-
man. Luddide: Location and User Depend-
ent Information Delivery. Project Report.
Available at:
http://www.stanford.edu/~emrek/class/luddi
de/report.html

[8] Udi Manber, Ash Patel, and John Robison.

Experience With Personalization of Yahoo!
CACM 43(8), August 2000.

[9] IBM Gryphon project documentation, An

introduction to Content-based pub-
lish/subscribe Sytems.
http://www.research.ibm.com/gryphon/Cont
entbased_Publish_Subscrib/content-
based_publish_subscrib.html

[10] Eric A. Brewer. Lessons from Giant-Scale

Services. Submitted for publication.

[11] Ralph B. Case, Stéphane H. Maes and T. V.

Raman. Position paper for the W3C/WAP
Workshop on the Web Device Independent
Authoring.
http://www.w3.org/2000/10/DIAWorkshop/
case.htm

[12] Dale Skeen. Vitria’s Publish/Subscribe Ar-

chitecture: Publish/Subscribe Overview.
Available at: http://www.vitria.com

[13] Brian Oki, Manfred Pfluegl, Alex Siegel,
Dale Skeen. “The Information Bus – An Ar-
chitecture for Extensible Distributed Sys-
tems”, Operating Systems Review, Vol.27,
No.5, Dec.1993

[14] Armando Fox, Steven D. Gribble, Yatin

Chawathe, Eric A. Brewer. Adapting to
Network and Client Variation Using Active
Proxies: Lessons and Perspectives. IEEE
Personal Communications (invited submis-
sion), August 1998.

[15] B.Zenel, D.Duchamp, A General Purpose

Proxy Filtering Mechanism Applied to the
Mobile Environment, MobiCom 1997.

[16] Davies et. al. Caches in the air: Disseminat-

ing tourist information in the GUIDE sys-

11

tem. In Proceedings of Second IEEE Work-
shop on Mobile Computing Systems and
Applications, New Orleans, Louisiana, Feb-
ruary 1999. IEEE Computer Society Press.

[17] S. Acharya, M. Franklin, and S. Zdonik,

Dissemination-based data delivery using
broadcast disks. IEEE Personal Communica-
tion, pp. 50--60, Dec. 1995

[18] N. Vaidya and S. Hameed. Improved Algo-
rithms for Scheduling Data Broadcast.
Technical Report 96029, Dept. of Computer
Science, texas A&M University, 1996.

12

Appendix A

We present some screenshots of both the web interface of InfoSpaces as well as two different
kinds of end-points to illustrate how content is displayed on them. Figure 3 shows the administra-
tive user interface and one see the listing of all the current content for the “Palo Alto Community”
subnet. Each data-item (event) is listed with its start date, end date, and a brief description. In
Figure 4, one can see the content as displayed on a ‘Ticker’ class end-point that scrolls data from
left to right. Only a part of the data-item is visible in the snapshot. Figure 5 illustrates Microsoft
Web-TV formatted content. This end-point has the ability of displaying multiple events at a time,
with a refresh rate customizable to the number of events currently being displayed.

Figure 3: The InfoSpaces administrative web interface

Figure 4: Content as displayed on a ticker-type end-point

13

Figure 5: Content as displayed on Microsoft Web-TV

