
 1

Simba: A Distributed Video Fileserver

Satyam Vaghani and Pranav Kantawala
svaghani@cs.stanford.edu, pranavk@cs.stanford.edu

Computer Science Department
Stanford University

Abstract
This report describes the design and imple-
mentation of Simba, a scalable, fault-
tolerant and low-cost video delivery system
constructed from a collection of lightweight
servers running on a network of worksta-
tions (NOW). Video files are striped into
very small fragments on the network at-
tached storage or the local file system of
each workstation. The fragments are
streamed across to the Simba client, which
seamlessly integrates all these fragments in
real-time to reproduce the entire movie
without incurring high buffering costs. The
system does not store persistent state or
scheduling information at any delivery serv-
ers. Consequently, Simba scales with the
addition of delivery servers without com-
promising consistency or fault-tolerance.
The ideas presented in this report can also be
applied for designing peer-to-peer streaming
media delivery systems.

1. Introduction
Real-time video delivery systems have
evolved over the past few years to stream
video to large audiences with disparate con-
nection speeds. The delivery servers used
for this purpose usually require large proc-
essing power, main memory and secondary
storage. Real-time video delivery over IP
networks also requires a high aggregate
bandwidth at the server side to support a
large number of concurrent users. We have
designed and implemented Simba, a distrib-
uted video server that amortizes the cost of
real-time video delivery by distributing the
workload and storage requirements over a
network of workstations.

Video files that are served over Simba are
assigned universally unique identifiers
(UUID) and striped into a number of small
fragments of the order of 1-4 MB. These
fragments are stored on network-attached
storage, or locally on the workstations.
Computers that intend to participate as
Simba video delivery servers listen for
commands from a central server at a unique
multicast address. The delivery servers are
known as workers and constitute a dynamic
set that changes with time. We shall refer to
the central server as the master. The master
occasionally sends a multicast message di-
recting the workers to send load informa-
tion. A scheduler on the master chooses a
good worker to handle an incoming request
for a video fragment from the client and
hands off the request to the worker. Simba
supports a single master and an unlimited
number of workers.

The use of networks of workstations as me-
dia delivery systems has been a topic of ac-
tive research and many innovative solutions
have been suggested in the past. The Micro-
soft Tiger Video Fileserver [1] uses video
striping, ATM switching fabric and DMA
transfers from disk to network interfaces to
achieve a significant speedup in video deliv-
ery. Servers are organized into a ring and the
delivery schedule is passed from one server
to the next. The Tiger architecture uses spe-
cialized hardware and customized servers to
achieve scalability and fault tolerance. The
Zeno distributed video fileserver [2] pro-
poses the use of networks of workstations
where each workstation acts both as a client
as well as a server. The use of workstations
to serve potentially long clips of video can

 2

increase the probability of errors or over-
loads during the service.

The motivation behind the Simba architec-
ture comes from the fact that networked
workstations have enough residual band-
width, computing power and storage capac-
ity to store and deliver small fragments of
video files reliably. A highly available video
delivery system can be constructed by dis-
tributing the workload over these localized
NOWs. To illustrate the point, we do a back-
of-the-envelope calculation for the Stanford
Campus Network, which consists of ap-
proximately 45000 hosts spanning over 350
active subnets. A conservative estimate of
50MB of residual storage space on each ma-
chine would yield an aggregate storage ca-
pacity for approximately 2250 full-length
movies. Similar arguments apply to process-
ing power (in MIPS) and network bandwidth
(in Mbps). We shall present a detailed dis-
cussion of scalability later in this report.

The report is organized into six sections.
The next section describes the functional
components, protocols, scheduling mecha-
nisms and file formats used in Simba. Sec-
tion 3 covers the implementation details. We
have documented the performance gains
achieved through Simba in section 4. We
propose some useful enhancements to the
current implementation in section 5 and con-
clude in section 6. We have restricted finer

finer details about the software usage and
the Simba API in Appendix A and B.

2. The Simba Architecture
This section describes the three-tier architec-
ture of the Simba video delivery and view-
ing system followed by a summary of the
Simba file formats. We also discuss the
communication protocols used and the de-
sign goals that influenced the choice of the
communication model. We identified three
distinct entities in the Simba video server
setup: the Simba client, master and the
worker. The relationship between them is
illustrated in Figure 1.

2.1 The Client
This is a generic MPEG-1 and MPEG-2
program stream decoder and viewer. The
client also contains an Apple QuickTime
plug-in to view QuickTime videos. The
Simba client differs from normal video cli-
ents in that it is aware of the fact that videos
are composed of multiple fragments. Hence
it can request a video on a fragment-by-
fragment basis and play the fragments in
order without any intermediate gaps. The
client requests fragments from the central
server using a control connection. The client
request contains its address and a port num-
ber at which it constantly listens for incom-
ing media transfer connections.

Figure 1. The Simba Architecture

 3

2.2 The Master
This is the main entry point and the central
coordination authority in the Simba server
system. All clients direct their request to
watch a video to the master. The clients do
not need to know about workers or their ad-
dresses. The master forwards client requests
to lightly loaded workers. The forwarding
algorithm uses worker load information,
refreshed at regular intervals, to make for-
warding decisions.

The master is critical to the proper function-
ing of the Simba video server. We can en-
sure a high availability of the master by
hosting the master on tandem non-stop ma-
chines or other fault tolerant assemblies. The
scheduling algorithms on the master are kept
as simple as possible to minimize computa-
tion and prevent it from being a bottleneck
in the overall performance of the system.

2.3 The Worker
This component receives a forwarded video
fragment request from the master and estab-
lishes connection to the client to serve the
data. The workers can be thought of as file
transfer agents that are activated on a com-
mand from the master. Workers are de-
signed to be lightweight processes since they
run on commodity workstations. Workers
can join and leave the Simba server assem-
bly without producing a noticeable change
in the Quality of Service as perceived by the
user.

2.4 Simba Video Files
Simba was designed to support existing
video coding standards. Consequently, we
do not impose restrictions on the encoding
format of the video files (provided a suitable
plug-in is supplied), the number of frag-
ments a video should be striped into or the
length of each fragment. The system assigns
a Universally Unique Identifier (UUID) to
each video for identification purposes. This
scheme makes the resolution of video names
unambiguous. Fragments of the same video
are identified by a three character long
fragment number ranging from 001 to 999.
The filename format for a fragment is:

<UUID>.<fragment number>
We currently use a conventional file splitter
to split video files into multiple fragments of
fixed length. Videos can also be split into
fragments of equal running length by using a
MPEG file editor. We have verified this ap-
proach using a software package called My-
Flix. However, the former approach was
faster and can be automated easily. MPEG
file editing also stands the risk of violation
of copyrights since the frame sequence is
modified at fragment boundaries.

In our prototype, we have used network
storage to export a uniform view of the
video repository to all the workers. All video
fragments reside on the AFS. This is a con-
venient arrangement since any worker can
serve arbitrary movies and fragments. The
master scheduler becomes simpler in this
scenario.

Figure 2. The master gathers load information from the workers periodically

 4

Figure 3. The three steps involved in a video fragment transfer
Step 1. The Simba client sends a UDP control packet to a master. The packet contains client IP
address, port number of the TCP listener, video UUID and the requested fragment number. The
server looks up the worker load information list to select a lightly loaded worker. Step 2. The
server forwards the client request to the worker. Step 3. The worker establishes a TCP connection
with the client and the fragment transfer goes through.

2.5 Communication Protocols
We use UDP packets for all control connec-
tions and TCP packets for video data con-
nections. The control primitives have been
kept simple and idempotent so that the in-
herent unreliability of the UDP protocol
does not have an adverse effect on the func-
tioning of the system. UDP allows the cli-
ents, masters and workers to exchange mes-
sages without incurring a connection setup
and termination overhead. The master and
workers are located on the same subnet
hence the probability of UDP packet loss is
very low. The TCP-based data connection,
on the other hand, guarantees reliable deliv-
ery of video data. The connection setup and
termination overhead is negligible relative to
the time it takes to transfer a single frag-
ment. The Simba master uses multicast to
send commands to all the active workers in
the system.

A one-way control connection, from the cli-
ent to the master, allows the client to send
video fragment requests to the server. The
reverse path from the master to the client is
not implemented for a number of reasons:
after sending the fragment request, the client
will have to listen to incoming data transfer
connections anyway. Blocking on an ac-
knowledgement is a redundant step since
and acknowledgement and an incoming data
connection both imply that the client request
has been scheduled for service. The ac-
knowledgement originates from the master
while the incoming TCP data connection
originates from the worker. Hence, the latter
is a more authoritative indication of success-
ful response to the worker request. The re-
laxation of the acknowledgement require-
ment reduces the request processing time on
the master. Finally, the acknowledgement
would use an unreliable protocol while the
data connection uses a reliable substrate.

 5

The master uses UDP to forward client re-
quests to workers. The communication
channel is assumed to be more reliable rela-
tive to the client-master interaction because
the master usually operates on the same
subnet. The master sends out a multicast
message to all the workers to ask for load
information. The use of multicast allows the
Simba server assembly to scale along two
axes. Workers can join and leave multicast
groups at will. A newly instantiated worker
can subscribe to the multicast address to re-
ceive commands from the master. A worker
who left the multicast group will not send
load information to the server in the next
cycle and hence will automatically lose con-
tact with the master. Secondly, the master
does not need to address the workers indi-
vidually to receive the load information.
Hence, the number of active workers in the
system does not affect the performance of
the master. The choice of multicast currently
requires the existence of a master in every
subnet that contains active workers. This
restriction can be relaxed in the near future
with the deployment of routers and switches
transparent to multicast [4], [5], [6], [7].

Simba supports a one-way data connection
from the worker to the client. The data con-
nection is similar to the active connection
setup in FTP [8]. This achieves the desired
level of transparency in Simba; the client is
unaware of the existence of workers in the
system.

2.6 Scheduling
The master schedules the allocation of client
requests among workers, so that over a large
period of time, the load is distributed evenly
across all workers. It periodically gathers
load information from workers. Based on
this information, it decides which worker
should serve the next client request.

When a worker process is initiated, it sub-
scribes to a pre-defined multicast address.
On this address it listens for load informa-
tion requests from the master. It maintains a

count of the number of clients it is serving at
any point of time. When the master asks for
load information, it sends this information to
the master.

We implemented a round-robin scheduler
for Simba. The master maintains a linked-
list of workers along with their load-
information. It starts off with an empty list.
It then sends a multicast message to all
workers to provide load information. It
builds the linked-list based on replies from
workers. The new client requests are then
allocated to workers in a round-robin fash-
ion. After a certain pre-defined interval, the
master sends out the next multicast message.
The linked-list is now re-built for this inter-
val. We observed that if the time period of
the multicast messages is approximately
equal to the average fragment run-time, the
server does not accumulate stale load infor-
mation. This also prevents lightly loaded
workers from being bombarded with a lot of
forwarded client requests. This would also
cause rapid fluctuations in loads experienced
by the worker since all the requests would
be temporally crowded over a small time-
period.

3. Implementation
This section describes the Simba code com-
ponents and APIs. We shall not provide
source code listing in this report because of
the prohibitive size of the source code re-
pository. However, the source code is avail-
able for download and we can provide the
details. While this section describes the
structure of the code, the appendix details
the main functions and APIs.

3.1 Programming Notes
The Simba code is organized into directories
and subdirectories according to the func-
tionality.

• All the system-wide header files re-
side in include/

• Client sources are in src/. In par-
ticular, the video viewer interface
source resides in

 6

src/interface/ while the
MPEG stream handlers reside in
src/input/

• The server and worker sources are
in server_side/

• The audio and video plugins are in
plugins/.

• Many code modules are compiled
and archived in the directory
libs/

The source code is written in Ansi C. Func-
tions contain the name of their container
module. The Makefile in the source root can
be used to compile all the targets. The tar-
gets for the Simba client, worker and server
are vlc, worker and server respec-
tively.

We have developed and tested the code on
the Solaris/Sparc platform. The code can be
ported to Solaris/Intel and Linux/Intel plat-
forms. The user may have to run the con-
figuration script, configure, and edit the
options in Makefile.opts to resolve
minor platform or file system related differ-
ences.

3.2 Shared Libraries
The client and the worker code modules
share the thread management and formatted
output libraries.

We decided to use POSIX threads as op-
posed to process creation to make the Simba
components faster, scalable and simplify
synchronization mechanisms. The code for
the master runs in a single thread. The
thread management library contains portable
functions for thread creation, destruction and
synchronization. These functions are essen-
tially wrappers to the POSIX thread API and
they take care of minor variation in imple-
mentation across platforms.

We cannot use printf() in the threads be-
cause it is known to cause indeterministic
behavior in threads. The formatted output
libraries provide thread-safe functions to
produce formatted output in case of a nor-

mal run, an error condition, warning or de-
bugging. The library maintains a queue of
output messages at run-time and prints them
out in FIFO order. Alternately, the library
functions can synchronize the output using a
print locks.

3.3 Client
We used the VideoLan client [3] developed
by a group of students at École Centrale,
Paris. The client is a standalone MPEG-1
and MPEG-2 player designed to view mov-
ies broadcast over the campus LAN from a
VideoLan server. The client source code is
available for download and modification
under the GNU Public License.

The VideoLan client cannot handle MPEG
program streams directly from the network.
We have developed a new module that
downloads and buffers the program stream
from the Simba worker into the program
stream decoder. In addition, we added the
necessary logic to handle videos as frag-
ments.

The client code uses modules and plug-ins.
A module is a group of compiled-in C
source files that are linked against the main
application at build time. This feature en-
ables developers to choose between distrib-
uting the source code of new developments
and distributing only the object files. The
client contains the following modules:

• Interface. This module is the entry
point to the client program. It man-
ages all user interactions and thread
spawning.

• Network. It is responsible for send-
ing fragment requests to the master
and downloading and buffering the
video data from the workers. This
thread implements all the communi-
cation protocols required to interact
with the Simba server system.

 7

Figure 4. Relationship between the different modules in the Simba client

• Input. It opens and input descriptor,
reads packets, parses them and
passes reconstituted elementary
streams to the decoder(s). We pass a
descriptor the

• Video output. It initializes the video
display, gets all pictures from the
decoder(s), optionally converts them
to RGB format (from YUV), and
displays them.

• Audio output. It initializes the audio
mixer, i.e., finds the right playing
frequency, and then re-samples au-
dio frames received from the de-
coder(s). This module is not func-
tional for the Solaris build of the
Simba client.

• Misc. Miscellaneous utilities used in
other modules. This is the only
module that will never launch a
thread.

The client is known to suppress audio output
when run on Solaris. However, a fix for this
problem is due in the near future. The client
receives the encoded audio from the work-
ers; hence it is suitable for the purpose of
our project.

The Simba client is heavily multi-threaded
and the various modules either use shared
data structures or semaphores for synchroni-
zation. The relationship between the differ-
ent modules is illustrated in figure 4. Docu-
mentation about the interface module, video,
and audio modules is available on the
VideoLan website. We shall only describe
the changes to the input module and the
newly added network module.

The Network Module
The network module operates in an inde-
pendent thread in conjunction with the input
module. It hides the actual source of the

 8

video data and the protocols involved in re-
trieving the video data from the input. It pre-
sents the video data stream as a seekable file
descriptor to the input module. This abstrac-
tion allows the input module to work on the
Simba network as well as local video files.

The network thread is instantiated by a call
to network_CreateThread. The thread
manages three sockets at a time: the UDP
control socket to the master, the TCP lis-
tener for incoming data connections and
(possibly) the actual video data connection
from a worker. The network thread initiali-
zation routine creates the UDP control
socket and the TCP listener.

The thread sends a fragment request to the
server and waits for an incoming data con-
nection on the TCP listener. On receiving a
connect, the thread starts downloading the
video data. Once it downloads enough data
to ensure that the buffer does not underflow
when the input module starts processing the
data, it signals the input thread to start read-
ing. For example, the low-water-mark in our
implementation is two fragment lengths. In
case a fragment download fails, the thread
removes the downloaded portion from the
local buffer and resends the fragment re-
quest to the server. This makes the Simba
client immune to worker failure. The net-
work thread also ensures that the
downloaded data does not exceed the upper
limit of the buffer capacity. If this upper
threshold is reached, the thread postpones
sending the next fragment request to the
master until the buffer occupancy falls sig-
nificantly below the high water mark. This
fragment download is repeated until all the
fragments of the video are downloaded. The
fragments are downloaded in order of in-
creasing fragment number.

The network thread does not accept concur-
rent data connections from multiple workers
because this would increase the algorithmic
complexity for no significant performance
gain. At best, the multiple connections
would cause the buffer occupancy to hover
dangerously close to the high water mark at

all times. The multiple download threads
would then have to sleep, thus decreasing
throughput.

The Input Module
The idea behind the input module is to read
in video data packets with the minimum
knowledge of their contents. The reader
takes a packet, reads its ID, and delivers it to
the decoder at the right time indicated in the
packet header (SCR and PCR fields in
MPEG). All the basic browsing operations,
i.e. seeks into the input stream are imple-
mented without looking at the content of the
elementary stream.

An input thread is spawned at the beginning
of the program by calling the in-
put_CreateThread function. While the
initial VideoLan implementation re-spawned
the thread in case of a change of media, we
retain the thread since the media specifics
for all the fragments of a single movie are
the same. This reduces the thread state ini-
tialization overhead and the inter-fragment
processing delay.

Once the input thread is active, it looks for a
suitable plug-in to send the data for decod-
ing. The plug-in exports a function, which
when applied to the input stream, returns the
relevance (weight) of the module for decod-
ing the stream. In the case of MPEG pro-
gram stream files which are used in the
Simba setup, the MPEG program stream
handler announces itself as the most relevant
plug-in.

The module calls the initialization routine
for the plug-in and waits for the network
module (running as another thread) to signal
the availability of data. As soon as the net-
work module exceeds a ‘safe buffer occu-
pancy’ threshold, the input thread reads in
packets and calls the program stream de-
multiplexer in a loop till it encounters the
end of the stream. The plug-in is responsible
for initializing the stream structures, manag-
ing packet buffers, reading packets and de-
multiplexing them. Once the input thread

 9

encounters the end of a fragment, it waits for
the network thread to signal the availability
of the next fragment. Under normal opera-
tion, the network thread leads the input
thread by at least a single fragment. Hence
the input thread should not experience a de-
lay between fragments.

3.4 Master
The master sits in the middle tier of Simba
architecture. It talks to clients at one end and
to workers at the other end. There is only
one master in the system. It contains follow-
ing functional modules:

Multicast Agent
This module is responsible for collecting
load information from workers. At pre-
defined regular intervals of time, it sends out
a multicast message to the workers request-
ing load information. It creates a linked-list
of worker responses that is then used by the
scheduler for worker selection.

Scheduler
This module is responsible for deciding
which worker should server the next client
request. It has been currently implemented
as a round-robin scheduler. However, since
the code is modular, any other scheduling
algorithm can easily replace the current im-
plementation.

Request Forwarder
This module listens for client requests. Upon
receiving a valid request, it asks the sched-
uler to provide information about the worker
that should serve the client request. It then
forwards the request to that worker.

3.5 Worker

The worker provides load information to the
master and serves video fragments to the
client. There can me multiple worker in-
stances in the system. The worker contains
the following functional modules:

Load Dispatcher
This module listens for worker load requests
from master. Upon receiving such a request,
it sends the count of clients it is serving at
that moment. It also receives requests from
the master to server a particular client. The
requests are forwarded to Fragment server
module that does the actual fragment trans-
fer.

Fragment Server
This module is responsible for reliably
transmission of video fragments to the cli-
ent. When it receives client information
from the master, it creates a new thread and
opens a TCP connection to the client. After
connecting to the client, it transfers the
fragment to it. On completion of fragment
transfer the thread dies.

4. Performance
The load on a video delivery server varies
with the popularity of video content hosted
on it. Simba alleviates the load presented to
a single machine by fragmenting the video
into very small clips. Different workers can
serve the different fragments of a popular
video and hence reduce the probability of
overloading a single worker. Fragmentation
also removes the port restriction; that is,
more than 65000 users can concurrently
watch different parts of a single video from
different machines.

The Simba architecture reduces state main-
tenance at the worker nodes so that the in-
herent unreliability of these machines does
not become a performance bottleneck.
Simba scales as new workers are added to
the system and is immune to failure of exist-
ing ones.

We performed experiments to test the key
design parameters of Simba: scalability,
fault-tolerance, speedup in serving video
data and uniform load distribution. All the
machines used in the experiment were
SunUltra60Creator3D workstations with
256MB RAM and 1GB swap space. These
machines are a part of the Stanford comput-

 10

ting cluster, which is open to all Stanford
graduate and under-graduate students. A
491MB video was striped into 161 frag-
ments. The total running time of this VCD
quality video was 48 minutes. The frag-
ments were stored in a network mount. We
could run upto sixteen clients that were try-
ing to view the same video. We used four
workers to handle this load. The fact that we
were using a public computing infrastructure
prevented us from expanding our client set.

4.1 Scalability
The fundamental limit of scalability in the
Simba system is the amount of worker state
information that the master maintains. The
master needs to maintain 12 bytes of infor-
mation for each worker in the system. Thus,
the number of workers that can be supported
by the system depends on the amount mem-
ory available on hardware that runs the mas-
ter. The master does not suffer from per-
formance degradation as the number of
workers or clients increase since it uses a
round-robin scheduling algorithm, and the
time taken to select the worker is always
O(1). On the other hand, workers use the
TCP protocol to reliably transfer video files
to clients. So the number of clients that a
worker can serve with high fidelity will be
limited by the disk-access speed and number
of TCP connections. The system provides
the flexibility to add new workers to the sys-
tem at any time as load on the system in-
creases. Thus, if the master runs on hard-
ware with sufficient memory, and if there
are sufficient workers to serve client re-
quests, the system is extremely scalable.
Besides, the memory footprint of master or
workers does not increase over a period of
time. This makes it possible to deterministi-
cally gauge the hardware requirements of
the system.

4.2 Fault-tolerance
A major goal of the Simba system was to
make the system resilient to failure of any
single entity in the system. The aim was to
avoid any prolonged degradation in the sys-
tem due to the failure at a single point. The

master and workers are primary points of
failure in the system. We assume a level of
file system abstraction in that the file storage
system is resilient to disk failures, and that
there is sufficient replication of video frag-
ments in the file system.

While serving client requests, if a worker
process fails, the clients will request the
same video fragment again. The master will
now allocate the request to a new worker
based on its scheduling algorithm. This may
result in the client receiving a part of video a
second time, but since video fragments tend
to be of 3-minute durations, this network
overhead may be acceptable at times of fail-
ure. As far rendering the video is concerned,
this glitch is transparent to the client.

Since the master maintains load information
of workers and decides the allocation of cli-
ent requests to workers, it may be consid-
ered a single point of failure in the system.
However, the master maintains the state
only during the interval between requests for
load information from workers. So if the
master fails at any time, a new master proc-
ess can be started to take its place. This new
master can initiate the process of gathering
load information by sending out a multicast
message. The system would fail to cater to
client requests during the time in which
master is not functioning. A mechanism can
be devised to restart the master in case of
failure, which results in a system that is
completely transparent to its failure.

5. Future Work
Considering the time duration for this pro-
ject, we designed and implemented the basic
distributed video file server and modified an
MPEG client to work with our servers. But
for the time constraints, there are many in-
teresting issues that we would have liked to
look into. We discuss some of them below.

Experiments with Scheduling Algorithms
Our implementation of master uses a round-
robin scheduling algorithm to distribute cli-
ent requests among workers. We can ex-

 11

periment with different scheduling algo-
rithms to study the impact on load distribu-
tion among workers and overall perform-
ance of the system. For instance, it may be
obvious that the most lightly loaded worker
should server the next client request. So, the
master can maintain a linked-list of workers
sorted by the worker load and allocate client
requests based on this information. How-
ever, the scalability issues should be kept in
mind while selecting a scheduling algorithm.
For instance, if the time to select the next
worker to server a client request is O(n), the
performance may degrade if there are many
workers in the system.

Peer-to-Peer (P2P) Architecture
We can extend the current three-tier archi-
tecture to a fully scalable P2P architecture.
This would provide more flexibility to end-
users since the storage and distribution of
files would no longer be in control of a sin-
gle entity. MPEG video files tend to be
large, they could be of the order of 1 MB per
minute of video content. So striping the
video content across several peers reduces
the load on a single peer, both in terms of
storage capacity and network bandwidth.
However, such a system would demand
more advanced scheduling and data man-
agement techniques.

TCP for Control Messages
The current implementation uses UDP pack-
ets to exchange control messages among the
clients, the master and workers. We use TCP
only for reliable transmission of video file
fragments. Since all our processes were run-
ning on the same local area network, we
have assumed reliable delivery of UDP
packets. However, in most environments,
the network may not be 100% reliable and
may drop some client requests packets on
the way. To ensure complete reliability of
information exchange, we can use TCP for
all purposes.

6. Conclusions
Simba utilizes the residual bandwidth, com-
puting power and storage capacity of net-

works of workstations to construct highly
available video delivery server aggregates.
The use of existing computing infrastructure
reduces the cost of deployment and mainte-
nance of video delivery systems.

Simba fragments videos to store it across
multiple workstations and also distributes
the load of serving very popular videos
across several workstations. The uniform
distribution of workload over all the active
servers enables Simba to support more con-
current viewers per video.

We found that our implementation scales
well with the addition of workers and clients
in the system. The Simba client is resilient
to worker failure as long as there is at least a
single active worker in the system. The mas-
ter server should be protected from faults by
employing load-balancing and mirroring
techniques.

Acknowledgements
We would like to thank Ciro Noronha for
guiding us through the implementation of
the system. We would also like to thank
Manish Godara and David Hole for helping
us with the project logistics.

References
[1] W. Bolosky, J Barrera III, R. Draves, R.

Fitzgerald, G. Gibson, M. Jones, S. Levi, N.
Myhrvold, R. Rashid. The Tiger Video File-
server. In the proceedings of the Sixth Inter-
national Workshop on Network and Operat-
ing System Support for Digital Audio and
Video. IEEE Computer Society, Zushi, Ja-
pan, April 1996.

[2] The Zeno distributed video fileserver,

http://www.cs.cornell.edu/Info/Faculty/Bria
n_Smith.html.

[3] The VideoLan project, MPEG and DVD for

every OS, http://www.videolan.org.

[4] Cisco, Pragmatic General Muticast (PGM).

http://www.cisco.com/univercd/cc/td/doc/pr
oduct/software/ios120/120newft/120t/120t5/
pgmscale.pdf

 12

[5] Floyd, S., Jacobson, V., Liu, C., McCanne,
S., and Zhang, L., A Reliable Multicast
Framework for Light-weight Sessions and
Application Level Framing, IEEE/ACM
Transactions on Networking, December
1997, Volume 5, Number 6, pp. 784-803.

[6] Talarian, Smart PGM.

http://www.talarian.com/products/smartpgm

[7] RFC 1112. Host Extensions for IP Multi-

casting. http://www.ietf.org/rfc/rfc1112.txt

[8] RFC 959. File Transfer Protocol. Section 3.2

Establishing Data Connections.
http://www.ietf.org/rfc/rfc0959.txt

[9] R. Stevens . Unix Network Programming.
Vol. 1, Prentice Hall, N.J.

 13

Appendix A. A Note on Usage

The Simba client is designed to run in an X11, Gnome or GTK environment. We explain the most
common option to invoke the Simba client:

fable19:~/Simba-1.3.0524> vlc [-w <width>] [-d <height>] [-n
<streamtype>] –f totalfragments –m masterIP videoUUID

-w set the width of the video viewer window. The default is 250 pixels
-d set the height of the video viewer window. The default is 250 pixels
-n specify the stream type. Simba supports only MPEG program streams, ps.
-f total number of fragments the current video is divided into
-m the IP address of one of the masters in the Simba system
videoUUID the identifier of the requested video

The master may be invoked using the following command:

Fable20:~/Simba-1.3.0524> master

The worker may be invoked using the following command:

Fable21:~/Simba-1.3.0524/mpegs> worker

The worker should be invoked from the directory where video fragments are stored. The client,
master and worker should be executed on different machines. Besides, the worker and server
should be executed on machines within the same subnet.

 14

Appendix B. The Simba API

The Simba client, master and worker source code is heavily commented. In this section, we pre-
sent the interfaces exported by the main modules in the Simba system. This listing is not exhaus-
tive and does not document the functions internal to each module.

Shared Libraries
Environment Variable Management - these methods are used to get default values for some
threads and modules.

void main_PutIntVariable(char *psz_name, int i_value)
void main_PutPszVariable(char *psz_name, char *psz_value)
Store a name, attribute pair as an environment variable so that it can be accessed from any thread
within the client. main_PutIntVariable converts an integer into a string before storing it.

int main_GetIntVariable(char *psz_name, int i_default)
char * main_GetPszVariable(char *psz_name, char *psz_default)
Read back the values of environment variables. These functions return a default value of an envi-
ronment variable specified in psz_name does not exist or is empty.

Formatted output functions: These provide a thread-safe means to output normal, warning and
debug messages onto the console

p_intf_msg_t intf_MsgCreate (void)
void intf_MsgDestroy (void)
Create and destroy the queue of messages. In case the queue does not exist, the library uses print
locks to synchronize console output between different threads.

void intf_Msg (char *psz_format, ...)
void intf_ErrMsg (char *psz_format, ...)
void intf_WarnMsg (int i_level, char *psz_format, ...)
void intf_IntfMsg (char *psz_format, ...)
intf_Msg and intf_IntfMsg are used to print out messages to the consule during the normal func-
tioning of the program. Intf_WarnMsg is used as an early warning system to a non-fatal error.
Intf_ErMsg is used to print out an error, typically following the failure of a function call.

Thread management functions. These functions are wrappers to the POSIX thread API functions
and are portable across platforms. Their behavior is analogous to the pthread library functions.

static __inline__ int vlc_thread_create(vlc_thread_t *p_thread,
char *psz_name vlc_thread_func_t func, void *p_data)
static __inline__ void vlc_thread_exit (void)
static __inline__ void vlc_thread_join (vlc_thread_t thread)

static __inline__ int vlc_mutex_init (vlc_mutex_t *p_mutex)
static __inline__ int vlc_mutex_lock (vlc_mutex_t *p_mutex)
static __inline__ int vlc_mutex_unlock (vlc_mutex_t *p_mutex)
static __inline__ int vlc_mutex_destroy (vlc_mutex_t *p_mutex)

static __inline__ int vlc_cond_init (vlc_cond_t *p_condvar)

 15

static __inline__ int vlc_cond_signal (vlc_cond_t *p_condvar)
static __inline__ int vlc_cond_wait (vlc_cond_t *p_condvar,
vlc_mutex_t *p_
mutex)
static __inline__ int vlc_cond_destroy (vlc_cond_t *p_condvar)

Simba Client

The Interface Module
Interface module maintains the most complicated data structures in the entire system. The module
can access data from any thread audio, video, input or network thread once they are instantiated.

intf_thread_t * intf_Create (void)
void intf_Destroy (intf_thread_t * p_intf)
Create and destrop the interface. The interface, in turn creates the GUI, and loads the input mod-
ule, the network module, audio module and the video module into separate threads. The
intf_thread_t * points to a structure that contains the complete state of the Simba client.
Many state variables are uninitialized at thread creation time since they are managed by other
threads.

void intf_AssignKey(intf_thread_t *p_intf, int r_key, int f_key,
int param)
keyparm intf_GetKey(intf_thread_t *p_intf, int r_key)
void intf_AssignNormalKeys(intf_thread_t *p_intf)
int intf_ProcessKey (intf_thread_t * p_intf, int i_key)
Keyboard input management functions for the video viewer GUI. The user can control the viewer
through keypresses instead of using a mouse.

The Input Module
input_thread_t *input_CreateThread (playlist_item_t *p_item, int
*pi_status)
This function creates a new input, and returns a pointer to its description. On error, it returns
NULL. If pi_status is NULL, then the function will block until the thread is ready. If not, it will
be updated using one of the THREAD_* constants.

void input_DestroyThread(input_thread_t *p_input, int *pi_status)
This function should not return until the thread is effectively cancelled.

static void RunThread(input_thread_t *p_input)
Thread in charge of processing the network packets and demultiplexing.

void input_FileOpen(input_thread_t * p_input)
This function uses the file descriptor abstraction provided by the network thread and opens the
file descriptor for reading. The state of this open video data stream is stored in the main input
thread structure. This function contains the logic to maintain pace with the network thread so pre-
vent buffer overflow and underflow.

void input_FileClose(input_thread_t * p_input)
Close the open video data stream and signal the event to the network thread.

The Network Module

 16

network_thread_t *network_CreateThread (playlist_item_t *p_item,
int *pi_status)
This function creates a new network thread, and returns a pointer to its description. On error, it
returns NULL. If pi_status is NULL, then the function will block until the thread is ready. If not,
it will be updated using one of the THREAD_* constants. The network thread can be created only
by the input thread.

void network_DestroyThread(network_thread_t *p_network, int
*pi_status)
Mark a network thread as zombie. This function should not return until the thread is effectively
cancelled.

static void RunThread(network_thread_t *p_network)
Thread in charge of processing the network packets and buffering. This function is the main body
of the network thread. RunThread is also in charge of working with the input thread to prevent
buffer overflow and underflow.

void network_Open(network_thread_t * p_network)
Initializes all the control and data sockets to talk to the master and accept incoming data connec-
tions from any worker.

void network_Close(network_thread_t * p_network)
This function shuts down the control socket and the TCP listener on the client.

The video and audio module API is available at the VideoLan website, http://www.videolan.org.
We have not made any changes to these modules, hence the API documentation available on the
website does not require any revision.

The Simba master
static int open_connections(int* client_sockfd, int*
worker_sockfd)
This function opens two UDP sockets. The server uses client_sockfd for listening to client re-
quests and worker_sockfd for sending multicast messages and forwarding client requests to
workers.

static void run_main_loop(int client_sockfd, int worker_sockfd)
This function has the main server loop. It’s an infinite loop in which it listens for client requests
and forwards them to workers. It also periodically sends out multicast messages to workers to get
load information, and receives replies from workers.

static void process_client_request(int client_sockfd, int
worker_sockfd)
This function is called when a client request is received. It reads the client request and forwards it
to the worker that is selected to server the client request.

static void request_worker_load(int worker_sockfd)
This function sends a multicast message to workers requesting load information. It is called at
regular intervals of time. This time period is configurable, and is currently set to 3 minutes.

static void process_worker_load(int worker_sockfd)
This function processes the replies of workers to multicast messages.

 17

static int add_worker(in_addr_t ip_addr, unsigned int cli-
ent_count)
This function adds a worker node to the tail of linked-list of workers.

static in_addr_t get_worker_address(void)
This function returns the 32-bit IP address of worker who is selected to serve the client request.
The scheduling algorithm is coded inside this function. It provides an abstraction to the end-user
in that the algorithm can be replaced without changing any other code fragments.

static void delete_worker_list(void)
This function clears the linked-list at regular intervals so that fresh list can be rebuilt with the
most recent load information from workers.

The Simba Worker
static int initialize(int* server_sockfd, int* request_sockfd)
This function opens two UDP sockets. The worker uses server_sockfd for listening to multicast
messages from server, and request_sockfd for listening to requests from server to serve a particu-
lar client request.

static void run_main_loop(int server_sockfd, int request_sockfd
)
This function has the main worker loop. It’s an infinite loop in which it listens for multicast mes-
sages from server, and for requests from server to serve a particular client request.

static int create_thread(void)
This function is called when the worker receives a request from server to transfer a video frag-
ment to client. It creates a thread that is a path of execution within worker process. As the thread
is created it calls a function that manages the transfer of video fragment to the client.

static void transfer_file(void)
This function is associated with the thread that gets created to server a client request. It provides
an interface for transferring video file to the client. It internally calls functions that establish con-
nection to client and do the actual file transfer.

static int open_client_connection(request_packet_t*
server_request, int* file_fd, int* client_sockfd)
This function establishes a TCP connection with the client for the transfer of video fragment. It
gets the client IP address, port, UUID and fragment number (part of the filename) from
server_request. It opens the file that is later referenced using file_fd and it opens a socket for talk-
ing to client that is later referenced using client_sockfd.

static int transfer_file_data(int file_fd, int client_sockfd)
This function does the actual file transfer to the client. It reads data from the file referenced by
file_fd and transfers it to client by referencing the socket client_sockfd.

