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Abstract 
 
Public information routing and delivery is 
fraught with difficulty. The functionality of 
large-scale publish/subscribe systems is of-
ten restricted by the choice of delivery 
mechanism and delivery end-point. Schedul-
ing predicates do not hold globally over 
concurrent content delivery streams to di-
verse end-points that share resources to dis-
seminate information. We have imple-
mented an alternative information dissemi-
nation model that sheds off a few character-
istics of personalized information delivery in 
order to provide ubiquitous, cost-effective 
and demographically targeted information. 
We try to characterize some important ab-
stractions to achieve these goals and discuss 
a scheduler that allows the resources of a set 
of end-points to be grouped to display in-
formation of common interest. 
 

1 Introduction 
 
Most publish/subscribe systems [9] must 
deal with the issue of categorizing and dis-
seminating large amounts of information to 
a group of heterogeneous end-points in a 
cost-effective and scalable manner. Previous 
work in such systems has focused on effi-
cient multicasting of information to the end-
points and content-based information rout-
ing to interested subscribers [6]. These sys-
tems assume a common application-level 
communication substrate (in most of the 
cases, the Internet). We designed an end-to-
end solution, called InfoSpaces, for large-
scale classification and dissemination of in-
formation. InfoSpaces is designed to re-
trieve/accept information from various ac-

tive and passive sources, classify it and route 
it to diverse physical devices. These devices, 
which we refer to as end-points, have differ-
ent display capabilities and modes of con-
nectivity. InfoSpaces handles a large amount 
of information that contends for a limited 
number of display slots on end-points. This 
required us to design a scheduler that makes 
in-time delivery guarantees for high-priority 
content, preserves the priority order of large 
information sets, minimizes persistent state 
maintenance, and does not impose too much 
overhead to the system.  
 
In subsequent sections, we will discuss the 
architecture of our system and the imple-
mentation details. We learnt that the design 
of the content delivery scheduler was critical 
to the overall performance of the system in 
the presence of a large amount of informa-
tion waiting to be scheduled. We modified 
the “memory market” scheduling model pro-
posed by Harty and Cheriton [1] to suit our 
goals of making a scalable and cost-effective 
scheduler. The main challenges posed by 
large data sets on the scheduling process are 
highlighted in the later section on content 
scheduling. We have tested the algorithm to 
perform satisfactorily under heavy 
workloads, a common characteristic of 
public information systems. 
  
Transforming information for delivery to a 
heterogeneous group of devices is a well-
researched problem [4, 5, 14, 15]. In order to 
support such diversity, InfoSpaces makes 
use of existing work on client adaptation. 
Device specific proxies are defined for 
classes of devices (e.g. Web TVs, Electronic 
billboards, Tickers, etc) that perform infor-
mation transformations on behalf of the end-
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points. In order for the scheduler to work 
correctly, these proxies can characterize de-
vices by “information capacity” which de-
fines the amount of information that a de-
vice can process in one display cycle. The 
proxy thus presents an abstraction of the 
device to the scheduler so that it can deliver 
a non-formatted (raw) data-set to the proxy 
for subsequent transformation and delivery 
to the end-point. 
 
A prototype of the system has been imple-
mented to validate the feasibility of this de-
sign and prove the correctness of the modi-
fied scheduling algorithm. The prototype 
manages and schedules information for dis-
play on a restricted class of devices. In our 
prototype, we have implemented primitive 
ways to classify and tag content because 
classification of content based on its seman-
tic analysis does not belong to our problem-
domain. On a similar note, InfoSpaces is not 
a real-time information delivery network.  
 
In the next sections we will describe the 
InfoSpaces architecture, as modeled in our 
prototype, including the content manager, 
our scheduling algorithms, and the content 
delivery mechanism. A brief commentary on 
the information providers, end-points and 
administrative features of the system is in-
cluded in the later part of the paper. We dis-
cuss some related work before concluding 
with our insights for future work. Some 
screen-shots of the system are included in 
Appendix A. 
 

2 Terminology 
 
We will first define the terminology that will 
be used throughout the paper.  
 
A data-item is a piece of information that is 
entered in the system so that it can be dis-
played. Each data-item in the system has a 

lifetime, which begins when the data-item 
needs to be scheduled for display, and ends 
when the current time is past the user-
defined expiry time for the item. The user 
can also choose a priority for the data-item 
from a three-point scale. The user is also 
responsible for classifying data-items based 
on their semantic properties into different 
channels. Channels represent a topical divi-
sion of the information that allows informa-
tion to be routed to the most appropriate 
end-points. We will first describe the system 
assuming only a single, global administra-
tive domain. Later, we will relax this restric-
tion to show how distinct administrative 
domains, called subnets, share end-point 
capacity while maintaining jurisdic-
tion/autonomy over their own content and 
the capabilities afforded to their users. The 
subnet access hierarchies and topological 
organization of users will also be discussed 
in later sections. 
 

3 Architecture 
 
InfoSpaces has identified three abstractions, 
which interact with each other through well-
demarcated interfaces, and are used to de-
scribe the core of our system. These are: 

• Content Creation 
• Content Management 
• Content Scheduling and Delivery 

 
We have implemented the architecture pre-
sented in Figure 1 using a Windows 2000 
Advanced Server running MS-Internet In-
formation Server 5.0 and the ColdFusion 
application server. The system stored its 
data in a database managed by SQL Server 
2000. Security contexts, like the Security 
Sandbox, were constructed using the Cold-
Fusion server manager and content adapta-
tion proxies were implemented as server 
extensions.
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Figure 1: The InfoSpaces Architecture 
 

3.1 Content Creation 
 
In order for InfoSpaces to be adaptable to 
diverse content types, content is introduced 
into the system through several input 
streams. We have implemented a web-based 
form interface that allows InfoSpaces users 
to enter information directly into the system. 
An InfoSpaces API has also been defined 
for programmatic content input. We have 
additionally implemented information ag-
gregators that use pull mechanisms to ex-
tract content from the Internet. These extrac-
tion modules were implemented using Com-
paq’s Web Language [3]. The objective is to 
allow content providers to write their own 
extraction modules that can be plugged into 
the system. Content Creation is further dis-
cussed in the I/O section. 

3.2 Content Management 
 
The Content Manager is responsible for 
maintaining a consistent state in the content 
repository. When new information arrives in 
the system, the Content Manager classifies it 
and queues it up for approval, by more privi-
leged users, if needed. It maintains the “ac-
tive data item set”, which is the content that 
is ready for presentation and can be fed to 
the scheduler. When a data item is due to be 
scheduled, the Content Manager moves it 
into the active set. Once the lifetime of a 
data item is over, the Content Manager is 
responsible for removing it from the active 
set so that it can no longer be scheduled for 
presentation. 
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Figure 2. Interaction between entities in the process of forming a valid schedule 
 
In our prototype, we have implemented the 
Content Manager with helper threads that 
are executed at regular intervals. A helper 
thread queries the content repository for data 
items that are due to be scheduled and 
moves these to the active set. When a data 
item is past its expiration time, it is removed 
from the active set by another thread. 
 
3.3 Content Scheduling 
 
Once in the active set, data items compete to 
‘earn’ a display slot on the end-points. An 
active data item cycles between the ‘active’ 
state and the ‘online’ state until it expires 
and is removed from the system by a helper 
thread. We shall now describe the ‘modified 
memory market’ scheduler that we have im-
plemented. 
 
3.3.1 The Scheduling Algorithm 
 
Many ideas used in designing the scheduler 
are borrowed from the ‘memory market’ 
model proposed by Harty and Cheriton [1]. 
Consider a set, S, of active data items in a 
particular channel. A data item earns 
‘money’ in proportion to its priority, P, 
while in the active queue. At a given point 
of time, an active data item might have a 

balance, B, with which it can purchase addi-
tional display slots. The scheduler charges a 
fixed amount, A, (equivalent to the least 
count of salary distribution) for each display 
slot that can be rented out to data items. Sal-
ary is disbursed at the end of a pay-period, 
C. 
 
Consider an active data item set 

S1 = {d1, d2} 
where d1 and d2 are data items with priori-
ties P (d1) = 1 and P (d2) = 3. Taking A to 
be 1, we can define the correct behavior of a 
priority-based scheduler for this system over 
a least-count period of 4 service cycles to be 
the allocation: 

{#d1, #d2} = {1, 3} 
where the numbers represent actual number 
of times each data item was displayed. To 
generalize: 

∑
∈

=
S

PC
i

i  

Data items are scheduled in order of their 
current balance B. At the beginning of a pay 
period, 

ii PBSi =∈∀ ,  
The scheduler uses LRU semantics to break 
contention between equally wealthy data 
items. Let the time elapsed in the current 
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cycle be E. At the beginning of a new pay 
period,  

E = 0 
We will represent the state of a channel by 
the ordered pair <E, C> and the state of an 
active data item by <P, B>.  
 
We maintain an invariant across all state 
changes, namely, 

C
Si

EBi =
∈

+∑
 

 
Four kinds of data-items affect these states: 

1. Scheduling of data items in display 
slots. 

2. Insertion of a new data item into the 
active data-item queue.  

3. Deletion of a data item from the ac-
tive queue. 

4. Update of a data item’s priority or 
expiry data while the data item is in 
the active queue. 

 
Finally, it is possible that towards the end of 
C, the total residual balance remaining with 
all the data items eligible for a particular 
end-point is lesser than the number of dis-
play slots on the end-point. In this case, we 
‘tax’ the data items that have outstanding 
balances. This effectively makes E=C and 
we can start a new cycle with a bigger eligi-
ble data item set. 
 
3.3.2 Design challenges 
 
In this section we shall document the design 
challenges for our scheduler and explain 
how our scheduling model successfully ad-
dresses those. One might observe that the 
problems discussed below are applicable to 
large-scale information dissemination sys-
tems in general. 
 
The scheduler needs to ensure that each 
data-item receives its fair share in the 
schedule of active data-items across devices 
interested in displaying the same informa-
tion. Given the fact that the active data-item 
queue is accessed by multiple devices with a 
high frequency and hard state maintenance 

across requests is prohibitively expensive, 
the problem is to calculate a channel specific 
predicate which holds over a one-to-many 
channel-end-point mapping. According to 
our model, every good (data item) figures on 
a unique market (channel). Inter-market 
transactions are not allowed and they are not 
required since the goods are semantically 
different. The consumer (end-point) can, 
however, buy goods from different markets. 
Thus we have the following predicate: 
Transactions in a particular market should 
take it from one consistent state to another; 
and these transactions should not use data 
from another market. This predicate local-
izes consistency requirements and since it is 
independent of the affiliations of a customer 
to other markets. 
 
In order to schedule data-items for a particu-
lar channel, we need to select data-items in 
proportion to their priorities, and their last 
display time. This would require a history 
list of schedules on a per-channel and per-
end-point basis. However, we cannot main-
tain a history of schedules for each channel-
end-point mapping for three reasons: 

1. The length of such a history list 
would be dependent on the refresh 
rate of each end-point and the arri-
val rate of ‘active’ data-items in 
each channel. 

2. Our system does not put an upper 
bound on the number of end-points 
or the number of channels. Clearly, 
storage and retrieval of a possibly 
huge number of schedules per unit 
time is inefficient. 

3. The channel-end-point mapping is 
MxN. Even if we were to optimize 
the storage by storing the schedules 
either on a per-channel basis or a 
per-end-point basis, algorithms to 
create history lists on a per-channel 
basis from per-channel list, and 
vice-versa, are O (mlogn) at best. It 
is impractical to run these algo-
rithms on every incoming request 
(for e.g., a MS-Web TV device re-
quests data every 10 seconds in our 
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prototype and there are a number of 
such devices) 

We maintain a cumulative history for each 
channel by using two data item specific 
variables: B and P and two channel specific 
variables: C and elapsed time, E. An algo-
rithm to retrieve the per-channel history is 
now constant-time and one to retrieve the 
cumulative history for a particular end-point 
is now linear in the number of channels to 
which it subscribes. 
 
Another observation is that highly persistent 
data items tend to occupy a large proportion 
of display cycles, thus causing a temporally 
localized increase in the degree of conten-
tion. This phenomenon is accentuated by the 
presence of high priority, highly persistent 
data items. This problem arises because 
some of the data items become eligible to 
enter the active set a long time before they 
are semantically relevant. For example, an 
over-publicized data-item may prevent a low 
priority current news story from going 
online. The solution is to limit the earnings 
of long-display-cycle data items in the early 
stages of their activation; in other words, 
limit the earnings of these data items during 
their childhood phase. As a corollary, short 
display-cycle data-items do not have a 
childhood phase. 
 
Schedules have a service cycle during which 
the queue of data items waiting to be sched-
uled is assumed to be stable. Consider a 
conventional FCFS single-CPU scheduler. It 
maintains an M/M/1 queue where the cus-
tomer (a process) can depart only after being 
serviced by the server (CPU). This scenario 
has an upper bound on the waiting time and 
the length of the queue. The InfoSpaces con-
tent streams present a much more dynamic 
queue of data items waiting to be scheduled. 
A striking difference arises due to absence 
of guarantees on life cycles of data items. 
This translates to the fact that with the 
InfoSpaces scheduler, customers would be 
free to leave the waiting queue at will with-
out informing the scheduler, thus bypassing 
the server. This implies that if the scheduler 
were to maintain local state, it would be cor-

rupt for the purposes of scheduling in the 
next service cycle. To counter the violation 
of the strict queuing discipline in the 
InfoSpaces scheduler, we take care to see 
that the scheduling within a channel is re-
versible. In other words, if a data-item 
leaves an active set without going through 
the server, the effects of its inclusion can be 
undone without disturbing the <P, B> tuples 
for other active data-items in the same chan-
nel. 
 

4 Execution Example 
 
We will now walk through an example sce-
nario to show how the concepts presented so 
far orchestrate the flow of information from 
content providers to content consumers. A 
system installed at Stanford University is 
used to disseminate information to the stu-
dent body at Stanford. Thus, Stanford Uni-
versity would represent an administrative 
body in our domain. Within Stanford, each 
department provides content for students of 
that department. Thus, there is a ‘Computer 
Science’ channel, a ‘Law’ channel, and a 
‘Student Affairs’ channel, to name a few. 
Consider a Stanford user who logs in to the 
system and enters information about a semi-
nar in computer science to be held a week 
from now. Content input by authors with 
fewer privileges is subject to approval by a 
user higher up in the access rights hierarchy. 
On approval, the content manager receives 
the information. It is responsible for main-
taining and classifying the content according 
to channels and subnets. This content would 
be classified as part of the Stanford subnet 
and belonging to the Computer Science 
channel. The next section explains the con-
cept of subnets in greater detail. For the pur-
pose of this example, it is sufficient to know 
that a subnet is a high-level administrative 
domain. When this content becomes “ac-
tive”, that is, needs to be displayed, the con-
tent manager moves this data item into a set 
of active data items. At this point, the 
scheduling engine starts using this new data 
item while scheduling as well. When an end-
point (e.g. a large-screen TV at the Com-
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puter Science building) needs to have new 
content sent to it, the end-point’s proxy 
makes a request for new content to the 
scheduler based on the display capacity of 
the end-point, demographic characteristics 
of the end-point and the channels that the 
end-point is interested in displaying. The 
scheduler chooses the optimal set of data-
items and returns this to the proxy. The 
proxy performs the necessary transforma-
tions and device specific formatting for the 
content and sends it to the end-point for de-
livery. Data items remain active until their 
expiration time. This means that the content 
could be displayed many times in its active 
period. Once the content expires, the content 
manager is responsible for removing the 
information completely from the system. 
 

5 I/O and other machinery 
 
Having explained the core of the system, we 
will now move out to the periphery and ex-
amine the information input and output (de-
livery) interfaces. 
 
5.1 Content Providers 
 
Since data sources are varied, we need to 
support multiple input methods. Our proto-
type supports the following content input 
streams: 
 
Web-based active agents: These can be web 
extraction modules, web crawlers, or any 
other Information Retrieval (IR) system. For 
the purposes of the prototype we used Com-
paq’s Web Language to build our HTML 
information extraction modules. An active 
agent is run within a security context, the 
privileges of which depend on its author. 
 
InfoSpaces API: We can input information 
in the form of data feeds or any custom ap-
plication module. For security purposes we 
have built in authentication as well as a ses-
sion-specific key exchange. 
 
Web-based interface: This interface is man-
aged through the InfoSpaces web-based au-

thentication scheme and connects to the core 
via a web server. 
 

5.2 Content Consumers 
 
InfoSpaces outputs information onto an end-
point. An end-point represents an abstraction 
of the actual physical devices used for dis-
playing content (e.g. MS-Web TV, Closed-
Circuit TV, Interactive Kiosks, etc.). End-
points are classified based on their 
characteristics with the most metric being 
the amount of information that can be dis-
played. Others include the physical 
dimensions, media capabilities, processing 
power, local storage available, and type of 
connectivity to the content adaptation proxy 
(CAP).  
The end-point either requests data-items 
from the CAP or receives data-items from 
the CAP depending on whether it is a pull or 
push compatible device. Based on the char-
acteristics of the end-point, the CAP will 
request the appropriate information from the 
content scheduler. The scheduler applies the 
algorithm described in the scheduling sec-
tion and will return a generic XML data 
stream of the content to be displayed. The 
CAP then applies a series of transformations 
based on device-specific characteristics and 
outputs the content in the desirable format to 
the end-point. 
 
5.3 Administrative domains 
 
We now introduce the notion of a subnet. 
Subnets are the logical representation of an 
organization or a community. Each subnet 
forms a common ground that associates 
people with shared interests, defines a pool 
of devices and associates a concept of own-
ership with them, and organizes people into 
groups that have different access rights/roles 
within the organization. In addition, infor-
mation is classified into channels, which are 
a characteristic of that particular subnet, ac-
cording to semantic content. In our proto-
type, we have used subnets as a means for 
demarcating administrative domains. 
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5.4 User Management 
 
InfoSpaces supports access controls for con-
trolling the content that is published to the 
various end-points. Currently, the system 
provides four different levels of access. 
These have been implemented as groups 
with a common set of privileges and users 
are assigned to these groups. 
  
Administrators: This is the InfoSpaces ad-
ministrator group. It is a globally unique 
group that controls the entire system and has 
administrative privileges over all Subnets. 
 
Subnet Moderators: Members of this group 
can manage the various subnet operations 
like creation of channels, approval of new 
content providers and content managers in 
the subnet. 
 
Content Editors: Members of this group can 
approve content submitted by the content 
providers. They can disapprove inappropri-
ate content from being published by provid-
ers/users. This additional group allows us to 
open up the next category (content provid-
ers) to everyone who wants to participate in 
the information network. This is coherent 
with the design goal of making InfoSpaces 
accessible to all willing participants in an 
organization. 
 
Content Providers: These are the InfoSpaces 
users who are the primary sources of infor-
mation. Content provided by them is subject 
to approval by a group higher up in the 
InfoSpaces hierarchy. 
 
Privileges given to the user are checked 
upon authentication, and access to the menu 
of functions is restricted accordingly on a 
per subnet basis. However, different users 
can have different privileges across subnets 
(since they can belong to different groups in 
different subnets). 
 
 
 

6 Evaluation 
 
In this section we present our observations 
when we tested the InfoSpaces prototype 
against our design goals, the main ones be-
ing: 

1. Scalability in terms of number of 
subnets that can be supported 

2. The number of data-items that can 
be supported for each subnet and 
each endpoint; and for the entire 
system 

3. The performance of the scheduler in 
the presence of heavy load condi-
tions 

4. Support for high display refresh 
rates on the end-points (and conse-
quently higher scheduling activity) 

5. Ability to support diverse device 
types and number of configuration 
changes required to support a new 
device class 

6. The ease of use of the system and 
the overall cost of deployment of the 
system. 

 
The system does not put an upper bound on 
1 and 2, consequently their values are con-
strained only by the capability of the data-
base server. Since we are using an industrial 
strength RDBMS, 1 and 2 cannot become 
bottlenecks to scalability. 
 
The worst-case performance of the schedul-
ing algorithm is of the order of log n, where 
n is the number of active data-items in a par-
ticular channel. We have tested our system 
with approximately 10000 data-items per 
channel, thousands of channels and several 
subnets. We gathered the data-items by us-
ing a web extraction module written in 
WebL [3]. At the same time, we had several 
clients accessing and modifying the content 
database, thus checking the performance of 
the scheduling algorithm under rapidly 
changing load. The system performed as 
expected without any noticeable degradation 
of performance. Since Quality of Service 
and fairness were important issues in our 
design, in addition to making sure that the 
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system performed well, we verified that 
each end-point receives the content in the 
right priority order. In addition, across all 
end-points subscribed to the same channel, 
content was disseminated in a fair and 
timely manner, thus guaranteeing our sched-
uling predicates mentioned in section 3.3.1. 
 
A new class of device requires its own con-
tent adaptation proxy which can receive the 
output of the scheduler and format it accord-
ing to the device properties. The cost of im-
plementing such device-class specific con-
tent adaptation proxy is amortized across all 
the devices of that particular class. 
 
The interface and the APIs are very simple. 
We simplified the user management process 
and did not implement finer grain access 
rights and event priorities to make the sys-
tem easy to use by a normal user. 
 

7 Related Work 
 
While InfoSpaces differs from other pub-
lish/subscribe systems, such systems are the 
foundations for the project in many ways. 
The “Information Bus” project headed by 
Dale Skeen, now at Vitria, laid some of the 
foundations for such work. The Gryphon 
Project at IBM TJ Watson Research Center 
has also produced interesting results in this 
area with a focus on efficient content-based 
systems that route information based on the 
semantics of the information.   
 
The Infospaces work borrowed heavily from 
concepts outside the traditional pub-
lish/subscribe world for issues such as 
scheduling and content adaptation. Harty 
and Cheriton’s work in memory manage-
ment, while clearly not belonging to this 
domain, was highly useful to us in our de-
sign. 
 
Content adaptation proxies have been stud-
ied in detail and are a well-understood sub-
ject. Several companies [Pumatech, Broad-
vision] have created products that use con-
tent adaptation at a proxy to improve avail-

ability of data to clients.  Research work in 
this area is extensive and well documented 
and several pointers to papers in this area are 
included in the references. 
 

8 Future Work 
 
Currently, our system has static channels in 
each subnet with data-items being assigned 
to the channels statically. The publishers 
publish the data-items to specific channels 
and the end-points subscribe to the channels 
of interest. We intend to extend this to pro-
vide interest based dynamic channels with 
temporal subscription semantics.  
 
We are also debating on the possibility of 
‘short-circuiting’ the information flow path 
form the content-provider to the content-
consumer (end-point) to route information 
directly onto the end-point and bypass the 
scheduling mechanism. Although this ap-
proach might give an extra degree of free-
dom to the content-provider, it decentralizes 
device control. 
 

9 Conclusions 
 
The InfoSpaces implementation demon-
strates how a centralized public information 
network can be built to cater to the informa-
tion aggregation and dissemination needs of 
large organizations. We have successfully 
designed and implemented one such net-
work. 
 
Our network aims to deliver data that is 
relevant to the majority of the people who 
happen to see it. We have achieved this goal 
by implementing demographically targeted 
information delivery.  
 
In addition, the problem of managing and 
scheduling large data sets led us to modify a 
scheduling model with successful results. 
 
We removed the dependency of the sched-
uler on device specific parameters by intro-
ducing a level of indirection through the 
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content adaptation proxy. This ensures that 
our system scales well to diverse device 
types and different device capabilities. 
 
We anticipate our work to form a substrate 
on which future work towards public infor-
mation delivery systems can be carried out. 
Our platform closes the gap between re-
search focused on information extraction 
from diverse providers and research on de-
signing new delivery end-points.  
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Appendix A 
 
We present some screenshots of both the web interface of InfoSpaces as well as two different 
kinds of end-points to illustrate how content is displayed on them. Figure 3 shows the administra-
tive user interface and one see the listing of all the current content for the “Palo Alto Community” 
subnet. Each data-item (event) is listed with its start date, end date, and a brief description. In 
Figure 4, one can see the content as displayed on a ‘Ticker’ class end-point that scrolls data from 
left to right. Only a part of the data-item is visible in the snapshot. Figure 5 illustrates Microsoft 
Web-TV formatted content. This end-point has the ability of displaying multiple events at a time, 
with a refresh rate customizable to the number of events currently being displayed. 
 

 
Figure 3: The InfoSpaces administrative web interface 

 
 
 

 
Figure 4: Content as displayed on a ticker-type end-point 
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Figure 5: Content as displayed on Microsoft Web-TV 
 
 
 


