
BINGO! and DAFFODIL: Personalized
Exploration of Digital Libraries and Web Sources?

Martin Theobald1 and Claus-Peter Klas2

1 Max-Planck Institut für Informatik, Saarbrücken
martin.theobald@mpi-sb.mpg.de

2 University of Duisburg
klas@uni-duisburg.de

Abstract. Daffodil is a digital library system targeted at strategic
support of advanced users during the information search process. It pro-
vides user-customizable “stratagems” for exploring and managing digital
library objects with meta data annotations over a federation of hetero-
geneous digital libraries. Bingo! is a focused crawler that learns how
to gather thematically relevant documents from the Web and Deep-Web
sources. This paper presents a coupling architecture for Daffodil and
Bingo! that allows advanced users to explore digital libraries and Web
sources in a comprehensive and coherent way. Starting from a user’s
interest profile in Daffodil, Bingo! is instructed to find thematically
similar documents on the Web, leading to high-quality recommendations
that reach beyond the information that can be directly found in digital
libraries. Our experimental studies demonstrate that this coupling does
indeed lead to a powerful tool suite that improves the precision and recall
compared to conventional library and Web search mechanisms.

1 Introduction

Daffodil is a digital library system targeted at strategic support during the
information search process [12]. For advanced users, high-level search functions,
so-called “stratagems”, provide powerful information-exploration functionality
beyond today’s digital libraries. In particular, Daffodil can handle federations
of heterogeneous digital libraries (DLs) through appropriate wrappers (e.g., for
DBLP, ACM digital library, etc.). For example, a user can associate her interest
profile with a set of digital library objects (DLOs for short), typically journal
or conference publications, which are organized into a folder hierarchy. These
DLOs are automatically enriched by meta data annotations such as authors,
titles, publication year, etc., which Daffodil extracts from the underlying DLs.
However, Daffodil cannot directly explore arbitrary Web sources, for which
no structured service interface is known a priori. For example, it cannot find
publications that are stored on authors’ homepages.

? Funded by the German Science Foundation (DFG) as part of the research project
“Classification and Intelligent Search on Information in XML (CLASSIX)”

The work presented in this paper aims at enhancing Daffodil to reach out
for arbitrary Web data including Deep-Web sources where the data resides be-
hind a structured portal interface. At the same time, the high search precision
and comfortable feedback mechanisms that Daffodil provides on DLs should
be maintained also for Web sources. To this end, we have coupled Daffodil
with the Bingo! focused crawler, an advanced toolkit for information portal
generation and expert Web search. In contrast to standard search engines which
are solely based on precomputed index structures, a focused crawler interleaves
crawling, automatic classification, link analysis and assessment, and text filter-
ing. A crawl is started from a user-provided set of training data and aims to
collect comprehensive results for the given topics. A particularity of Bingo!
is that it uses semi-supervised learning techniques and ontological background
information to overcome the insufficiencies of initial training data for improved
precision. Moreover, Bingo! incorporates topic-specific information portals (e.g.,
external search engines or portals of large research institutes) that cannot be di-
rectly crawled.

The coupling architecture for combining the benefits of Daffodil and Bingo!
is depicted in Figure 1. The two subsystems communicate using multi-agent and
Web Service protocols. A typical scenario starts with a user putting together
one or more folders of annotated DLOs, for example, the ones shown in the
Daffodil box for topics “database core technology (DB core)”, “Web informa-
tion retrieval (Web IR)”, and “workflow management”. These DLOs point to
documents within digital libraries, and in some cases may include links to the
document content itself. For further exploration of these topics and acquiring
new recommendations, these DLO folders can be sent to Bingo!, where they
are converted into appropriate training data for the classifier and seeds for the
focused crawler. The DLO meta data helps to generate queries to Deep-Web
portals which cannot be directly crawled; this step makes use of an ontology to
map, for example, a meta data attribute “subject” to “category”, “genre”, “topic”,
etc. Finally, both the crawled and positively classified Web documents and the
portal-extracted results are returned to Daffodil as recommendations and are
presented through an assessment and feedback GUI to the human user. These
steps and their order are depicted in Figure 1 by the thick numbered arrows (the
numbers correspond to the workflow described in section 6). Note that the figure
shows all steps of one “handshake” between Daffodil and Bingo!; the entire
loop can be iterated multiple times, either fully automatically or after obtaining
relevance feedback by the human user.

The contributions of this paper are twofold:

– We show how to couple different technologies for information search and or-
ganization, one geared for digital libraries and one for Web sources. The two
systems that underlie our work, Daffodil and Bingo!, are paradigmatic;
our considerations can be carried over to other toolkits of these flavors.

– The combination of Daffodil and Bingo! provides advanced users with
significant added value. From the DL viewpoint, the recall is substantially
improved by considering Web sources such as homepages of individual re-

Figure 1. Coupling Architecture for Daffodil and Bingo!

searchers or entire institutes. The focusing mechanism of Bingo! largely
avoids the danger of information overloading, compared to conventional Web
search mechanisms, and helps keeping the precision sufficiently high. From
the Web search viewpoint, the meta data annotations provided by Daf-
fodil are crucial for generating meaningful queries against Deep-Web por-
tals with multi-parameter interfaces (e.g., the advanced search form of the
DBLP Trier). Also, the meta data is vital for high precision of recommenda-
tions, and Daffodil can additionally exploit relevance feedback for further
improvements.

2 Related Work

Most related work on recommendation is based on the usage of already available
information items [31] from a precomputed index. But most lack the problem of
having only sparse data from the user of the digital library, since they usually
rely on Web interfaces only. Other account on human collaboration to generate
recommendations [15, 25, 26]. Inspired by the organization of the human brain,
the Hebbian approach [16] introduces a set of algorithms that try to model
the finely-graded, continuous associations between documents that trace the
users’ constantly changing focus of interest while browsing a document collec-
tion. These associations are measured through co-activation values to calculate
document similarities, which in turn can be used to cluster similar documents.
Daffodil, in combination with Bingo!, is the first approach that combines
semi-structured meta data requests with focused crawling techniques to build a
personalized recommendation index over a unified view on Deep-Web and tra-
ditional Web contents.

3 Daffodil

Daffodil1 is a federated DL system that offers a rich set of functions across a
heterogeneous set of DLs (see [12] for a description of the architecture). The cur-
rent prototype integrates over 10 DLs (e.g. Achilles, Citeseer, DBLP, etc.) in the
area of computer science, together with other information sources (e.g. Google,
Scirus, Ispell, etc.). Since different DLs may contain various pieces of informa-
tion about the same publications, the federation yields important synergies by
combining these information in high quality detailed data for the user.

For structuring the functionality, we employ the concept of high-level search
activities for strategic support as proposed by Bates [3, 4]. Based on empirical
studies of the information seeking behavior of experienced library users, Bates
distinguishes four levels of search activities, called moves, tactics, stratagems and
strategies. The higher levels base on the lower levels, so tactics usually relay on
one or more moves, and so on.

Based on these levels, strategic support during the information search process
is the fundamental concept implemented within Daffodil. High-level search
functions, based on the stratagem level, implement this strategic support for the
user and provide functionality beyond today’s digital libraries. To our knowledge,
Daffodil is the first implementation of Bates’ ideas.

To open the complex level of strategies for the user, we divided the task into
phases (workflow), called the Digital Library Life Cycle [24] outlined in Figure 2.
It is based on five phases, from discovering information resources, retrieving the
information, collating the found information in a structured personal library, in-
terpreting the found information through cognitive and collaborative processes,
to re-presenting the new conceived information into new information. The work-
flow usually starts from the discovering through the re-presenting phase, but, of
course, switching between the phases will occur often. Every phase consists of
different stratagems, which can be combined to reach the information goal.

3.1 Daffodil: Bases for Recommendation

Daffodil’s high-level search activities, as outlined above, have been designed
in close accordance with the WOB model [20] as a range of tools that are inte-
grated into a common workspace environment. The goal of Daffodil’s graphical
user interface is to provide an environment for retrieval, searching, and browsing
tasks, as well as collation, organization and re-usage of the retrieved informa-
tion in a user-friendly way. On the desktop (see Figure 3), the set of available
stratagems is represented as a set of tools. This design offers a wide range of syn-
ergies, starting from the information sources up to the visualization, whereby an
optimal, strategy-supported information search process is presented to the user.
Furthermore, the synergies are extended through a tight integration of these
tools, e.g., by using Drag&Drop mechanisms or links to external information
sources. In [14] we discuss the user interface of Daffodil.

1 Distributed Agents for User-Friendly Access of Digital Libraries

Figure 2. The Digital Library Life Cycle

So far Daffodil includes more than 10 different integrated tools. For per-
sonalization, we have integrated a personal library tool on the desktop, which
supports individuals as well as groups. This tool allows for storing DL objects
— documents, authors, journals, conferences as well as query formulations — in
arbitrary folders (via the standard Drag&Drop interaction). This is the major
connection to Bingo!. Usually starting from a list of bookmarks, Bingo! is now
backed by structured meta data information, since Daffodil is able to extract
annotations like title, authors, abstracts, or classification keywords. The infor-
mation is classified by the user in folders, describing precisely the information
need. In Figure 3 the lower right window shows the current visualization of the
library. On the left side an arbitrary folder structure can be created by the user.
Any DLO can be saved within these folders. The detail of a DLO is shown in
the right half of the tool. In the case of web pages, an external browser is used.
To enable Bingo!’s Web recommendation service the user only has to choose a
context menu entry on that folder.

Other recommendation services are already integrated into Daffodil. In
[13] we describe some concepts for recommending all kinds of digital library
objects through collaborative services, based on a large number of users and user
groups; for this purpose, we exploit the stored information in the digital library,
instead of relying on users’ rating (empirical evidence from similar applications
suggests that only little rating activity should be expected). Based on these
ideas, we developed a matchmaking algorithm allowing a new Daffodil user to
find related users or groups.

Figure 3. Collating documents into the personal library

4 Bingo!

4.1 Focused Crawling for Expert Web Search

In contrast to a search engine’s generic crawler (which serves to build and main-
tain the engine’s index), a focused crawler is interested only in a specific, typ-
ically small, set of topics [7]. The topics of interest may be organized into a
user- or community-specific hierarchy. The crawl is started from a given set of
seed documents, typically taken from an intellectually built topic directory (e.g.,
bookmarks), and aims to proceed along the most promising paths that stay “on
topic” while also accepting some detours along digressing subjects with a certain
“tunneling” probability. Each of the visited documents is automatically classified
into the crawler’s hierarchy of topics to test whether it is of interest at all and
where it belongs in the taxonomy [5, 9]. The outcome of the focused crawl can
be viewed as the index of a personalized information service or a thematically
specialized search engine.

The Bingo!2 [28, 29] engine is designed to address two major problems in
information organization and search:

2 Bookmark-Induced Gathering of !nformation

1. Starting with a reasonable set of seed documents that also serve as training
data for the classifier, a focused crawl can populate a topic directory and
thus serves as a largely automated information portal generator.

2. Starting with a set of keywords or an initial result set from a search engine
(e.g., from a Google query), a focused crawl can improve the recall for an
advanced expert query, a query that would take a human expert to identify
matches and for which current Web search engines would typically return
either no or only irrelevant documents (at least in the top ranks).

4.2 System Architecture

The Bingo! focused crawling toolkit consists of the following six main compo-
nents that are depicted in Figure 4.

Figure 4. The BINGO! architecture and its main components

Crawler. The crawler processes the links in the URL queue using multi-
ple threads. For each retrieved document, the crawler initiates content-specific
handlers that depend on the document’s MIME type (e.g., text/html, applica-
tion/pdf, etc.) and then invokes the classifier on the resulting feature vector.
Once a crawled HTML document has been successfully classified, Bingo! ex-
tracts all href links and adds them to the URL queue in a canonical form. The
priority of new links in the topic-specific crawler queues is set according to the
classification confidence of the parent document. All extracted terms, links, and
the available crawler meta data such as URL, title, classification results, etc., is
stored in our local database index for later retrieval.

Document Analyzer. Bingo! computes feature vectors for documents ac-
cording to the standard bag-of-words model using stop word elimination, stem-
ming, and tf ·log idf -based term weighting [2,22]. We consider our local document
database as an approximation of the corpus for idf computation and recompute
it lazily as the corpus grows.

Feature Selection. The feature selection aims to detect the most characteristic
features among the training documents for each given topic in comparison to
the opposing topics at each level of the topic tree. These are the features that
are selected in the input vectors of both the trainer and classifier, while the
remaining features are considered as noise, either because the are frequent across
the competing topics (in the manner of a stop word), or because the are very
infrequent for each of the topics (and therefore not relevant, e.g., typos).

We use the Mutual Information (MI) [22] measure to build topic-specific
feature spaces. This technique, which is a specialized case of the notions of
cross entropy or Kullback-Leibler divergence [2,22], is known as one of the most
effective methods [35, 36] that is slightly in favor of rare terms (i.e., the ones
with a high idf value), which is an excellent property for classification.

Classifier. We chose Support Vector Machines (SVM) [6, 18, 33] to model
the classification task in the vector space. The SVM algorithm is a learning
algorithm that consists of a supervised training phase for a binary set of topics.
In the optimization phase a separating hyperplane is computed such that it
maximizes the margin between a set of positive and negative feature vectors in
the m-dimensional feature space. The classification step then simply computes
the algebraic sign of the scalar product between this hyperplane and a test
document’s vector, where the sign denotes on which side of the hyperplane the
test vector is determined to be. The absolute value of the result yields a measure
for the classification confidence in form of the perpendicular distance of the test
vector to the separating hyperplane. The hierarchical, multi-class classification
problem for a tree of topics is solved by training a number of binary SVM’s, one
for each topic in the tree.

Focused crawling over the Web inherently involves a precision-recall trade-off.
Two principle focusing strategies are provided with regard on the user’s demand
for best possible precision or recall: “strong” and “soft” focus. The “strong” focus
pursues only links from documents that are successfully classified into the same
topic as one of their predecessors. This strategy is useful to keep the crawler
closely “on track” and to improve the crawler’s precision during a deep Web
search while skipping potentially valuable hub pages which do not belong to any
topic-of-interest themselves, but might contain links to a relevant page (e.g., a
homepage overview at the DBLP Trier, that is not itself devoted to the topic
“database core technology”, but might contain links to authors’ homepages work-
ing on that specific topic would be skipped). In contrast, the “soft” focus mode
pursues links from all documents without regard to the classification results and
provides higher recall. In the first case, Bingo! additionally traverses links from

off-the-topic documents up to a small threshold depth (typically set to depth 1 or
2 from the last topic-specific document) to tunnel through topic-unspecific “wel-
come” or “table-of-content” pages before again reaching a thematically relevant
document.

Topic Distillation. The Bingo! engine applies Kleinberg’s link analysis me-
thod, coined HITS [19], iteratively to each topic in the taxonomy tree. Analo-
gously to Google’s Page Rank, the HITS algorithm uses the documents adjacency
matrix A of the crawled Web graph to exploit principle Eigenvectors. While Page
Rank uses A directly, HITS divides the task into the approximation of the princi-
ple Eigenvectors of the matrices AT A, and AAT respectively, and thus produces
a ranking for the best hubs (link collections that point to multiple good author-
ities) and the best authorities (high quality resources which are referenced by
many good hubs).

Adaptive Retraining. Building a reasonably precise classifier from a small,
user-specific training set is a challenging task. To address this problem, Bingo!
introduces a two phase, semi-supervised training approach. The learning phase
serves to automatically identify the most characteristic documents of a topic,
coined archetypes, among the bookmarks’ neighbor documents from a initial
shoal crawl in strong focusing mode. Starting by the user’s training set, these
archetypes are determined among the neighbor documents with the highest clas-
sification confidence and highest authority score to be promoted for retraining an
extended classifier. The harvesting phase then switches to soft focus and serves
to effectively process the user’s information demands with improved crawling re-
call. In the case where user-feedback is available, this automatic approach can of
course be improved by human input, e.g., when a Daffodil user marks certain
results as bad and implies that these documents are used as explicit negative
training examples in the next run.

5 Integration of Bingo! and Daffodil

Recall from Section 1 that our goal is to feed user-specific DLO folders, main-
tained in Daffodil, to the Bingo! focused crawler in order to detect additional
relevant publications and information sources on the Web and in Deep-Web por-
tals. For example, the homepage of a scientist whose publications match the user
interests that are manifested in some DLO folder or a particularly relevant book
that is advertised in a bookshop portal or on a university course Web page would
be an excellent recommendation that our combined system should point out to
the user.

In some cases, the DLO’s provide links to full-text sources (e.g, a PDF file)
or an author’s homepage; in many cases, however, the full-text sources are not
available to Daffodil. Without Web links, however, neither a traditional HTML
based crawler can be started, nor can we train a document classifier without
extracting features from full-text.

The meta data itself may yield a short description for a DLO and thus spec-
ify a user’s topic of interest, but typically, these descriptions are too sparse to
yield sufficiently dense feature spaces for classifying arbitrary Web contents. To
overcome this digital library-centric viewpoint and to be able to explore more
background information from the Web, the BINGO! crawling toolkit is extended
by a deployment interface for its own portal wrappers, which are chosen from a
combination of digital libraries and Web portals such as DBLP Trier, Achilles,
etc., and search engines like Google, Yahoo!, and Exite. By using these external
databases, Bingo! is able to resolve virtual links between meta data and Web
contents and can thus continue a search over various Deep-Web sources in a
traditional crawling manner.

5.1 Web Service Infrastructure

For service federations such as the coupling of Daffodil and Bingo!, some form
of middleware is needed, and these days the method of choice is Web Service
technology [1, 21]. This technology includes XML as the data exchange format
and SOAP [27] as communication protocol (on top of HTTP) for remote pro-
cedure calls and messaging. Service interfaces are described in the Web Service
Description Language (WSDL) [34] and registered in a Universal Description,
Discovery and Integration (UDDI) [32] registry. The Web Service infrastructure
for the integration of Daffodil and Bingo! can be broken down into the fol-
lowing three parts:

A. The communication between Daffodil and Bingo! to invoke user requests
and return Web recommendations.

B. The communication between Bingo! and its portal-specific wrappers.
C. The communication with additional services, e.g., the ontology server.

This Web Service infrastructure allows the seamless integration of the two
self-sustaining Daffodil and Bingo! servers, where arbitrary clients can con-
nect to the Daffodil server by executing a Java Applet and authenticating at
the Daffodil server. The Daffodil server, in turn, forwards recommendation
requests to Bingo! using a simple XML schema for the DLOs along with a user
id and a timestamp. These requests are queued by the Bingo! server until an idle
crawler instance is found and a new recommendation workflow for the respective
user folder(s) can be invoked. As the crawling process is finished, newly-found
recommendations are asynchronously sent back to the Daffodil server, where
the user can pick up her personal recommendations at the next log-in.

5.2 Portal Queries for the Deep-Web

A great part of the information on the Web is stored in non-HTML data sources,
mostly relational databases, which are connected to some server application logic
that dynamically generates Web pages. These information repositories are hosted
by so-called Web portals. Most existing portals do not support Web Services, but

they provide HTML form based access to an internal search engine. In Bingo!
we have integrated such servers by generating Web Service wrappers, which are
hosted by a dedicated server application. This application, called the Service
Mediator, is responsible for the generation and invocation of wrapped services.
When the focused crawler (or some other client of the mediator) obtains a ref-
erence to a Web Service hosted by the Service Mediator, it retrieves the corre-
sponding WSDL description from the local UDDI and generates an appropriate
SOAP Message to invoke the service. The translation layer of the Service Medi-
ator interprets the SOAP message, activates the corresponding wrapper classes,
and invokes the necessary methods to communicate via HTTP with the portal
site to invoke the internal search engine of the portal.

Portal Wrapping and Query Processing. New portals can be deployed
automatically in our system. When a new URL that points to a form page is
supplied, our wrapper generator tool [17] is invoked which applies heuristic rules
for generating a WSDL entry on the fly. In this generating mode, the system
tries to parse the target Web site and extract form fields. Typically, labels and
internal names of the form fields are used as parameter names for the WSDL
description. For example, highlighted text next to form fields is promoted as the
attribute name of that form field, and the given type that this form field requires
determines the corresponding attribute type (e.g., an enumeration type for fields
with a pull-down menu).

The WSDL entry for the new Web Service is then added to our local UDDI
registry. A small Java class is automatically generated from the HTML form
page and compiled under our Web server’s servlet engine such that it transforms
the SOAP call containing the values for the respective WSDL parameters into
an HTTP posting to the form submission URL which invokes the portal’s search
engine. The class is deployed as the target of this Web Service and returns
the portal’s response URL with regard to the submitted form values for each
call. These result pages can contain links to static Web pages or dynamically
generated Deep-Web sources that can now be reached by a crawler.

Query Generation for Heterogeneous Portals. The Web Service media-
tor approach helps with unified shipping of queries to portals, but it does not
provide the queries themselves. Rather Bingo! needs to generate meaningful
queries from the DLO meta data that it receives from Daffodil. To this end,
we have integrated “Semantic Web” technologies [11] in the form of ontological
knowledge on the users’ topics of interest which is exploited for two purposes:
1) the selection of appropriate portals upon receiving a DLO entry (discussed in
the next subsection), and 2) the generation of meaningful query parameters to
be filled into a portal’s Web Service (or its form fields, respectively). The main
difficulty is to cope with heterogeneous portals (on the same topic(s) but with
different terminologies and interfaces).

Architecturally, we treat ontology sources like any other data source that we
interact with and integrate it by means of a Web Service interface. Our ontol-

ogy server [17, 30] provides unified access to ontology data sources like Word-
Net [10] and OpenCyc [23]. In addition to the ontological taxonomy (e.g., hyper-
nyms/hyponyms or holonyms/meronyms relations) provided by WordNet, these
relationships between different ontological concepts carry weights to quantify
concept similarities.

When Bingo! receives a DLO, it needs to match the attribute names in
the DLO with the parameter names provided by a Web-Service-wrapped portal.
Obviously, the diversity of attribute names often makes an approximate match
based on ontological similarity the only viable choice by mapping each DLO
attribute to its (most similar) correspondent form field. This “approximate join”
between a DLO and a portal’s query parameters is illustrated in the following
example: Suppose the join attribute is an author’s name, for example with the
value “John Doe”, divided into the two attributes first name and last name with
values “John"’ and “Doe” in Daffodil’s meta data. We want to connect to a
form page providing the descriptions author, title, and year, only. The ontology
service is now able to tell us that the semantic concept capturing the meaning
of first name is in fact more similar to the concept capturing author than to the
concepts representing title or year. Analogously, we are able to match last name
to the form field for author, too, and correctly fill out the author field of the
form with the value “John Doe”.

Automated Portal Selection. DLO’s may substantially vary in coverage,
too; e.g., some objects provide abstracts, keywords, or a publisher information.
The similarity scores for possible matches between a DLO and the candidate por-
tals are aggregated into an overall similarity score between Daffodil’s DLO’s
and the WSDL description of each portal, providing us with a ranking for query-
specific portal selection. This way, we are able to choose only the top k matching
portals for each request, i.e., the portals with the highest ontological similarity
between the attribute names of its form fields and a given DLO and skip weak
matches to save expensive portal requests.

5.3 Result Page Segmentation

Most Web portals are designed for a human user, many of them with commercial
background. Result pages of portal requests often contain only a minor part of
query-relevant document links, while the major part of the page consists of
navigational links or advertisements.

To avoid crawling these off-the-topic links, we first segment the result page,
i.e., we are looking for the most relevant subtree in the DOM [8] structure
of the HTML document. In the body element of each document d, we choose
the densest subtree that maximizes the ratio of the weighted sum of the num-
ber of query matches and the amount of links to the overall amount of terms
in the subtree using the same feature vectors as the classifier. For each node
si in d with feature vector fi and a given query vector q, we maximize the
density(si, q) := α (fi×q)+β links(si)

|fi| , where the weights α and β can be adjusted

to fit each registered portal’s layout. Typically, the interesting link collection in
the result page is rooted at a table (<table>) or list (<dl>, , or)
element of the HTML-DOM. If there is no further tree structure contained in
the body element, or if there are no term matches to the query, the root node
of the result page is returned.

5.4 Recommendation Ranking

The ranking of returned Web recommendations has to reflect a user’s demand
for high quality content and provide a precise description of her topic-of-interest.
The classifier and the topic distillation components of Bingo! provide the cri-
teria to measure the quality of a document. We use the product of the non-
normalized, positive classification confidence svmscoredi

and link-analysis-based
authority authscoredi

as a measure for ranking the documents that are re-
turned to Daffodil as recommendations, i.e., scoredi = (1 + svmscoredi)(1 +
authscoredi). To reflect the user’s preference for a non-HTML resource (e.g.,
PDF), the score for these document’s can be boosted by an additional factor.

6 The Web Recommendation Workflow

Figure 5. Communication: Bingo! Daffodil

In this section we describe the complete workflow that the combined Daf-
fodil-Bingo! system (recall from Figure 1) executes to provide the digital li-
brary user with high-quality Web recommendations. The workflow itself is illus-
trated in more detail in Figure 5.

1. (a) The Daffodil user (actor) searches publications by sending multiple
requests to Daffodil’s wrapper agents and organizes the DLOs in a
personal folder structure that represents her topics-of-interest.

(b) One or more folders are marked for a recommendation request. The infor-
mation about the request is stored into the Daffodil backend database,
along with a timestamp.

(c) The complete folder information including all DLOs is sent to the Bingo!
server, where the actual recommendation process takes place.

2. At this time, an initial Web Service call to the Bingo! server is executed.
Multiple user requests are simply queued in the FIFO (First-In-First-Out)
principle by Bingo! until an idle crawler instance is available.
(a) To identify crawler seeds and the classifier’s training documents, Bingo!

sends multiple Web Service requests to its registered portal wrappers
selecting only the best matching portals for each DLO, i.e., the ones
with the highest ontological similarity between a portal’s form fields and
the DLO’s meta data attributes.

(b) Each meta data attribute (e.g., author, title, keywords) is mapped to a
portal’s form field using a precomputed configuration table. To improve
efficiency, ontology lookups and the similarity computation take place
only once during an initial portal administration phase.
This static mapping of DLO attributes to form fields saves expensive
and redundant requests to the ontology server (but in situations where
the DLO attribute names may themselves change frequently, we could
as well compute the mapping dynamically, at some higher cost).

(c) The result page of each portal request is segmented to identify a query-
relevant subtree, which is selected to yield the links for further pro-
cessing. These Deep-Web links including the links already provided by
Daffodil (e.g., pointers to an author’s homepage) are added to the
crawler’s queue.
If a full document URL is part of a DLO provided by Daffodil, this
document is fetched and put into the classifier’s training base. Otherwise,
the portal result pages are filtered to find the actual full-text source in an
appropriate format (e.g., PDF). If the portal results do not yield the full-
text link, a virtual document extracted from the DLO’s attribute values
(e.g., author(s), title, abstract, and keywords) is generated to extend the
training base.

(d) The feature selection and the SVM trainer are invoked using all success-
fully resolved full-text sources and the virtual documents derived from
the DLO’s.

(e) If negative user feedback for a DLO has been provided in a previous
iteration, this item is used as an explicit counterexample for training
and helps to eliminate similar documents in the current run.

(f) The focused crawler is started on all meta data links and the links from
the segmented portal results with a maximum depth of 2 or 3 for fast
results. A depth of more than 3 can be requested, too, by using the
tunneling strategy (see section 4.2) in the “strong focus” mode.

(g) The crawler stores all documents in a database maintained by Bingo!.
When the crawl terminates, Bingo! analyzes the crawl result’s link struc-
ture using the HITS algorithm.

(h) The top ranked recommendations (see section 5.4) are sent back to the
Daffodil server via a second Web Service call.

3. (a) The links are then provided in a recommendation tool on the desktop
for the user.

(b) The user views the recommended links and stores an interesting subset
into her personal library, typically into the same folder where the rec-
ommendation process started from. This information is interpreted as
implicit positive feedback. By default, if no user action is taken for a
recommended item, this is interpreted as negative feedback.

(c) After an arbitrary timeout, Daffodil can proactivly trigger new rec-
ommendations from Bingo!, providing this time not only the folder in-
formation, but also the feedback data.

(d) Bingo! can then create a more accurate recommendation for the user’s
profile which is presented again. Of course, only formerly unseen links
are presented in the new rounds. Thus, iterative feedback can gradually
refine the system’s representation of the user’s interest.

7 Experiments

Our preliminary experimental setup reflects a typical single-folder recommen-
dation request concerning the topic workflow. We searched for recent research
publications on workflow management using Daffodil’s user interface and man-
ually chose the 12 papers depicted in Table 1 (with a focus on Michael Gill-
mann’s and Jeannine Weissenfels’ work on the Mentor-Lite project [W3,W4],
workflow performance [W1,W2,W9], and some mixed workflow research papers
[W5,W6,W7,W8,W10, W11,W12]). The documents were marked for a Bingo!
recommendation and submitted to the Bingo! server via SOAP.

Bingo! was configured to use wrappers for the following portals: HCIBIB,
Google advanced search, DBLP Trier, Springer advanced search, Achilles, and
NCSTRL. Crawling parameters like maximum crawling depth, maximum amount
of visited documents, and the number of recommendations could be customized
by the Daffodil user. We chose a crawling depth of 4 and limited the crawl to
5000 documents where the top 20 were to be returned as recommendations.

Portal requests where initiated to the top 3 matching portals for each DLO,
and this resulted in resolving two full-text links to PDF resources (both found
by Google) in addition to the 5 full-text links that were specified in the meta
data itself. The additional href links from these portal results where added to
the crawler queue. Without any full-text documents (i.e., the meta data values
for the DLO’s alone), the initial feature space for the workflow folder would
have contained only 201 distinct terms, which would have led to a much weaker
classifier compared to the 2324 distinct terms gathered from DLO’s and the full-
text documents (after stemming and stop word removal). These feature spaces
were reduced by selecting the 400 top ranked features based on the MI measure.
We built the SVM classifier using 14 counterexamples from various Yahoo! topics
as a coarse filter and started the crawler. Since it is difficult to measure exact

No. Author Title Year
W1. M. Gillmann, J. Weissenfels, Performance Assessment and Configuration of 1999

A. Kraiss, G. Weikum Enterprise-Wide Workflow Management Systems
W2. M. Gillmann, G. Weikum Benchmarking and Configuration 2000

of Workflow Management Systems
W3. M. Gillmann, J. Weissenfels, Performance and Availability Assessment 2000

A. Kraiss, G. Weikum for the Configuration of Distributed
Workflow Management Systems

W4. J. Weissenfels, M. Gillmann The Mentor-Lite Prototype: 2000
G. Shegalov, W. Wonner A Light-Weight Workflow Management System

W5. A. Alessandra, G. Michaelis A Light Workflow Management System 2000
Using Simple Process Models

W6. M. Gillmann, G.Shegalov, XML-enabled workflow management for 2001
G. Weikum, e-services across heterogeneous platforms

W7. H. Zhuge, T. Cheung A timed workflow process model 2001
W8. P.Grefen Transactional Workflows 2002

or Workflow Transactions ?
W9. B. Reiner, E. Siegel, Workflow optimization: 2002

J.A. Carrino current trends and future directions
W10. P. Hung, K. Karlapalem A Secure Workflow Model 2003
W11. B. Kiepuszewski, A.H.M. ter Hofstede Fundamentals of Control Flow in Workflows 2003
W12. C. Seggewies, et al Soarian–workflow management 2003

applied for health care

Table 1. A user-specific Daffodil folder for workflow

recall values from crawling a virtually unlimited resource like the Web, we settled
for measuring the precision at top 20 based on the binary user ratings shown in
Table 2.

No. URL Bingo! Key Feed-
Rating Resource back

1. http://www.e-workflow.org 3.86 0 	
2. http://www.waria.com 3.76 0 	
3. http://www.wfmc.org/standards/docs/Glossay_German.pdf 3.32 0
4. http://www.wfmc.org/information/handbook2003.htm 3.05 0
5. http://www.wfmc.org/pr/CDROM_2001.pdf 2.95 0 	
6. http://www.wfmc.org/information/info.htm 2.91 0 	
7. http://www.usc.edu/dept/ATRIUM/Papers/PDI.pdf 2.89 1 ⊕
8. http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf 2.88 0
9. http://www.wfmc.org/pr/Workflow_Handbook_2001.pdf 2.88 0
10. http://www-dbs.cs.uni-sb.de/~gillmann/Publications/Demo-ICDE.pdf 2.86 1 ⊕
11. http://www.wfmc.org/information/Workflow-An_Introduction.pdf 2.75 0
12. http://www.wfmc.org/standards/docs/Stds_diagram.pdf 2.74 1 ⊕
13. http://www-dbs.cs.uni-sb.de/~gillmann/Publications/Demo-SIGMOD.pdf 2.68 1 ⊕
14. http://www.informatik.uni-stuttgart.de/ipvr/as/ 2.68 1

projekte/poliflow/IPVR/adaptive_workflows.html
15. http://www.wfmc.org/information/awards.htm 2.68 0 	
16. http://www.wfmc.org/standards/docs/tc003v11.pdf 2.63 0
17. http://www.dfki.uni-kl.de/~aabecker/Freiburg/Final/Wargitsch/Wargitsch.pdf 2.63 1
18. http://www.dfki.uni-kl.de/~elst/papers/kmdap_frodo_eval_submitted.pdf 2.55 1 ⊕
19. http://www.csd.uch.gr/~hy565/Papers/overview_workflow_management.pdf 2.48 1
20. http://www-dbs.cs.uni-sb.de/projekte/workflow_de.htm 2.37 1

Precision 0.45

Table 2. Top 20 Bingo! Web recommendations for workflow for the initial user folder.

Fortunately, all the top recommendations were correctly classified into the
major topic workflow, which itself unfolds into two subtopics workflow research
and e-business/e-commerce. Since the focus in the choice of the DLO’s is clearly
on the research subtopic, we restricted positive user rating to key resources for
workflow research only, yielding a more conservative goal for measuring precision.
Positive (⊕) and negative () feedback was manually provided for a subset of
these documents in order to refine the classifier for workflow research in the
next iteration. Negative feedback was used to extend the counterexamples for

the classifier as a second-level, fine-grained filter between workflow research and
e-business, while positive feedback extended the training set with the DLO’s.
To find more key resources with the refined classifier, the crawling depth was
extended to 5 and limited by 10000 documents in the second run.

No. URL Bingo! Key
Rating Resource

1. http://awareness.ics.uci.edu/~rsilvafi/wonder/ISADS99/isads99.pdf 1.95 1
2. http://www.ai.sri.com/~swim/resources/SOA-workflow.html 1.80 1
3. http://www-dbs.cs.uni-sb.de/~gillmann/Publications/ConfigTool-EDBT.pdf 1.79 1
4. http://awareness.ics.uci.edu/~rsilvafi/wonder/SBRC99/sbrc99.pdf 1.79 1
5. http://www.informatik.uni-stuttgart.de/ipvr/as/projekte/ 1.78 1

apricots/atma96.pdf
6. http://www.research.ibm.com/journal/sj/361/leymann.html 1.72 1
7. http://www.cs.colorado.edu/~skip/proclets.pdf 1.70 1
8. http://www.ifi.unizh.ch/dbtg/Projects/TRAMs/trams.html 1.64 1
9. http://www.ifi.unizh.ch/dbtg/Projects/EVE/eve.html 1.62 1
10. http://www.almaden.ibm.com/cs/exotica/wfmsys.pdf 1.61 1
11. http://dis.sema.es/projects/WIDE/Documents 1.58 1
12. http://ccs.mit.edu/klein/cscw98/paper08/ 1.54 1
13. http://www.computer.org/proceedings/Hiccs2/0001/00010198Babs.htm 1.51 0
14. http://www.cs.toronto.edu/~avigal/nsfhtml/nsfhtml.html 1.47 1
15. http://www.jeffsutherland.org/oopsla97/schulze.html 1.44 1
16. http://osm7.cs.byu.edu/ER97/workshop4/ls.html 1.33 1
17. http://www.informatik.uni-ulm.de/dbis/f&l/forschung/ 1.33 1

workflow/ftext-adept_e.html
18. http://www.jeffsutherland.org/oopsla98/kuechler.html 1.32 1
19. http://www.ifi.unizh.ch/groups/dbtg/Projects/SEAMAN/seaman1.html 1.22 0
20. http://ccs.mit.edu/klein/cscw98/paper07/ 1.57 1

Precision 0.9

Table 3. Top 20 Bingo! Web recommendations for workflow after one feedback iter-
ation.

Table 3 shows the positive calibration effect of the user feedback that suc-
cessfully filtered out the e-business documents. Precision increased to 0.9, still
accepting key resources for workflow research only. Only one document was in-
correctly classified into workflow, and one was not a key resource. Both runs
together yielded an overall micro-average precision of 0.675, which could proba-
bly be further improved by additional iterations. Most of the links found in the
second run were excellent pointers to formerly unseen Web resources for workflow
research, which demonstrates the significant benefit of feedback-based retraining
and link analysis. Particularly interesting is the mixture of recommendations to
scientific project homepages and full-text links to related research papers.

To compare our recommendation system to existing search engines, we man-
ually entered the title of each DLO into Google and evaluated the “Find Similar
Documents” search function. While Google typically provided very high precision
in the search for known entities (typically the top were always relevant), only
very few previously unseen key resources were found for such a specialized query,
due to the nature of a query-driven search engine (among the top 5 the same
resource often appeared multiple times in different forms, e.g., a Citeseer page,
a research paper, the first author’s homepage, etc.). Only for one DLO the “Find
Similar Documents” option returned an interesting new key resource, namely,
the OPERA3 project as a result of the query with the title of the Mentor-Lite
[W2] DLO. Citeseer offers a similar search function, but it is limited to digital
3 http://www.inf.ethz.ch/department/IS/iks/research/opera.html

publications and does not give any pointers to Web resources such as project
or scientists’s homepages. So unless a user is able to specify the target of her
search with much better accuracy or is willing to start with a vague topic query
and then manually click through large link collections, it is complex to obtain
convincing recommendations from current search engines. The combined Daf-
fodil - Bingo! system was much superior to Google’s or Citeseer’s standalone
services in this regard.

8 Conclusion

In this paper we have described the coupling of Daffodil and Bingo!, two ad-
vanced tools for information search and organization in digital libraries and Web
sources, respectively. For Daffodil, Bingo! adds the power of context based
search functionality and access to Deep-Web portals. For Bingo!, Daffodil
enables personalization with access to semistructured meta data. The resulting
combination provides substantial added value to advanced users such as scien-
tists or students. Our future work includes a more comprehensive evaluation of
the efficiency and effectiveness of the combined Daffodil-Bingo! system. In
particular, the influence of relevance feedback will be studied in more depth.

References

1. G. Alonso, F. Casati, et al. Web Services. Springer Verlag, 2003, ISBN 3540440089.
2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wes-

ley, 1999.
3. M.J. Bates. Idea tactics. Journal of the American Society for Information Science

30(5), 1979.
4. M. J. Bates. Where should the person stop and the information search interface

start? 26(5), 1990.
5. Y. Batterywala, S. Chakrabarti. Mining Themes from Bookmarks. ACM SIGKDD

Workshop, 2000.
6. C.J.C. Burges. A tutorial on Support Vector Machines for pattern recognition. Data

Mining and Knowledge Discovery, 2(2), 1998.
7. S. Chakrabarti, M.v.d Berg, and B. Dom. Focused crawling: A new approach to

topic-specific Web resource discovery. WWW Conference, 1999.
8. Document Object Model (DOM). http://www.w3.org/DOM/
9. S. Dumais and H. Chen. Hierarchical Classification of Web Content. ACM SIGIR

Conference, 2000.
10. C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.
11. D. Fensel, C. Bussler, Y. Ding, et al. Semantic Web Application Areas. NLDB

Workshop, 2002.
12. N. Fuhr, N. Gövert, and C.-P. Klas. An agent-based architecture for supporting

high-level search activities in federated digital libraries. ICADL Conference, 2003.
13. N. Fuhr, N. Gövert, and C.-P. Klas. Recommendation in a collaborative digital

library environment. Technical report, University of Dortmund, Germany, 2001.
14. N. Fuhr, C.-P. Klas, A. Schaefer, and P. Mutschke. Daffodil: An integrated desk-

top for supporting high-level search activities in federated digital libraries. ECDL
Conference, 2002.

15. J.L. Herlocker, Joseph A. Konstan, Al Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. ACM SIGIR Conference, 1999.

16. F. Heylighen and J. Bollen. Hebbian Algorithms for a Digital Library Recommen-
dation System DCAL Workshop, 2002.

17. J. Graupmann, M. Biwer, and P. Zimmer. Towards Federated Search Based on
Web Services. BTW Conference, 2003.

18. T. Joachims. The Maximum-Margin Approach to Learning Text Classifiers. Aus-
gezeichnete Informatikdissertationen 2001, D. Wagner et al. (Hrsg.). GI-Edition -
Lecture Notes in Informatics (LNI), Köllen Verlag, Bonn, 2002.

19. J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5), 1999.

20. J. Krause. Graphische Oberflächen für das Textretrieval im Rahmen des WOB-
Modells. Skriptum, Universität Koblenz, Institut für Informatik, 1997.

21. F. Leymann. Web Services: Distributed Applications Without Limits. BTW Con-
ference, 2003.

22. C.D. Manning and H. Schuetze. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, 1999.

23. OpenCyc, The Open Source Version of Cyc technology. http://www.opencyc.org
24. A. Paepcke. Digital libraries: Searching is not enough - what we learned on-site.

D-Lib Magazine 2(5), 1996.
25. M.E. Renda and U. Straccia. A personalized collaborative digital library environ-

ment. ICADL Conference, 2002.
26. B.M. Sarwar, G. Karypis, J.A. Konstan, and J. Reidl. Item-based Collaborative

Filtering Recommendation Algorithms. WWW Conference, 2001.
27. Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP/
28. S. Sizov, M. Theobald, S. Siersdorfer, and G. Weikum. BINGO!: Bookmark-

Induced Gathering of Information. WISE Conference, 2002.
29. S. Sizov, G. Weikum, et al. The BINGO! System for Information Portal Generation

and Expert Web Search. CIDR Conference, 2003.
30. M. Theobald, R. Schenkel, and G. Weikum. Exploiting Structure, Annotation,

and Ontological Knowledge for Automatic Classification of XML Data. WebDB
Workshop, 2003.

31. M.B. Twidale, D.M. Nichols, and C.D. Paice. Browsing is a collaborative process.
Information Processing and Management 33(6), 1997.

32. Universal Description, Discovery and Integration (UDDI) 2.0,
http://www.uddi.org

33. V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
34. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
35. Y. Yang and O. Pedersen. A Comparative Study on Feature Selection in Text

Categorization. ICML Conference, 1997.
36. Y. Yang. An Evaluation of Statistical Approaches to Text Categorization. Journal

of Information Retrieval 1(1/2), 1999.

