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Abstract 
This report describes the design and imple-
mentation of Simba, a scalable, fault-
tolerant and low-cost video delivery system 
constructed from a collection of lightweight 
servers running on a network of worksta-
tions (NOW). Video files are striped into 
very small fragments on the network at-
tached storage or the local file system of 
each workstation. The fragments are 
streamed across to the Simba client, which 
seamlessly integrates all these fragments in 
real-time to reproduce the entire movie 
without incurring high buffering costs. The 
system does not store persistent state or 
scheduling information at any delivery serv-
ers. Consequently, Simba scales with the 
addition of delivery servers without com-
promising consistency or fault-tolerance. 
The ideas presented in this report can also be 
applied for designing peer-to-peer streaming 
media delivery systems. 

1. Introduction 
Real-time video delivery systems have 
evolved over the past few years to stream 
video to large audiences with disparate con-
nection speeds. The delivery servers used 
for this purpose usually require large proc-
essing power, main memory and secondary 
storage. Real-time video delivery over IP 
networks also requires a high aggregate 
bandwidth at the server side to support a 
large number of concurrent users. We have 
designed and implemented Simba, a distrib-
uted video server that amortizes the cost of 
real-time video delivery by distributing the 
workload and storage requirements over a 
network of workstations. 
 

Video files that are served over Simba are 
assigned universally unique identifiers 
(UUID) and striped into a number of small 
fragments of the order of 1-4 MB. These 
fragments are stored on network-attached 
storage, or locally on the workstations. 
Computers that intend to participate as 
Simba video delivery servers listen for 
commands from a central server at a unique 
multicast address.  The delivery servers are 
known as workers and constitute a dynamic 
set that changes with time. We shall refer to 
the central server as the master. The master 
occasionally sends a multicast message di-
recting the workers to send load informa-
tion. A scheduler on the master chooses a 
good worker to handle an incoming request 
for a video fragment from the client and 
hands off the request to the worker. Simba 
supports a single master and an unlimited 
number of workers. 
 
The use of networks of workstations as me-
dia delivery systems has been a topic of ac-
tive research and many innovative solutions 
have been suggested in the past. The Micro-
soft Tiger Video Fileserver [1] uses video 
striping, ATM switching fabric and DMA 
transfers from disk to network interfaces to 
achieve a significant speedup in video deliv-
ery. Servers are organized into a ring and the 
delivery schedule is passed from one server 
to the next. The Tiger architecture uses spe-
cialized hardware and customized servers to 
achieve scalability and fault tolerance. The 
Zeno distributed video fileserver [2] pro-
poses the use of networks of workstations 
where each workstation acts both as a client 
as well as a server. The use of workstations 
to serve potentially long clips of video can 
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increase the probability of errors or over-
loads during the service. 
 
The motivation behind the Simba architec-
ture comes from the fact that networked 
workstations have enough residual band-
width, computing power and storage capac-
ity to store and deliver small fragments of 
video files reliably. A highly available video 
delivery system can be constructed by dis-
tributing the workload over these localized 
NOWs. To illustrate the point, we do a back-
of-the-envelope calculation for the Stanford 
Campus Network, which consists of ap-
proximately 45000 hosts spanning over 350 
active subnets. A conservative estimate of 
50MB of residual storage space on each ma-
chine would yield an aggregate storage ca-
pacity for approximately 2250 full-length 
movies. Similar arguments apply to process-
ing power (in MIPS) and network bandwidth 
(in Mbps). We shall present a detailed dis-
cussion of scalability later in this report. 
 
The report is organized into six sections. 
The next section describes the functional 
components, protocols, scheduling mecha-
nisms and file formats used in Simba. Sec-
tion 3 covers the implementation details. We 
have documented the performance gains 
achieved through Simba in section 4. We 
propose some useful enhancements to the 
current implementation in section 5 and con-
clude in section 6. We have restricted finer 

finer details about the software usage and 
the Simba API in Appendix A and B. 

2. The Simba Architecture 
This section describes the three-tier architec-
ture of the Simba video delivery and view-
ing system followed by a summary of the 
Simba file formats. We also discuss the 
communication protocols used and the de-
sign goals that influenced the choice of the 
communication model. We identified three 
distinct entities in the Simba video server 
setup: the Simba client, master and the 
worker. The relationship between them is 
illustrated in Figure 1. 
 

2.1 The Client 
This is a generic MPEG-1 and MPEG-2 
program stream decoder and viewer. The 
client also contains an Apple QuickTime 
plug-in to view QuickTime videos. The 
Simba client differs from normal video cli-
ents in that it is aware of the fact that videos 
are composed of multiple fragments. Hence 
it can request a video on a fragment-by-
fragment basis and play the fragments in 
order without any intermediate gaps. The 
client requests fragments from the central 
server using a control connection. The client 
request contains its address and a port num-
ber at which it constantly listens for incom-
ing media transfer connections. 
 

 
 

Figure 1. The Simba Architecture
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2.2 The Master 
This is the main entry point and the central 
coordination authority in the Simba server 
system. All clients direct their request to 
watch a video to the master. The clients do 
not need to know about workers or their ad-
dresses. The master forwards client requests 
to lightly loaded workers. The forwarding 
algorithm uses worker load information, 
refreshed at regular intervals, to make for-
warding decisions. 
 
The master is critical to the proper function-
ing of the Simba video server. We can en-
sure a high availability of the master by 
hosting the master on tandem non-stop ma-
chines or other fault tolerant assemblies. The 
scheduling algorithms on the master are kept 
as simple as possible to minimize computa-
tion and prevent it from being a bottleneck 
in the overall performance of the system.  

2.3 The Worker 
This component receives a forwarded video 
fragment request from the master and estab-
lishes connection to the client to serve the 
data. The workers can be thought of as file 
transfer agents that are activated on a com-
mand from the master. Workers are de-
signed to be lightweight processes since they 
run on commodity workstations. Workers 
can join and leave the Simba server assem-
bly without producing a noticeable change 
in the Quality of Service as perceived by the 
user.  

2.4 Simba Video Files 
Simba was designed to support existing 
video coding standards. Consequently, we 
do not impose restrictions on the encoding 
format of the video files (provided a suitable 
plug-in is supplied), the number of frag-
ments a video should be striped into or the 
length of each fragment. The system assigns 
a Universally Unique Identifier (UUID) to 
each video for identification purposes. This 
scheme makes the resolution of video names 
unambiguous. Fragments of the same video 
are identified by a three character long 
fragment number ranging from 001 to 999. 
The filename format for a fragment is: 

<UUID>.<fragment number> 
We currently use a conventional file splitter 
to split video files into multiple fragments of 
fixed length. Videos can also be split into 
fragments of equal running length by using a 
MPEG file editor. We have verified this ap-
proach using a software package called My-
Flix. However, the former approach was 
faster and can be automated easily. MPEG 
file editing also stands the risk of violation 
of copyrights since the frame sequence is 
modified at fragment boundaries.  
 
In our prototype, we have used network 
storage to export a uniform view of the 
video repository to all the workers. All video 
fragments reside on the AFS. This is a con-
venient arrangement since any worker can 
serve arbitrary movies and fragments. The 
master scheduler becomes simpler in this 
scenario. 

Figure 2. The master gathers load information from the workers periodically
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Figure 3. The three steps involved in a video fragment transfer 
Step 1. The Simba client sends a UDP control packet to a master. The packet contains client IP 
address, port number of the TCP listener, video UUID and the requested fragment number. The 
server looks up the worker load information list to select a lightly loaded worker. Step 2. The 
server forwards the client request to the worker. Step 3. The worker establishes a TCP connection 
with the client and the fragment transfer goes through. 
 

2.5 Communication Protocols 
We use UDP packets for all control connec-
tions and TCP packets for video data con-
nections. The control primitives have been 
kept simple and idempotent so that the in-
herent unreliability of the UDP protocol 
does not have an adverse effect on the func-
tioning of the system. UDP allows the cli-
ents, masters and workers to exchange mes-
sages without incurring a connection setup 
and termination overhead. The master and 
workers are located on the same subnet 
hence the probability of UDP packet loss is 
very low. The TCP-based data connection, 
on the other hand, guarantees reliable deliv-
ery of video data. The connection setup and 
termination overhead is negligible relative to 
the time it takes to transfer a single frag-
ment. The Simba master uses multicast to 
send commands to all the active workers in 
the system. 

 
A one-way control connection, from the cli-
ent to the master, allows the client to send 
video fragment requests to the server. The 
reverse path from the master to the client is 
not implemented for a number of reasons: 
after sending the fragment request, the client 
will have to listen to incoming data transfer 
connections anyway. Blocking on an ac-
knowledgement is a redundant step since 
and acknowledgement and an incoming data 
connection both imply that the client request 
has been scheduled for service. The ac-
knowledgement originates from the master 
while the incoming TCP data connection 
originates from the worker. Hence, the latter 
is a more authoritative indication of success-
ful response to the worker request. The re-
laxation of the acknowledgement require-
ment reduces the request processing time on 
the master. Finally, the acknowledgement 
would use an unreliable protocol while the 
data connection uses a reliable substrate. 
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The master uses UDP to forward client re-
quests to workers. The communication 
channel is assumed to be more reliable rela-
tive to the client-master interaction because 
the master usually operates on the same 
subnet. The master sends out a multicast 
message to all the workers to ask for load 
information. The use of multicast allows the 
Simba server assembly to scale along two 
axes.  Workers can join and leave multicast 
groups at will. A newly instantiated worker 
can subscribe to the multicast address to re-
ceive commands from the master. A worker 
who left the multicast group will not send 
load information to the server in the next 
cycle and hence will automatically lose con-
tact with the master. Secondly, the master 
does not need to address the workers indi-
vidually to receive the load information. 
Hence, the number of active workers in the 
system does not affect the performance of 
the master. The choice of multicast currently 
requires the existence of a master in every 
subnet that contains active workers. This 
restriction can be relaxed in the near future 
with the deployment of routers and switches 
transparent to multicast [4], [5], [6], [7].  
 
Simba supports a one-way data connection 
from the worker to the client. The data con-
nection is similar to the active connection 
setup in FTP [8]. This achieves the desired 
level of transparency in Simba; the client is 
unaware of the existence of workers in the 
system. 

2.6 Scheduling 
The master schedules the allocation of client 
requests among workers, so that over a large 
period of time, the load is distributed evenly 
across all workers.  It periodically gathers 
load information from workers. Based on 
this information, it decides which worker 
should serve the next client request. 
 
When a worker process is initiated, it sub-
scribes to a pre-defined multicast address. 
On this address it listens for load informa-
tion requests from the master. It maintains a 

count of the number of clients it is serving at 
any point of time. When the master asks for 
load information, it sends this information to 
the master. 
 
We implemented a round-robin scheduler 
for Simba. The master maintains a linked-
list of workers along with their load-
information. It starts off with an empty list. 
It then sends a multicast message to all 
workers to provide load information. It 
builds the linked-list based on replies from 
workers. The new client requests are then 
allocated to workers in a round-robin fash-
ion. After a certain pre-defined interval, the 
master sends out the next multicast message. 
The linked-list is now re-built for this inter-
val. We observed that if the time period of 
the multicast messages is approximately 
equal to the average fragment run-time, the 
server does not accumulate stale load infor-
mation. This also prevents lightly loaded 
workers from being bombarded with a lot of 
forwarded client requests. This would also 
cause rapid fluctuations in loads experienced 
by the worker since all the requests would 
be temporally crowded over a small time-
period. 

3. Implementation 
This section describes the Simba code com-
ponents and APIs. We shall not provide 
source code listing in this report because of 
the prohibitive size of the source code re-
pository. However, the source code is avail-
able for download and we can provide the 
details. While this section describes the 
structure of the code, the appendix details 
the main functions and APIs. 

3.1 Programming Notes 
The Simba code is organized into directories 
and subdirectories according to the func-
tionality. 
 

• All the system-wide header files re-
side in include/ 

• Client sources are in src/. In par-
ticular, the video viewer interface 
source resides in 
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src/interface/ while the 
MPEG stream handlers reside in 
src/input/  

• The server and worker sources are 
in server_side/ 

• The audio and video plugins are in 
plugins/. 

• Many code modules are compiled 
and archived in the directory 
libs/ 

 
The source code is written in Ansi C. Func-
tions contain the name of their container 
module. The Makefile in the source root can 
be used to compile all the targets. The tar-
gets for the Simba client, worker and server 
are vlc, worker and server respec-
tively. 
 
We have developed and tested the code on 
the Solaris/Sparc platform. The code can be 
ported to Solaris/Intel and Linux/Intel plat-
forms. The user may have to run the con-
figuration script, configure, and edit the 
options in Makefile.opts to resolve 
minor platform or file system related differ-
ences. 

3.2 Shared Libraries 
The client and the worker code modules 
share the thread management and formatted 
output libraries. 
 
We decided to use POSIX threads as op-
posed to process creation to make the Simba 
components faster, scalable and simplify 
synchronization mechanisms. The code for 
the master runs in a single thread. The 
thread management library contains portable 
functions for thread creation, destruction and 
synchronization. These functions are essen-
tially wrappers to the POSIX thread API and 
they take care of minor variation in imple-
mentation across platforms. 
 
We cannot use printf() in the threads be-
cause it is known to cause indeterministic 
behavior in threads. The formatted output 
libraries provide thread-safe functions to 
produce formatted output in case of a nor-

mal run, an error condition, warning or de-
bugging. The library maintains a queue of 
output messages at run-time and prints them 
out in FIFO order. Alternately, the library 
functions can synchronize the output using a 
print locks. 

3.3 Client 
We used the VideoLan client [3] developed 
by a group of students at École Centrale, 
Paris. The client is a standalone MPEG-1 
and MPEG-2 player designed to view mov-
ies broadcast over the campus LAN from a 
VideoLan server. The client source code is 
available for download and modification 
under the GNU Public License.  
 
The VideoLan client cannot handle MPEG 
program streams directly from the network. 
We have developed a new module that 
downloads and buffers the program stream 
from the Simba worker into the program 
stream decoder. In addition, we added the 
necessary logic to handle videos as frag-
ments. 
 
The client code uses modules and plug-ins. 
A module is a group of compiled-in C 
source files that are linked against the main 
application at build time. This feature en-
ables developers to choose between distrib-
uting the source code of new developments 
and distributing only the object files. The 
client contains the following modules: 
 

• Interface. This module is the entry 
point to the client program. It man-
ages all user interactions and thread 
spawning.  

• Network. It is responsible for send-
ing fragment requests to the master 
and downloading and buffering the 
video data from the workers. This 
thread implements all the communi-
cation protocols required to interact 
with the Simba server system. 
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Figure 4. Relationship between the different modules in the Simba client 
 

• Input. It opens and input descriptor, 
reads packets, parses them and 
passes reconstituted elementary 
streams to the decoder(s). We pass a 
descriptor the  

• Video output. It initializes the video 
display, gets all pictures from the 
decoder(s), optionally converts them 
to RGB format (from YUV), and 
displays them.  

• Audio output. It initializes the audio 
mixer, i.e., finds the right playing 
frequency, and then re-samples au-
dio frames received from the de-
coder(s). This module is not func-
tional for the Solaris build of the 
Simba client. 

• Misc. Miscellaneous utilities used in 
other modules. This is the only 
module that will never launch a 
thread.  

The client is known to suppress audio output 
when run on Solaris. However, a fix for this 
problem is due in the near future. The client 
receives the encoded audio from the work-
ers; hence it is suitable for the purpose of 
our project. 
 
The Simba client is heavily multi-threaded 
and the various modules either use shared 
data structures or semaphores for synchroni-
zation. The relationship between the differ-
ent modules is illustrated in figure 4. Docu-
mentation about the interface module, video, 
and audio modules is available on the 
VideoLan website. We shall only describe 
the changes to the input module and the 
newly added network module. 

The Network Module 
The network module operates in an inde-
pendent thread in conjunction with the input 
module. It hides the actual source of the 
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video data and the protocols involved in re-
trieving the video data from the input. It pre-
sents the video data stream as a seekable file 
descriptor to the input module. This abstrac-
tion allows the input module to work on the 
Simba network as well as local video files. 
 
The network thread is instantiated by a call 
to network_CreateThread. The thread 
manages three sockets at a time: the UDP 
control socket to the master, the TCP lis-
tener for incoming data connections and 
(possibly) the actual video data connection 
from a worker. The network thread initiali-
zation routine creates the UDP control 
socket and the TCP listener. 
 
The thread sends a fragment request to the 
server and waits for an incoming data con-
nection on the TCP listener. On receiving a 
connect, the thread starts downloading the 
video data. Once it downloads enough data 
to ensure that the buffer does not underflow 
when the input module starts processing the 
data, it signals the input thread to start read-
ing. For example, the low-water-mark in our 
implementation is two fragment lengths. In 
case a fragment download fails, the thread 
removes the downloaded portion from the 
local buffer and resends the fragment re-
quest to the server. This makes the Simba 
client immune to worker failure. The net-
work thread also ensures that the 
downloaded data does not exceed the upper 
limit of the buffer capacity. If this upper 
threshold is reached, the thread postpones 
sending the next fragment request to the 
master until the buffer occupancy falls sig-
nificantly below the high water mark. This 
fragment download is repeated until all the 
fragments of the video are downloaded. The 
fragments are downloaded in order of in-
creasing fragment number. 
 
The network thread does not accept concur-
rent data connections from multiple workers 
because this would increase the algorithmic 
complexity for no significant performance 
gain. At best, the multiple connections 
would cause the buffer occupancy to hover 
dangerously close to the high water mark at 

all times. The multiple download threads 
would then have to sleep, thus decreasing 
throughput.  

The Input Module 
The idea behind the input module is to read 
in video data packets with the minimum 
knowledge of their contents. The reader 
takes a packet, reads its ID, and delivers it to 
the decoder at the right time indicated in the 
packet header (SCR and PCR fields in 
MPEG). All the basic browsing operations, 
i.e. seeks into the input stream are imple-
mented without looking at the content of the 
elementary stream. 
 
An input thread is spawned at the beginning 
of the program by calling the in-
put_CreateThread function. While the 
initial VideoLan implementation re-spawned 
the thread in case of a change of media, we 
retain the thread since the media specifics 
for all the fragments of a single movie are 
the same. This reduces the thread state ini-
tialization overhead and the inter-fragment 
processing delay. 
 
Once the input thread is active, it looks for a 
suitable plug-in to send the data for decod-
ing. The plug-in exports a function, which 
when applied to the input stream, returns the 
relevance (weight) of the module for decod-
ing the stream. In the case of MPEG pro-
gram stream files which are used in the 
Simba setup, the MPEG program stream 
handler announces itself as the most relevant 
plug-in. 
 
The module calls the initialization routine 
for the plug-in and waits for the network 
module (running as another thread) to signal 
the availability of data. As soon as the net-
work module exceeds a ‘safe buffer occu-
pancy’ threshold, the input thread reads in 
packets and calls the program stream de-
multiplexer in a loop till it encounters the 
end of the stream. The plug-in is responsible 
for initializing the stream structures, manag-
ing packet buffers, reading packets and de-
multiplexing them. Once the input thread 
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encounters the end of a fragment, it waits for 
the network thread to signal the availability 
of the next fragment. Under normal opera-
tion, the network thread leads the input 
thread by at least a single fragment. Hence 
the input thread should not experience a de-
lay between fragments. 

3.4 Master 
The master sits in the middle tier of Simba 
architecture. It talks to clients at one end and 
to workers at the other end. There is only 
one master in the system. It contains follow-
ing functional modules: 

Multicast Agent 
This module is responsible for collecting 
load information from workers. At pre-
defined regular intervals of time, it sends out 
a multicast message to the workers request-
ing load information. It creates a linked-list 
of worker responses that is then used by the 
scheduler for worker selection. 

Scheduler 
This module is responsible for deciding 
which worker should server the next client 
request. It has been currently implemented 
as a round-robin scheduler. However, since 
the code is modular, any other scheduling 
algorithm can easily replace the current im-
plementation. 

Request Forwarder 
This module listens for client requests. Upon 
receiving a valid request, it asks the sched-
uler to provide information about the worker 
that should serve the client request. It then 
forwards the request to that worker. 
 

3.5 Worker 
 
The worker provides load information to the 
master and serves video fragments to the 
client. There can me multiple worker in-
stances in the system. The worker contains 
the following functional modules: 

Load Dispatcher 
This module listens for worker load requests 
from master. Upon receiving such a request, 
it sends the count of clients it is serving at 
that moment. It also receives requests from 
the master to server a particular client. The 
requests are forwarded to Fragment server 
module that does the actual fragment trans-
fer. 

Fragment Server 
This module is responsible for reliably 
transmission of video fragments to the cli-
ent. When it receives client information 
from the master, it creates a new thread and 
opens a TCP connection to the client. After 
connecting to the client, it transfers the 
fragment to it. On completion of fragment 
transfer the thread dies.  

4. Performance 
The load on a video delivery server varies 
with the popularity of video content hosted 
on it. Simba alleviates the load presented to 
a single machine by fragmenting the video 
into very small clips. Different workers can 
serve the different fragments of a popular 
video and hence reduce the probability of 
overloading a single worker. Fragmentation 
also removes the port restriction; that is, 
more than 65000 users can concurrently 
watch different parts of a single video from 
different machines. 
 
The Simba architecture reduces state main-
tenance at the worker nodes so that the in-
herent unreliability of these machines does 
not become a performance bottleneck. 
Simba scales as new workers are added to 
the system and is immune to failure of exist-
ing ones. 
 
We performed experiments to test the key 
design parameters of Simba: scalability, 
fault-tolerance, speedup in serving video 
data and uniform load distribution. All the 
machines used in the experiment were 
SunUltra60Creator3D workstations with 
256MB RAM and 1GB swap space. These 
machines are a part of the Stanford comput-
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ting cluster, which is open to all Stanford 
graduate and under-graduate students. A 
491MB video was striped into 161 frag-
ments. The total running time of this VCD 
quality video was 48 minutes. The frag-
ments were stored in a network mount. We 
could run upto sixteen clients that were try-
ing to view the same video. We used four 
workers to handle this load. The fact that we 
were using a public computing infrastructure 
prevented us from expanding our client set. 

4.1 Scalability 
The fundamental limit of scalability in the 
Simba system is the amount of worker state 
information that the master maintains. The 
master needs to maintain 12 bytes of infor-
mation for each worker in the system. Thus, 
the number of workers that can be supported 
by the system depends on the amount mem-
ory available on hardware that runs the mas-
ter. The master does not suffer from per-
formance degradation as the number of 
workers or clients increase since it uses a 
round-robin scheduling algorithm, and the 
time taken to select the worker is always 
O(1). On the other hand, workers use the 
TCP protocol to reliably transfer video files 
to clients. So the number of clients that a 
worker can serve with high fidelity will be 
limited by the disk-access speed and number 
of TCP connections. The system provides 
the flexibility to add new workers to the sys-
tem at any time as load on the system in-
creases. Thus, if the master runs on hard-
ware with sufficient memory, and if there 
are sufficient workers to serve client re-
quests, the system is extremely scalable. 
Besides, the memory footprint of master or 
workers does not increase over a period of 
time. This makes it possible to deterministi-
cally gauge the hardware requirements of 
the system. 

4.2 Fault-tolerance 
A major goal of the Simba system was to 
make the system resilient to failure of any 
single entity in the system. The aim was to 
avoid any prolonged degradation in the sys-
tem due to the failure at a single point. The 

master and workers are primary points of 
failure in the system. We assume a level of 
file system abstraction in that the file storage 
system is resilient to disk failures, and that 
there is sufficient replication of video frag-
ments in the file system. 
 
While serving client requests, if a worker 
process fails, the clients will request the 
same video fragment again. The master will 
now allocate the request to a new worker 
based on its scheduling algorithm. This may 
result in the client receiving a part of video a 
second time, but since video fragments tend 
to be of 3-minute durations, this network 
overhead may be acceptable at times of fail-
ure. As far rendering the video is concerned, 
this glitch is transparent to the client. 
 
Since the master maintains load information 
of workers and decides the allocation of cli-
ent requests to workers, it may be consid-
ered a single point of failure in the system. 
However, the master maintains the state 
only during the interval between requests for 
load information from workers. So if the 
master fails at any time, a new master proc-
ess can be started to take its place. This new 
master can initiate the process of gathering 
load information by sending out a multicast 
message. The system would fail to cater to 
client requests during the time in which 
master is not functioning. A mechanism can 
be devised to restart the master in case of 
failure, which results in a system that is 
completely transparent to its failure.  

5. Future Work 
Considering the time duration for this pro-
ject, we designed and implemented the basic 
distributed video file server and modified an 
MPEG client to work with our servers. But 
for the time constraints, there are many in-
teresting issues that we would have liked to 
look into. We discuss some of them below. 

Experiments with Scheduling Algorithms 
Our implementation of master uses a round-
robin scheduling algorithm to distribute cli-
ent requests among workers. We can ex-
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periment with different scheduling algo-
rithms to study the impact on load distribu-
tion among workers and overall perform-
ance of the system. For instance, it may be 
obvious that the most lightly loaded worker 
should server the next client request. So, the 
master can maintain a linked-list of workers 
sorted by the worker load and allocate client 
requests based on this information. How-
ever, the scalability issues should be kept in 
mind while selecting a scheduling algorithm. 
For instance, if the time to select the next 
worker to server a client request is O(n), the 
performance may degrade if there are many 
workers in the system. 

Peer-to-Peer (P2P) Architecture 
We can extend the current three-tier archi-
tecture to a fully scalable P2P architecture. 
This would provide more flexibility to end-
users since the storage and distribution of 
files would no longer be in control of a sin-
gle entity. MPEG video files tend to be 
large, they could be of the order of 1 MB per 
minute of video content. So striping the 
video content across several peers reduces 
the load on a single peer, both in terms of 
storage capacity and network bandwidth. 
However, such a system would demand 
more advanced scheduling and data man-
agement techniques. 

TCP for Control Messages 
The current implementation uses UDP pack-
ets to exchange control messages among the 
clients, the master and workers. We use TCP 
only for reliable transmission of video file 
fragments. Since all our processes were run-
ning on the same local area network, we 
have assumed reliable delivery of UDP 
packets. However, in most environments, 
the network may not be 100% reliable and 
may drop some client requests packets on 
the way. To ensure complete reliability of 
information exchange, we can use TCP for 
all purposes. 

6. Conclusions 
Simba utilizes the residual bandwidth, com-
puting power and storage capacity of net-

works of workstations to construct highly 
available video delivery server aggregates. 
The use of existing computing infrastructure 
reduces the cost of deployment and mainte-
nance of video delivery systems. 
 
Simba fragments videos to store it across 
multiple workstations and also distributes 
the load of serving very popular videos 
across several workstations. The uniform 
distribution of workload over all the active 
servers enables Simba to support more con-
current viewers per video. 
 
We found that our implementation scales 
well with the addition of workers and clients 
in the system. The Simba client is resilient 
to worker failure as long as there is at least a 
single active worker in the system. The mas-
ter server should be protected from faults by 
employing load-balancing and mirroring 
techniques. 
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Appendix A. A Note on Usage 
 
The Simba client is designed to run in an X11, Gnome or GTK environment. We explain the most 
common option to invoke the Simba client: 
 
fable19:~/Simba-1.3.0524> vlc [-w <width>] [-d <height>] [-n 
<streamtype>] –f totalfragments –m masterIP videoUUID 
 
-w set the width of the video viewer window. The default is 250 pixels 
-d set the height of the video viewer window. The default is 250 pixels 
-n specify the stream type. Simba supports only MPEG program streams, ps. 
-f total number of fragments the current video is divided into 
-m the IP address of one of the masters in the Simba system 
videoUUID the identifier of the requested video 
 
The master may be invoked using the following command: 

Fable20:~/Simba-1.3.0524> master 

 
The worker may be invoked using the following command: 

Fable21:~/Simba-1.3.0524/mpegs> worker 

The worker should be invoked from the directory where video fragments are stored. The client, 
master and worker should be executed on different machines. Besides, the worker and server 
should be executed on machines within the same subnet. 
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Appendix B. The Simba API 
 
The Simba client, master and worker source code is heavily commented. In this section, we pre-
sent the interfaces exported by the main modules in the Simba system. This listing is not exhaus-
tive and does not document the functions internal to each module. 

Shared Libraries 
Environment Variable Management - these methods are used to get default values for some 
threads and modules. 
 
void   main_PutIntVariable( char *psz_name, int i_value ) 
void   main_PutPszVariable( char *psz_name, char *psz_value ) 
Store a name, attribute pair as an environment variable so that it can be accessed from any thread 
within the client. main_PutIntVariable converts an integer into a string before storing it. 
 
int    main_GetIntVariable( char *psz_name, int i_default ) 
char * main_GetPszVariable( char *psz_name, char *psz_default ) 
Read back the values of environment variables. These functions return a default value of an envi-
ronment variable specified in psz_name does not exist or is empty. 
 
Formatted output functions: These provide a thread-safe means to output normal, warning and 
debug messages onto the console 
 
p_intf_msg_t intf_MsgCreate ( void ) 
void intf_MsgDestroy ( void ) 
Create and destroy the queue of messages. In case the queue does not exist, the library uses print 
locks to synchronize console output between different threads. 
 
void intf_Msg ( char *psz_format, ... ) 
void intf_ErrMsg ( char *psz_format, ... ) 
void intf_WarnMsg ( int i_level, char *psz_format, ... ) 
void intf_IntfMsg ( char *psz_format, ... ) 
intf_Msg and intf_IntfMsg are used to print out messages to the consule during the normal func-
tioning of the program. Intf_WarnMsg is used as an early warning system to a non-fatal error. 
Intf_ErMsg is used to print out an error, typically following the failure of a function call. 
 
Thread management functions. These functions are wrappers to the POSIX thread API functions 
and are portable across platforms. Their behavior is analogous to the pthread library functions. 
 
static __inline__ int  vlc_thread_create( vlc_thread_t *p_thread, 
char *psz_name vlc_thread_func_t func, void *p_data ) 
static __inline__ void vlc_thread_exit  ( void ) 
static __inline__ void vlc_thread_join  ( vlc_thread_t thread ) 
 
static __inline__ int  vlc_mutex_init    ( vlc_mutex_t *p_mutex ) 
static __inline__ int  vlc_mutex_lock    ( vlc_mutex_t *p_mutex ) 
static __inline__ int  vlc_mutex_unlock  ( vlc_mutex_t *p_mutex ) 
static __inline__ int  vlc_mutex_destroy ( vlc_mutex_t *p_mutex ) 
 
static __inline__ int  vlc_cond_init    ( vlc_cond_t *p_condvar ) 
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static __inline__ int  vlc_cond_signal  ( vlc_cond_t *p_condvar ) 
static __inline__ int  vlc_cond_wait    ( vlc_cond_t *p_condvar, 
vlc_mutex_t *p_ 
mutex ) 
static __inline__ int vlc_cond_destroy  ( vlc_cond_t *p_condvar ) 

Simba Client 

The Interface Module 
Interface module maintains the most complicated data structures in the entire system. The module 
can access data from any thread audio, video, input or network thread once they are instantiated. 
 
intf_thread_t * intf_Create ( void ) 
void intf_Destroy ( intf_thread_t * p_intf ) 
Create and destrop the interface. The interface, in turn creates the GUI, and loads the input mod-
ule, the network module, audio module and the video module into separate threads. The 
intf_thread_t * points to a structure that contains the complete state of the Simba client. 
Many state variables are uninitialized at thread creation time since they are managed by other 
threads. 
 
void intf_AssignKey( intf_thread_t *p_intf, int r_key, int f_key, 
int param) 
keyparm intf_GetKey( intf_thread_t *p_intf, int r_key) 
void intf_AssignNormalKeys( intf_thread_t *p_intf) 
int intf_ProcessKey ( intf_thread_t * p_intf, int i_key ) 
Keyboard input management functions for the video viewer GUI. The user can control the viewer 
through keypresses instead of using a mouse. 

The Input Module 
input_thread_t *input_CreateThread ( playlist_item_t *p_item, int 
*pi_status ) 
This function creates a new input, and returns a pointer to its description. On error, it returns 
NULL. If pi_status is NULL, then the function will block until the thread is ready. If not, it will 
be updated using one of the THREAD_* constants. 
 
void input_DestroyThread(input_thread_t *p_input, int *pi_status) 
This function should not return until the thread is effectively cancelled. 
 
static void RunThread( input_thread_t *p_input ) 
Thread in charge of processing the network packets and demultiplexing. 
 
void input_FileOpen( input_thread_t * p_input ) 
This function uses the file descriptor abstraction provided by the network thread and opens the 
file descriptor for reading. The state of this open video data stream is stored in the main input 
thread structure. This function contains the logic to maintain pace with the network thread so pre-
vent buffer overflow and underflow. 
 
void input_FileClose( input_thread_t * p_input ) 
Close the open video data stream and signal the event to the network thread. 

The Network Module 
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network_thread_t *network_CreateThread ( playlist_item_t *p_item, 
int *pi_status ) 
This function creates a new network thread, and returns a pointer to its description. On error, it 
returns NULL. If pi_status is NULL, then the function will block until the thread is ready. If not, 
it will be updated using one of the THREAD_* constants. The network thread can be created only 
by the input thread. 
 
void network_DestroyThread( network_thread_t *p_network, int 
*pi_status ) 
Mark a network thread as zombie. This function should not return until the thread is effectively 
cancelled. 
 
static void RunThread( network_thread_t *p_network ) 
Thread in charge of processing the network packets and buffering. This function is the main body 
of the network thread. RunThread is also in charge of working with the input thread to prevent 
buffer overflow and underflow. 
 
void network_Open( network_thread_t * p_network ) 
Initializes all the control and data sockets to talk to the master and accept incoming data connec-
tions from any worker. 
 
void network_Close( network_thread_t * p_network ) 
This function shuts down the control socket and the TCP listener on the client. 
 
The video and audio module API is available at the VideoLan website, http://www.videolan.org. 
We have not made any changes to these modules, hence the API documentation available on the 
website does not require any revision. 

The Simba master 
static int open_connections( int* client_sockfd, int* 
worker_sockfd ) 
This function opens two UDP sockets. The server uses client_sockfd for listening to client re-
quests and worker_sockfd for sending multicast messages and forwarding client requests to 
workers. 
 
static void run_main_loop( int client_sockfd, int worker_sockfd ) 
This function has the main server loop. It’s an infinite loop in which it listens for client requests 
and forwards them to workers. It also periodically sends out multicast messages to workers to get 
load information, and receives replies from workers. 
 
static void process_client_request( int client_sockfd, int 
worker_sockfd ) 
This function is called when a client request is received. It reads the client request and forwards it 
to the worker that is selected to server the client request. 
 
static void request_worker_load( int worker_sockfd ) 
This function sends a multicast message to workers requesting load information. It is called at 
regular intervals of time. This time period is configurable, and is currently set to 3 minutes. 
 
static void process_worker_load( int worker_sockfd ) 
This function processes the replies of workers to multicast messages. 
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static int add_worker( in_addr_t ip_addr, unsigned int cli-
ent_count ) 
This function adds a worker node to the tail of linked-list of workers. 
 
static in_addr_t get_worker_address( void ) 
This function returns the 32-bit IP address of worker who is selected to serve the client request. 
The scheduling algorithm is coded inside this function. It provides an abstraction to the end-user 
in that the algorithm can be replaced without changing any other code fragments. 
 
static void delete_worker_list( void ) 
This function clears the linked-list at regular intervals so that fresh list can be rebuilt with the 
most recent load information from workers. 

The Simba Worker 
static int  initialize( int* server_sockfd, int* request_sockfd ) 
This function opens two UDP sockets. The worker uses server_sockfd for listening to multicast 
messages from server, and request_sockfd for listening to requests from server to serve a particu-
lar client request. 
 
static void run_main_loop( int server_sockfd, int request_sockfd 
) 
This function has the main worker loop. It’s an infinite loop in which it listens for multicast mes-
sages from server, and for requests from server to serve a particular client request. 
 
static int  create_thread( void ) 
This function is called when the worker receives a request from server to transfer a video frag-
ment to client. It creates a thread that is a path of execution within worker process. As the thread 
is created it calls a function that manages the transfer of video fragment to the client. 
 
static void transfer_file( void ) 
This function is associated with the thread that gets created to server a client request. It provides 
an interface for transferring video file to the client. It internally calls functions that establish con-
nection to client and do the actual file transfer. 
 
static int open_client_connection( request_packet_t* 
server_request, int* file_fd, int* client_sockfd ) 
This function establishes a TCP connection with the client for the transfer of video fragment. It 
gets the client IP address, port, UUID and fragment number (part of the filename) from 
server_request. It opens the file that is later referenced using file_fd and it opens a socket for talk-
ing to client that is later referenced using client_sockfd. 
 
static int transfer_file_data( int file_fd, int client_sockfd ) 
This function does the actual file transfer to the client. It reads data from the file referenced by 
file_fd and transfers it to client by referencing the socket client_sockfd. 


