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ABSTRACT
This paper describes the setup and results of our contribu-
tion to the TREC 2006 Terabyte Track. Our implemen-
tation was based on the algorithms proposed in [1] “IO-
Top-k: Index-Access Optimized Top-K Query Processing,
VLDB’06”, with a main focus on the efficiency track.

1. INTRODUCTION
IO-Top-k [1] extends the family of threshold algorithms

(TA) [3, 4, 8] with a suite of new strategies. To retrieve the
best-scoring (so-called top-k) answers to a multi-keyword
query under a monotonic aggregation of per-keyword scores,
TA-style algorithms perform index scans (so-called sorted
accesses) over precomputed index lists, one for each keyword
in the query, which are sorted in descending order of per-
keyword scores. The key point of TA is that it aggregates
scores on the fly, thus computes a lower bound for the total
score of the current rank-k result document and an upper
bound for the total scores of all other candidate documents,
and is thus often able to terminate the index scans long
before it reaches the bottom of the index lists, namely, when
the lower bound for the rank-k result, the threshold, is at
least as high as the upper bound for all other candidates.
Additional, carefully selected random accesses to reveal the
score of a candidate document in a list where it has not yet
been seen so far can further speed up the computation. The
goal of such algorithms is to minimize the sum of the access
costs, assuming a fixed cost cS for each sorted access and a
fixed cost cR for each random access. In a realistic scenario,
random accesses are a factor of 50 to 50,000 more expensive
than sorted accesses. We aim at accelerating queries and,
at the same time, limit or even aim to reducing the memory
consumption for candidate queues and other auxiliary data
structures.

For our participation in TREC 2006, we selected two
strategies from the suite of algorithms presented in [1]:

• A scheduling strategy for random accesses that post-
pones all random accesses to the end of the execution,
switching from scans to random accesses when the es-
timated cost for them is the same.

• A heuristics for early termination that scans only a
configurable fraction of the lists, regardless of the score
bounds.

2. COMPUTATIONAL MODEL AND SCOR-
ING

We associate with each document-term pair a numeric
score that reflects the “goodness” or relevance of the data
item with regard to the term. As effectiveness was not in
the focus of our experiments, we chose the well-known prob-
abilistic Okapi BM25 score derived from term frequencies
(TF) and inverse document frequencies (IDF) [9]. We boost
the frequency of terms within important tags (like title,
h1, or caption) by an additional, tag-specific weight. De-
noting the score of document dj for the ith dimension by
sij , we get

sij =
(k1 + 1) · tfi(dj)

K + tfi(dj)
· log

N − dfi + 0.5

dfi + 0.5

where tfi(dj) is the term frequency of term i in document
dj , dfi is the document frequency of term i, and

K = k1 ·
(

(1− b) + b
length(dj)

avg(length(d))

)

For our experiments, we chose k1 = 1.2 and b = 0.75. All
scores are normalized to the interval [0, 1], with 1 being the
best possible score.

A top-k query asks for those k documents with the highest
score sum. Note that such a document must not necessarily
contain all query words, because a document containing just
some of the query words but with a high score each can have
a larger score sum than a document which contains all query
words, but with only a relatively low score each.

3. INVERTED BLOCK-INDEX
The documents that contain specific terms and their cor-

responding scores are precomputed and stored in inverted
index lists Li (i = 1..M). There is one such index list per
term. The entries in a list are <docID, score> pairs. The
lists may be very long (millions of entries) and reside on
disk, with a B+-tree or similar data structure for efficiently
locating the keys of the lists (i.e., the attribute values or
terms). We partition each index list into blocks and use
score-descending order among blocks but keep the index en-
tries within each block in docID order. This special ordering,
which is halfway between an ordering by score and an or-
dering by doc id, is key to efficiently manage the substantial
bookkeeping required in TA-style query processing.

The block size is a configuration parameter that is chosen
in a way that balances disk seek time and transfer rate; a
typical block size would be 32,768.



4. QUERY PROCESSING
Our query processing model is based on the NRA and

CA variants of the TA family of algorithms [3]. An m-
dimensional top-k query (with m search conditions) is pri-
marily processed by scanning the corresponding m index
lists in descending score orders in an interleaved, round-
robin manner (and by making judicious random accesses to
look up index entries of specific documents). Without loss
of generality, we assume that these are the index lists num-
bered L1 through Lm.

When scanning the m index lists, the query processor col-
lects candidates for the query result and maintains them in
two priority queues, one for the current top-k items and an-
other one for all other candidates that could still make it into
the final top-k. For simpler presentation, we assume that
the score aggregation function is simple summation (but it
is easy to extend this to other monotonic functions). The
query processor maintains the following state information:

• the current cursor position posi for each list Li,

• the score values highi at the current cursor positions,
which serve as upper bounds for the unknown scores
in the lists’ tails,

• a set of current top-k items, d1 through dk (renum-
bered to reflect their current ranks) and a set of data
items dj (j = k + 1..k + q) in the current candidate
queue Q, each with

– a set of evaluated dimensions E(dj) in which dj

has already been seen during the scans or by ran-
dom lookups,

– a set of remainder dimensions Ē(dj) for which the
score of dj is still unknown,

– a lower bound worstscore(dj) for the total score
of dj which is the sum of the scores from E(dj),

– an upper bound bestscore(dj) for the total score
of dj which is equal to

worstscore(dj) +
∑

ν∈Ē(dj)

highν

(and not actually stored but rather computed from
worstscore(dj) and the current highν values when-
ever needed).

In addition, the following information is derived at each step:

• the minimum worstscore min-k of the current top-k
docs, which serves as the stopping threshold,

• the bestscore that any currently unseen document can
get, which is computed as the sum of the current highi

values, and

• and for each candidate, a score deficit δj = min-k −
worstscore(dj) that dj would have to reach in order to
qualify for the current top-k.

The top-k queue is sorted by worstscore values, and the
candidate queue is sorted by descending bestscore values.
Ties among scores may be broken by using the concatenation
of <score, docID> for sorting. The invariant that separates
the two is that the rank-k worstscore of the top-k queue
is at least as high as the best worstscore in the candidate
queue. The algorithm can safely terminate, yielding the
correct top-k results, when the maximum bestscore of the

candidate queue is not larger than the rank-k worstscore of
the current top-k, i.e., when

min
d∈top-k

{worstscore(d)} =: min-k ≥ max
c∈Q

{bestscore(c)}

More generally, whenever a candidate in the queue Q has
a bestscore that is not higher than min-k, this candidate
can be pruned from the queue. Early termination (i.e., the
point when the queue becomes empty) is one goal of efficient
top-k processing, but early pruning to keep the queue and
its memory consumption small is an equally important goal
(and is not necessarily implied by early termination). The
candidate bookkeeping is illustrated in Fig. 1.

Figure 1: Top-k and candidate bookkeeping.

The state information we have to maintain for each doc-
ument, from the point it is first encountered to the point
where it is surely known that either the document is one of
the top−k or that it cannot be, adds a noticeable amount of
overhead to the algorithm. This has to be contrasted with
a simple full merge (of the lists sorted by document ids),
which can compute the full scores document by document,
and then determine the top-k items by a (partial) sort. It
is not at all obvious, and indeed put forward as an open
problem in [3], whether the state maintenance of any of the
sophisticated TA-style algorithms can be implemented effi-
ciently enough so that the gains in the abstract cost indeed
show in faster running times.

In our first implementation we maintained all state in-
formation in a hash data structure; indeed, this is the ap-
proach taken in all top-k implementations that we are aware
of [11]. However, despite their strong advantage in theoreti-
cal cost, none of our sophisticated algorithms could beat the
simple full-merge baseline in this implementation. We then
switched to the inverted block-index described in Section 3.
An essential ingredient of our implementation is to keep the
state information in-place, i.e., in a contiguous memory seg-
ment together with the document id. The process of merging
two or more document lists, and updating all state informa-
tion then has almost optimal locality properties.

The most time-critical step in the merge is the compu-
tation of the bestscore, which we do not store explicitly
but rather compute from the worstscore and the set of lists
in which the documents have been seen so far. We store
this seen information by a simple m-bit vector, where m is



the number of lists, and for each round precompute all 2m

partial sums of the high-scores highi of each list (see Sec-
tion 4). For any document, the bestscore can then be com-
puted from the worstscore by a simple table lookup with the
seen-bitvector serving as a direct index into that table.

To keep the merges as fast as those of the baseline full-
merge, we also do not maintain the set of top-k items as
we merge, and not even the min-k score. We rather do the
merge twice, outputting only the scores in the first round,
doing a partial sort of these to obtain the min-k score, and
then repeat the merge, but this time with an on-the-fly prun-
ing of all documents with a bestscore below that min-k
score. By these, and a bag of other tricks, we managed
to keep the overhead for maintaining the state-information
a small fraction of the essential operations of reading and
merging blocks of pairs of document ids and score, sorted
by document id.

5. SCHEDULING OF RANDOM ACCESSES
Random-access (RA) scheduling is crucial both in the

early and the late stages of top-k query processing. In the
early stage, it is important to ensure that the min-k thresh-
old moves up quickly so as to make the candidate pruning
more effective as the scans proceed and collect large amounts
of candidates. Later, it is important to avoid that the algo-
rithm cannot terminate merely because of a few pieces of in-
formation missing about a few borderline candidates. In [1],
we analyzed various strategies for deciding when to issue
RAs and for which candidates in which lists; for our exper-
iments, we focused on one of these strategies that was both
efficient to compute and resulted in a good performance.
Following the literature [2, 6], we refer to score lookups by
RA as probing. As in [3], we denote by cS the cost of a
sorted access, and by cR the cost of a random access.

Our scheduling strategy for random accesses, coined Last-
Probing in [1], does a balanced number of random accesses
just as Fagin’s CA algorithm, that is, the total cost of the
random accesses is about the same as the total cost of all
sorted accesses. In CA, this is trivially achieved by doing one
random access after each round of dcR/cSe sorted accesses.
In Last-Probing, we perform random accesses only after the
last round, that is, we have a phase of only sorted accesses,
followed by a phase of only random accesses.

We do this by estimating, after each round, the number of
random accesses that would have to be done if this were the
last round of sorted accesses. Two criteria must be met for
this round of sorted accesses being the last. First, the esti-
mated number of random accesses must be less than dcR/cSe
times the number of all sorted accesses done up to this point
Second, we must have

∑m
i=1 highi ≤ min-k, since only then

we can be sure that we have encountered all the top-k items
already. We remark that in all our applications, the sec-
ond criterion is typically fulfilled long before (that is, after
much fewer rounds than) the first criterion. A simple es-
timate for the number of random lookups that would have
to be done if we stopped doing sorted accesses at a certain
point, is the number of candidate documents which are then
in our queue. When the distribution is very skewed, it is in
fact quite a good estimate, because then each document in
the queue has a positive but only very tiny probability of
becoming one of the top-k items.

When doing the random accesses, it plays a role in which
order we process the documents for which we do random

lookups. In our algorithm, we first schedule RAs for any
items in the current top-k that are not yet completely eval-
uated, in decreasing order of their worst scores. Then, we
schedule RAs for items in the candidate queue, ordered by
decreasing bestscore (Last-Best). This is similar to CA,
which after each round of sorted accesses does a random ac-
cess for the candidate document with the highest bestscore.

Note that unlike more aggressive pruning strategies pro-
posed in the literature [5, 7, 10] that provide approximate
top-k results, our method is non-approximative and achieves
major runtime gains with no loss in result precision.

6. EARLY STOPPING HEURISTIC
We used an early stopping heuristic for two of our effi-

ciency runs. For these runs, we ignored all the blocks after
the first 1/5-th of the blocks in every list (e.g. if there are
14 blocks in a list, we only considered the first 3 blocks).
Note that since the blocksize of our inverted block index
was as large as 131,072, all the small lists were almost fully
scanned. Only for the very long lists, the tails are ignored.
As we find from the results (see Section 9.1), this heuristic
works quite well in practice.

7. TEST PLATFORM
We parsed the collection on a small cluster of three servers,

each with two Intel Xeon processors running Windows at 3
GHz. Our TREC runs were performed on a single machine
having two 2390 MHz AMD Opteron CPUs and 8 GB of
memory. The index files were stored on a local 44 GB SCSI
disk with 10,000 rpm rotational speed. The operating sys-
tem used was Linux.

8. INDEXING
We indexed the collection using Okapi BM25 scoring func-

tion with standard parameters after removing stopwords,
but without stemming. Prior to computing the BM25 scores,
the term frequencies (tfs) of the terms were computed us-
ing a weighted sum of term-occurrences, with the weights
being one for occurrences in standard text, and between 1.5
and 4 for occurrences inside special HTML tags (see Ta-
ble 1 for details). The term scores were initially stored in
a relational schema of the form (docID,term,score) in an
Oracle database. After the parsing, the index lists were cre-
ated from the database and stored in two files, namely one
for sorted access and one for random access.

HTML tag factor

TITLE, in URL 4.0
H1 - H2 3.0
H3 - H6, STRONG, B, CAPTION, TH 2.0
EM, I, U, DL, OL, UL, A, META 1.5

Table 1: Term weights for different tags

The inverted block-index for sorted access stored, for each
term, a list of pairs of the form <docID,score>, together
with a two level B-Tree to store the offsets of the lists corre-
sponding to every term. The index for random access stored
list of pairs <termID,score> for every document and the
offsets for the lists were stored in a single array. The total
size of our index files on disk was about 35 GB, each index



contributing to little more than 17 GB. At runtime, only
the offsets of the lists for random access (about 200 MB)
resided in memory, all other data were read from disk. We
did not use any caching other than some automatic filesys-
tem caching over which we did not have any control.

9. RUNS AND RESULTS
We submitted four runs for the efficiency task and four

runs for the adhoc task. However, this year, our main focus
was in the efficiency task.

9.1 Efficiency Task
For all of the efficiency runs, the queries were parsed auto-

matically from the query streams, and all the words present
in each query line were taken as keywords. Since stopwords
were removed at the time of parsing, such words automati-
cally did not play any role in retrieval.

The four runs submitted for the efficiency task were based
on two versions of our algorithm, as follows:

• mpiiotopk - computation of exact top-20 documents
(as defined in Section 4 and Section 5) for each query.
The 100,000 queries were processed sequentially from
a single stream. The average running time was 0.152
sec. This run essentially used a single processor.

• mpiiotopkpar - computation of exact top-20 docu-
ments using the same scheme as in mpiiotopk. How-
ever, for this run the queries were processed from four
streams in parallel. Note that the documents returned
by this run were the same as the documents returned
by mpiiotopk. In spite of processing four streams
parallally, this run is only about twice faster (average
running time: 0.074 sec) than the previous run, be-
cause the machine we used had only two processors.

• mpiiotopk2 - avoids scanning deep into long lists us-
ing the early stopping heuristic as described in Section
6, with all 100,000 queries being processed sequentially
from a single stream. The documents returned by this
run are not the exact top-20. Using the early stopping
heuristic, the average runtime improves by more than
2.5 times (average running time: 0.057 sec) from the
exact run.

• mpiiotopk2p - same as mpiiotopk2, but four query
streams were processed in parallel. Again, the paral-
lelization improves the running time only by a factor
of two (average running time: 0.028 sec), because the
program was run on a machine with two processors.
A proper parallelization of the process with at least 4
processors could boost the efficiency of these runs, but
we did not have such a setup at the time of performing
these experiments.

The documents returned by the first two runs (mpiiotopk
and mpiiotopkpar) are precisely those that any retrieval
model using standard BM25 scoring function would return.
The precisons of these runs turned out to be decent, namely
0.5110 on average for topics 751-800 and 0.4280 on average
for topics 801-850. Interestingly, the precisions of the runs
mpiiotopk2 and mpiiotopk2p using the early stopping
heuristic were not much worse for topics 751-800 (0.4820)
and equally good for topics 801-850 (0.4330). Since the

blocksize of our inverted block index was large (131,072),
the first block of every list was always scanned and ignoring
the tail of long lists did not affect the retrieval quality much,
instead we gained a factor of more than 2.5 in running time.
The details of the runs are given1 in Table 2.

run #cpu
avg P@20 P@20

query topics topics
time 751-800 801-850

mpiiotopk 1 0.152 0.5110 0.4280
mpiiotopkpar 2 0.074 0.5110 0.4280
mpiiotopk2 1 0.057 0.4820 0.4330
mpiiotopk2p 2 0.028 0.4820 0.4330

Table 2: Performances of runs in the efficiency task:
the number of CPUs used, average running time
per query and precision at top-20 for our runs. The
median of the average running time taken over all 25
submitted runs by all groups turns out to be exactly
the same as our slowest run (0.152 sec).

9.2 Adhoc Task
Our adhoc runs were based on simple methods for con-

structing queries from the topics provided. For this task
also we used the BM25 scoring model default parameters.
For all runs, queries were processed automatically using the
exact top-k algorithm same as our efficiency runs (e.g. as
in mpiiotopk). For the four runs, the queries were con-
structed as follows:

• mpiirtitle - words in the title fields were taken as
keywords.

• mpiirdesc - words in the description fields were taken
as keywords.

• mpiircomb - words in the title as well as in the de-
scription fields (with possible repetition) were taken as
keywords.

• mpiirmanual - only the construction of the queries
were manual, as the keywords were chosen manually
by only looking at the title, description and narrative
fields.

Among these runs, the precisions of mpiircomb and mpi-
irmanual are better than the other two runs, as we see in
Table 3.

10. CONCLUSIONS
Our focus this year was on the efficiency track. Telling

from the statistics posted by the TREC organizers, our runs
performed very well. Our slowest (single-processor) run was
the median of all runs and our fastest run (processing 4
streams, but with only two processors, average query time:
0.028 sec) was close to the best run (average query time:
0.0125 sec). In all our experiments, most of the data was
read from disk (as opposed to from main memory). The

1Note that although our machine had two CPUs, for the
runs mpiiotopk and mpiiotopk2, a single program processed
100,000 queries sequentially, so we write that only one CPU
was used.



run P@20 bpref map infAP

mpiirtitle 0.4270 0.2849 0.1805 0.1678
mpiirdesc 0.4240 0.2968 0.1743 0.1471
mpiircomb 0.5020 0.3146 0.2174 0.1876
mpiirmanual 0.4810 0.3041 0.1981 0.1692

Table 3: Performances of runs in the adhoc task
by P@20, bpref, map and infAP measures, averaged
over topics 801-850.

precisions of our runs were decent, but could be improved
by more advanced scoring models, without compromising
efficiency.
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