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Abstract This paper introduces uldbs, an extension of
relational databases with simple yet expressive constructs for
representing and manipulating both lineage and uncertainty.
Uncertain data and data lineage are two important areas of
data management that have been considered extensively in
isolation, however many applications require the features in
tandem. Fundamentally, lineage enables simple and consis-
tent representation of uncertain data, it correlates uncertainty
in query results with uncertainty in the input data, and query
processing with lineage and uncertainty together presents
computational benefits over treating them separately. We
show that the uldb representation is complete, and that it
permits straightforward implementation of many relational
operations. We define two notions of uldb minimality—
data-minimal and lineage-minimal—and study minimization
of uldb representations under both notions. With lineage,
derived relations are no longer self-contained: their uncer-
tainty depends on uncertainty in the base data. We provide
an algorithm for the new operation of extracting a database
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subset in the presence of interconnected uncertainty. We also
show how uldbs enable a new approach to query processing
in probabilistic databases. Finally, we describe the current
state of the Trio system, our implementation of uldbs under
development at Stanford.

Keywords Uncertainty in Databases · Lineage ·
Provenance · Probabilistic data management

1 Introduction

The problems faced when managing uncertain data, and
those associated with tracking data lineage, have been
addressed in isolation in the past (e.g., [2,4,21,27,30,31,
34,41,45] for uncertain data and [11,17–19,39,40] for data
lineage). Motivated by a diverse set of applications including
data integration, deduplication, scientific data management,
information extraction, and others, we became interested in
the combination of uncertainty and lineage as the basis for a
new type of data management system [46].

Intuitively, an uncertain database is one that represents
multiple possible instances, each corresponding to a single
possible state of the database. Lineage identifies a data item’s
derivation, in terms of other data in the database, or out-
side data sources. One relationship between uncertainty and
lineage is that lineage can be used for understanding and
resolving uncertainty. To draw a loose analogy with web
search, answers returned by a search engine are uncertain,
reflected by their ranking. Search engines typically provide
lineage information including at least a URL and text snip-
pet, and users tend to consider both ranking and lineage to
determine which links to follow. More generally, any applica-
tion that integrates information from multiple sources may
be uncertain about which data is correct, and the original
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source and derivation of data may offer helpful additional
information.

Lineage is also important for uncertainty within a single
database. When users pose queries against uncertain data, the
results are uncertain too. Lineage facilitates the correlation
and coordination of uncertainty in query results with uncer-
tainty in the input data. For example, suppose we know that
either one set of base data is correct or another one is, but not
both. Then we don’t want to produce any query results that
are derived by mixing data from the two sets, directly or indi-
rectly, now or later. Lineage is a particularly convenient and
intuitive mechanism for encoding the complex uncertainty
relationships that can arise among base and derived data.

Beyond the conceptual relationships between uncertainty
and lineage, this paper presents several tangible representa-
tional and computational benefits derived from their
combination. We begin by describing a representation for
uncertainty and lineage that extends the relational model with
tuple alternatives (a set of possible values for each tuple),
maybe tuples (tuples that may be present or absent), and a
lineage function mapping tuple alternatives to the data from
which they were derived. We call databases in this scheme
uldbs, for Uncertainty-Lineage Databases. We show that
because we represent lineage along with uncertainty, uldbs
are complete, i.e., they can represent all finite sets of possi-
ble instances. In contrast, complete models for uncertainty
without lineage are more complex, e.g., [23,31].

Next, we study problems related to querying uldbs. First,
we show that uldbs permit straightforward and efficient
implementation of many relational operations. We then con-
sider the problem of extracting one or more relations from
a uldb: creating a “projection” of a uldb onto a subset of
its relations, without changing the possible instances of the
relations. Extracting relations is tricky because when data
in a relation R is derived from data in R′, then the possible
instances of R may correlate with the possible instances of R′
(even when R′ is not included in the projection), which may
in turn correlate with possible instances of other relations.
Finally, for both querying and extraction we are interested in
operating on uldbs that satisfy some notions of minimality.
We define data minimality and lineage minimality of uldbs,
and we present results on minimizing uldbs.

uldbs also open up an interesting alternative approach to
query processing in probabilistic databases, which are cap-
tured by a simple extension of basic uldbs to include confi-
dence values. Previous work [21] suggests special techniques
for constructing query plans that ensure correctness for prob-
abilistic data. It turns out that when lineage is tracked, special
considerations are no longer needed: query execution initially
proceeds without computing probabilities, so any query plan
may be used. Probabilities are then computed from lineage
as needed in a separate step.

Uncertainty, lineage and data integration

As discussed in [46], uncertainty and lineage are important
for many classes of applications. In this paper we highlight
the need for modeling uncertainty and lineage in the context
of data integration systems, which are systems that offer a
uniform interface to a multitude of data sources.

In data integration applications, uncertainty arises in dif-
ferent ways, but they can all be traced to the “subjectivity”
effect. Data sources designed by different people or organi-
zations will, by nature, describe the same domain in different,
sometimes inconsistent ways. Differences may arise in the
aspects of the domain they choose to model, the schemas they
design for the domain (table structure and attribute names),
and in the naming conventions they use for data objects. As
data integration applications strive to offer a single “objec-
tive” and coherent integrated view of data sources, uncer-
tainty is bound to appear. Furthermore, since many data
integration applications are based on structure that is auto-
matically extracted from unstructured data, there may even
be uncertainty about the data itself, since the extraction tech-
niques are approximate at best. As a result, we have at least
three kinds of uncertainty in data integration: the data, the
mappings between the schemas and the mappings between
data objects in different sources. We emphasize that these
types of uncertainty are pervasive especially in data inte-
gration applications whose goal is to offer access to a large
number of sources on the WWW (e.g., MetaQuerier [13],
and PayGo [37]).

The explicit modeling of data lineage essentially acknowl-
edges that data comes from somewhere, and that we are not
sure about the transformations (such as those outlined above)
that brought data into the database nor about its intrinsic
meaning. As uncertainty-generating data integration opera-
tions are performed, lineage keeps track of the origins of data,
thereby giving a powerful tool to manage, explain and poten-
tially correct the uncertain truth resulting from the integration
process.

Throughout the paper, we will illustrate how the key
aspects of uldbs are useful for data integration applications,
and also point out a few directions for future research in the
application of uncertainty and lineage to data integration.

In summary, this paper makes the following contributions:

• We define uldbs—uncertain databases with lineage—
and show that they are complete (Sect. 3).

• We give algorithms for relational operations in uldbs
(Sect. 4.2).

• We define data-minimality and lineage-minimality for
uldbs, and discuss both types of minimization (Sect. 4.3).

• We define the new problem of extracting data from a
uldb, and we present an algorithm for it (Sect. 4.4).
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• We describe how uldbs can be extended with confidence
values, and we show how they offer an alternative solution
to query processing in probabilistic databases (Sect. 5).

• We describe our Trio system for uldbs, and give a detailed
account of how the above features are implemented on top
of a conventional relational DBMS (Sect. 6).

We discuss related work in Sect. 7 and conclude with future
directions in Sect. 8.

This paper is an extension of an earlier conference
paper [6]. This paper provides proofs for numerous theorems
that did not appear in [6]. It also describes the implementation
of uldbs in a system development effort underway, called
Trio. Specifically, we describe how Trio encodes uldbs in
a relational database, how queries over uldbs are translated
into sets of SQL queries, and how computation of confi-
dences is optimized in our system. Some of these aspects of
Trio were also a topic of a system demonstration [38].

2 Preliminaries

We begin by describing databases with lineage, which we call
ldbs, and then we describe uncertain databases. In Sect. 3
we present uldbs, which combine the two formalisms.

ldbs and uldbs extend the relational model. A database
D is comprised of a set of relations R̄ = R1, . . . , Rn , where
each Ri is a multiset of tuples. We attach a unique identifier
to each tuple in the database, and I (R̄) denotes all identifiers
in relations R1, . . . , Rn .

2.1 Databases with lineage

In the terminology of [11], in ldbs we focus on “where line-
age”: the lineage of a tuple identifies the data from which it
was derived. Some tuples in an ldb are derived from other
ldb tuples, e.g., as a result of queries. The lineage of derived
tuples consists of references to other tuples in the ldb, via
their unique identifiers. Base tuples in some cases are derived
from entities outside the ldb, such as an external data set or
a sensor feed. For the latter case we introduce external line-
age, which is formalized in this section along with internal
lineage, but not discussed in any detail until Sect. 4. External
lineage refers to a set of external symbols we denote by E .
Thus, the set of symbols known by an ldb is S = I (R̄)∪ E .

Definition 1 (Database with lineage): An ldb D is a triple
(R̄, S, λ), where R̄ is a set of relations, S is a set of symbols
containing I (R̄), and λ is a lineage function from S to 2S .

Example 1 We introduce as a running example a highly
simplified “crime-solver” database. Consider ldb relations
Drives(person,car) and Saw(witness,car) representing

driver information and crime-vehicle sightings respectively.
Consider also a relation Accuses(witness,person) pro-
duced by the query πwitness,person(Saw �� Drives).
Here is some sample data:

Saw
ID witness car

21 Amy Mazda
22 Amy Toyota
23 Betty Honda

Drives
ID person car

31 Jimmy Mazda
32 Jimmy Toyota
33 Billy Mazda
34 Billy Honda

Accuses
ID witness person

41 Amy Jimmy
42 Amy Jimmy
43 Amy Billy
44 Betty Billy

λ (41) = {21, 31}
λ (42) = {22, 32}
λ (43) = {21, 33}
λ (44) = {23, 34}

The ID column denotes the tuple identifiers, and empty line-
age is omitted.

Our basic formalism places no restrictions on the lineage
function λ. However, when operations are performed there is
often an obvious lineage function for the tuples in the result.
The above example demonstrates a natural lineage function
for joins: lineage of a tuple t in the result of a join is the set of
tuples, one from each of the joined relations, that were com-
bined to form t , e.g., (Amy, Billy) is obtained from (Amy,

Mazda) and (Billy, Mazda). Some operations, such as
negation, duplicate-elimination, and aggregation, have less
obvious lineage functions. For discussion of lineage func-
tions see, e.g., [8,11,18,19,35]. The operations we consider
in this paper all have simple lineage functions, and further-
more they preserve a notion of well-behaved lineage that we
formalize later in the paper.

In an ldb, query results include lineage that refers to other
tuples in the database. Hence, in our formalism the result of
applying a query Q to database D includes the original rela-
tions R̄ and a new relation for Q’s answer with the appropriate
lineage function. Thus, an important aspect of ldbs is that
we cannot consider each relation in the database in isolation.
We explore this point further in Sect. 4.4.

Note that even though a relation may contain duplicates,
each tuple has its own lineage. For instance, tuples 41 and
42 in Example 1 have the same data. However, each one of
them was derived differently, therefore they have a differ-
ent lineage. Extending our model to set semantics requires
more complex lineage functions than those we consider in
this paper, and is a subject of follow-on work.

As discussed in the introduction, lineage is particularly
important in data integration settings. If base relations are
derived from different data sources, external lineage may be
used to convey that information, e.g., by encoding the URI
of the source as part of external symbol identifiers. Since
ldbs keep track of lineage, data integration applications can
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easily query the lineage to examine how tuples potentially
derived through multiple layers of complex queries relate to
the original sources.

2.2 Uncertain databases

An uncertain database represents a set of possible instances,
each of which is one possible state of the database. A num-
ber of different formalisms have been proposed for repre-
senting sets of possible instances, e.g., [1,4,23,29,31,34].
One difference among these formalisms is in their expressive
power: which sets of possible instances can be represented
in the formalism. In what follows we introduce x-relations, a
specific formalism for uncertain databases. Conceivably, we
could have considered the combination of any uncertainty
formalism with lineage, but we found x-relations to be a
good starting point. They provide a good balance of simplic-
ity and expressiveness, and are orthogonal to the capabilities
brought in by lineage.

Definition 2 An x-tuple is a multiset of tuples, called alter-
natives. An x-tuple may be annotated with a ‘?’, in which
case it is called a maybe x-tuple. An x-relation is a multiset
of x-tuples.

Alternatives of an x-tuple represent mutually exclusive val-
ues for the tuple, leading to the following definition of pos-
sible instances.

Definition 3 An x-relation R represents the set of possible
instances P that can be constructed as follows: choose exactly
one alternative from each x-tuple in R that is not a maybe
x-tuple, and choose zero or one alternative from each x-tuple
in R that is a maybe x-tuple.

Example 2 The following x-relation represents an uncertain
version of relation Saw from Example 1:

ID Saw(witness, car)

21 (Amy,Mazda) || (Amy,Toyota)
23 (Betty,Honda)

?

Here, Amy may have seen a Mazda, a Toyota, or no car at
all, and the relation has three possible instances.

The uncertainty about the car seen by Amy may come from
the “source” herself, who may be uncertain about her mem-
ory of the facts. Uncertainty may also come from the fact that
this information was extracted from a written police report,
and the process of extracting information from plain text
generated uncertainty. Alternatively, data may come from
contradictory sources, e.g., two inspectors who interrogated
Amy at different times, and got different answers from her.
These uncertainty causes are very common in data integra-
tion applications.

A formalism for representing uncertainty is said to be com-
plete if it can represent any finite set of possible instances.
c-tables [31] is the prototypical complete formalism for
uncertainty. x-relations are not a complete formalism. For
example, the join Accuses of the x-relation Saw above with
Drives from Example 1 cannot be represented as an
x-relation: x-tuples are independent, so they cannot express
the fact that if Amy accuses Jimmy (due to the Mazda), then
she must accuse Billy as well.

Studies of completeness in various models for uncertainty
can be found in, e.g., [2,23,29,31,34]. We will soon see
(Sect. 3.1) that although x-relations alone are incomplete as
shown above, adding lineage makes them complete.

3 Combining lineage and uncertainty

We now present uldbs, a representation that captures both
lineage and uncertainty. uldbs extend the ldbs of Sect. 2.1
with the x-relations of Sect. 2.2.

Definition 4 A uldb D is a triple (R̄, S, λ), where R̄ is a set
of x-relations, S is a set of symbols containing I (R̄), and λ

is a lineage function from S to 2S .

Identifiers in I (R̄) now correspond to tuple alternatives. I (R̄)

thus contains pairs (i, j), where i identifies the x-tuple and
j is an index for one of its alternatives. When we refer to an
arbitrary symbol in the set S, we use s(i, j), denoting either
(i, j) ∈ I (R̄) or an external symbol.

External symbols behave just like identifiers of x-tuple
alternatives: s(i, j) and s(i. j ′) are mutually exclusive, as they
are part of the same “logical” x-tuple ti , which may also be
annotated with a ‘?’, just like an x-tuple of R̄.

Example 3 We combine the uncertain Saw x-relation from
Example 2 with the earlier Drives relation to create a new
version of Accuses that has both uncertainty and lineage:

ID Saw(witness, car)

21 (Amy,Mazda) || (Amy,Toyota)
23 (Betty,Honda)

?

ID Drives(person, car)

31 (Jimmy,Mazda)
32 (Jimmy,Toyota)
33 (Billy,Mazda)
34 (Billy,Honda)

ID Accuses(witness, person)

41 (Amy,Jimmy)
42 (Amy,Jimmy)
43 (Amy,Billy)
44 (Betty,Billy)

? λ(41,1)={(21,1),(31,1)}
? λ(42,1)={(21,2),(32,1)}
? λ(43,1)={(21,1),(33,1)}
? λ(44,1)={(23,1),(34,1)}
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We now define the semantics of a uldb as a set of possible
instances, where each instance is an ldb. The main technical
challenge in the definition is to ensure that each possible ldb
is based on consistent lineage. Recall that alternatives of an
x-tuple are mutually exclusive in a given instance (0 or 1 of
them are chosen), so we need to ensure that a possible ldb
does not have two tuples whose lineages are from distinct
alternatives of the same x-tuple. Recall s(i, j) denotes both
internal identifiers (i, j) ∈ I (R̄) and external symbols.

Definition 5 Let D = (R̄, S, λ) be a uldb. A possible ldb
Dk of D is obtained as follows. Pick a set of symbols Sk ⊆ S
such that:

1. If s(i, j) ∈ Sk , then for every j ′ �= j , s(i, j ′) �∈ Sk .
2. ∀s(i, j) ∈ Sk , λ(s(i, j)) ⊆ Sk .
3. For any ti such that there does not exist a s(i, j) ∈ Sk ,

the following hold: (i) ti is a maybe x-tuple, and (ii)
∀s(i, j) ∈ ti , either λ(s(i, j)) = ∅ or λ(s(i, j)) �⊆ Sk .

The possible ldb Dk is the triple (R̄k, Sk, λk) where R̄k

includes exactly the alternatives of x-tuples in R̄ such that
s(i, j) ∈ Sk , and λk is the restriction of λ to Sk .

Intuitively, the first condition in Definition 5 says that
alternatives of the same x-tuple are mutually exclusive, i.e.,
at most one of them may appear in each possible instance.
The second condition enforces the semantics of lineage: if
an alternative is present in a possible instance, so must be
the alternatives it was derived from. Observe that this impli-
cation is in one direction only. The third condition says that
an x-tuple must yield a tuple in a possible instance unless:
(i) it is a maybe x-tuple, and (ii) none of its alternatives has
a nonempty lineage that would have been consistent with
condition 2.

Example 4 We explain the possible instances of the uldb
in Example 3. Consider the choices for x-tuple 21 of Saw,
which has two alternatives and is a maybe x-tuple. The possi-
ble instance that picks (21,1) must also have (41,1) and (43,1)
to satisfy condition 3 in Definition 5, and it cannot have (42,1)
or condition 2 would be violated. Similarly, the possible
instance that picks (21,2) must have (42,1) but not (41,1)
or (43,1). The possible instance that doesn’t pick any alter-
native for x-tuple 21 has neither of (41,1) or (42,1), nor (43,1)
by condition 2. Note that since (23,1) and (34,1) are always
present, all possible instances have tuple (44,1) to satisfy con-
dition 3. This gives us the three possible instances we expect.
Note in particular that not all combinations of the maybe
x-tuples in Accuses are included in the possible instances.

3.1 Completeness

As discussed earlier, completeness is one of the important
measures for the expressive power of a formalism for

uncertainty. In general, a formalism is complete if it is pos-
sible to represent any set of possible instances within the
formalism. Extending the traditional notion of completeness
for uncertain databases, we consider a stronger definition that
includes both uncertainty and lineage. The following theo-
rem shows that uldbs are indeed complete.

Theorem 1 Given any set of possible ldbs P = {P1, P2,

. . . , Pm} over relations R = {R1, R2, . . . , Rn}, there exists
a uldb D = (R, S, λ) whose possible ldbs are P.

Proof First, we construct R with x-relations S1, . . . , Sn , cor-
responding to R1, . . . , Rn , and an extra relation PW that
encodes the possible instances. PW contains exactly one
x-tuple: (1)|(2)|...|(m). Intuitively, the possible
instance of D in which this tuple takes the value (j)
encodes Pj .

Each Si is constructed as follows. For every Pj , each tuple
t in Ri forms a maybe x-tuple with just one alternative with
value t . Duplicates within and across possible instances are
preserved in Si . We add (j) in PW to the lineage of alter-
natives in tuples copied from Pj . This now exactly encodes
the data in each of the possible instances. The correct lineage
is obtained as follows. We look at the lineage λ j in Pj and
mimic it in the x-tuples it contributes in S1 through Sn . For
example, if λ j (t1) = {t2} in Pj , where t1 ∈ R1 and t2 ∈ R2,
the x-tuple that t2 gave in S2 is added to the lineage of the
x-tuple from t1 in S1.

As a final step, we remove the extra relation PW but retain
its symbols as external lineage. Therefore, each possible ldb
of D now has the same schema as each Pj , and represents
exactly the same data and internal lineage. 
�

3.2 Well-behaved lineage

Although the formal definition of a uldb allows an arbitrary
lineage function λ, in practice tuples are derived as results
of queries, data imports, and other activities. Therefore, we
expect λ to have a restricted structure and not be an arbitrary
function. As a simple example, we don’t expect to have a
tuple t1 derived from t2 and also t2 derived from t1.

We define an interesting restricted class of lineage that
we call well-behaved lineage. We will see that this class is
closed under many relational operations, and its properties
yield efficient algorithms for them. Let λ∗ denote the transi-
tive closure of lineage function λ.

Definition 6 (well-behaved lineage) The lineage of an
x-tuple ti is well-behaved if it satisfies the following three
conditions:

1. Acyclic: ∀s(i, j), s(i, j) /∈ λ∗(s(i, j))

2. Deterministic: ∀s(i, j),∀s(i, j ′), if j �= j ′ then
either λ(s(i, j)) �= λ(s(i, j ′)) or λ(s(i, j)) = ∅
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3. Uniform: ∀s(i, j),∀s(i, j ′), B(s(i, j)) = B(s(i, j ′)), where
B(s(i, j)) = {tk | ∃s(k,l) | s(k,l) ∈ λ(s(i, j))}

We say that a uldb D = (R, S, λ) is well-behaved if all its
x-tuples have well-behaved lineage.

Informally, Definition 6 says lineage is well-behaved when:
(1) there are no cycles; (2) all alternatives of an x-tuple have
distinct lineage; and (3) their lineage points to alternatives
of the exact same set of x-tuples. Observe that, because of
uniformity, acyclicity holds not only for alternatives, but also
for x-tuples, i.e., no x-tuple appears in its own lineage graph.

We refer to an x-tuple with empty lineage as a base
x-tuple. An interesting and useful property of well-behaved
lineage is that the possible instances of a well-behaved uldb
are determined entirely by the base x-tuples. That is, select-
ing a set of alternatives for base x-tuples determines which
alternatives are selected for all x-tuples derived from them.

Theorem 2 (well-behaved uldb) Let D1 and D2 be two pos-
sible instances of a well-behaved uldb D = (R̄, S, λ). Then,
D1 = D2 if and only if D1 and D2 pick the exact same alter-
native or ‘?’ for every base x-tuple.

Proof Define the distance of each alternative from base data
as the maximum number of lineage links that can be traversed
before reaching base data. The acyclicity property of well-
formed lineage ensures that this distance of each alternative
is finite.

The forward direction is immediate: D1 = D2 means by
definition that D1 and D2 pick the same set of symbols. In
particular, they pick the same alternatives or ‘?’ for all base
x-tuples.

We prove the reverse direction by contradiction. Suppose
D1 and D2 pick the same alternatives or ‘?’ for all base
x-tuples, yet D1 �= D2. There exists an alternative (from
a derived tuple) in D1 that is not present in D2. Consider one
such alternative s(i, j) in D1 whose distance to base data is
minimum. D2 must have some other alternative s(i, j ′) chosen.
Note that because of the uniformity condition of well-formed
lineage, the distance of two alternatives of the same x-tuple,
here s(i, j) and s(i, j ′), to base data is the same.

We show that the conditions on well-behaved uldbs entail
that there exists another pair of alternatives that is closer to
base data than s(i, j), s(i, j ′), such that one alternative is present
in D1 (and not D2) and the other in D2 (and not D1).

Since s(i, j) is not a base alternative, λ(s(i, j)) �= ∅. By
the determinism property of well-formed lineage, λ(s(i, j)) �=
λ(s(i, j ′)). Consider some s(k,l) ∈ λ(s(i, j)) but not in λ(s(i, j ′)),
therefore s(k,l) is not from a base tuple. By uniformity, there
exists some s(k,l ′) ∈ λ(s(i, j ′)). We now have s(k,l) and s(k,l ′)
closer to base data, thus violating our assumption that s(i, j)

and s(i, j ′) were the closest pair of alternatives to base data
chosen in D1 and D2 respectively, a contradiction. 
�

Fig. 1 uldb states and queries

The theorem above shows that well-behaved lineage
essentially considers a class of uncertainty that can be cap-
tured by (1) a finite set of base facts that are either mutually
exclusive or independent, and (2) possibly correlated data
derived from these base facts in a way that propagates but
does not affect uncertainty. Well-behaved lineage is there-
fore well-suited for database queries. We will soon see that
if we start from a well-behaved uldb and perform a standard
set of relational operations creating the natural lineage for
the results, the uldb remains well-behaved. Unless other-
wise specified, we assume well-behaved uldbs for the rest
of the paper.

4 Querying uldbs

In this section we consider querying and minimizing uldbs.
We begin in Sect. 4.1 by introducing the class of queries we
consider. In particular, we identify queries that are mono-
tonic w.r.t. to data and lineage. Section 4.2 describes how we
answer such queries over uldbs.

uldbs do not necessarily have a unique representation.
Section 4.3 considers two notions of minimality for uldbs:
(1) D-minimality, guaranteeing that a uldb does not contain
extraneous data, and (2) L-minimality, guaranteeing that a
uldb does not contain extraneous lineage. We describe how
to minimize uldbs w.r.t. both notions. We show that when
uldbs are minimized, we can efficiently answer membership
queries, where the goal is to determine whether a particular
tuple (or set of tuples) is guaranteed to be in some (or all)
possible instances of a uldb.

Finally, Sect. 4.4 discusses the relation extraction prob-
lem. Since uldbs track the lineage of its tuples, we cannot
look at an x-relation in a uldb in isolation of others. We
show how we can appropriately extract lineage along with the
result x-relation, so that the correct set of possible instances
is preserved.

Figure 1 summarizes the different operations (querying,
extraction, and minimization) we consider for uldbs, and the
possible transitions between states of the uldb.
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4.1 DL-monotonic queries

We will restrict our discussion to queries that are monotonic
with respect to data and lineage. Monotonicity is defined in
terms of ldbs, i.e., “certain” databases with lineage. Extend-
ing these definitions to uldbs is not necessary, since the
semantics of monotonic operations are also defined on ldbs.

To define monotonicity, we must first define containment
of ldbs. Intuitively, for an ldb D to be contained in D′, every
data element and its transitive “lineage graph” in D should
also be in D′.

Definition 7 Let D = (R̄, S, λ) and D′ = (R̄′, S′, λ′) be
two ldbs, where R̄ and R̄′ have the same schemas. We say
that D is contained in D′, denoted D ⊆ D′, if:

1. S ⊆ S′
2. R̄ is contained in R̄′, i.e., if t ∈ Ri then t ∈ R′i , with the

same tuple identifier
3. For every symbol s1 ∈ S, if s2 ∈ λ(s1), then s2 ∈ λ′∗(s1).

Note that ⊆ is not exactly a partial order on ldbs because
it is not antisymmetric. Specifically, D ⊆ D′ and D′ ⊆ D
only implies that λ∗ = λ′∗, not necessarily that λ = λ′.

Based on Definition 7, we define the class of DL-mono-
tonic queries. In the definition, given a query Q and an ldb
D, Q(D) is an ldb that extends D with one x-relation Rq

and with lineage λRq from Rq to I (R̄). We write Q(D) =
D + (Rq , I (Rq), λRq ).

Definition 8 Let D be an ldb. Let D|I denote the restriction
of D to the tuples identified in set I , and the lineage among
them. A DL-monotonic query is a function Q from ldbs to
ldbs that satisfies the following conditions:

1. ∀D,∀D′ such that D ⊆ D′, then Q(D) ⊆ Q(D′).
2. ∀t ∈ Rq , Q(D|λ(t)) = D|λ(t) + (t, I (t), λ(t)), and no

strict subset of D|λ(t) produces t .

The first condition enforces monotonicity on both data and
lineage. The second condition constrains the lineage of a
result tuple to be a minimal subset of the database that pro-
duces exactly that tuple.

Example 5 In Example 1, the query Accuses =
πwitness,person(Saw �� Drives) is DL-monotonic. In
particular the reader may verify that the lineage associated
with the four x-tuples of Accuses satisfies Definition 8
above. Note that the lineage of each of the two(Amy,Jimmy)
tuples must have a distinct combination of base tuples so that
condition 2 of Definition 8 is satisfied.

Intuitively, any operation that can produce its results in a
“tuple-by-tuple” fashion is DL-monotonic. Considering the

Fig. 2 Semantics of queries on uldbs

standard relational operations with bag semantics: selection,
projection, join, and union are all DL-monotonic, and so are
any queries composed from them. Clearly, these operations
are data monotonic, and the lineage of each resulting tuple
points exactly to the combination of tuples that produces
it, and it alone, hence they are DL-monotonic. Aggrega-
tion, duplicate-elimination, and some set operators are not
DL-monotonic. In the remainder of this section, we assume
all queries Q to be DL-monotonic. In follow-on work we are
extending our approach to other operations.

4.2 Applying a query to a uldb

We consider the problem of applying a query Q to a uldb D.
In our formulation of the problem, the result Q(D) is defined
to include the original database and the answer relation. We
consider extracting the answer relation from the resulting
uldb in Sect. 4.4.

The semantics of query answers are determined via the
instances of the uldb, as depicted in Fig. 2: Q(D)’s pos-
sible ldbs are logically obtained by applying Q to each of
the D1, . . . , Dn possible instances of D. Hence, the goal of
our algorithm it to implement the top (broad) arrow in the
diagram, going directly from the representation of D to the
representation of Q(D).

Algorithm 1 (see figure) proceeds in two phases. First
(lines 4–5), it performs a “standard” evaluation of the query
Q on an ldb D that contains all the alternatives of the base
x-relations. The resulting relation Rq and its lineage λRq

are then used to: (a) construct one x-tuple tl in Rq for each
combination t1, . . . , tn of x-tuples in D that produced tuples
through Q (lines 6–8); and (b) generate lineage for ti ’s alter-
natives (line 9). Note that although tl is defined as a maybe
x-tuple, it may still contribute a tuple in every possible ldb of
Q(D). We discuss elimination of extraneous ‘?’s in
Sect. 4.3.1.

Theorem 3 Given a uldb D and a query Q:

1. Algorithm 1 returns Q(D).
2. If D is a well-behaved uldb, then so is Q(D).
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Algorithm 1 Query evaluation
input: a uldb D with x-relations {R1, . . . , Rn},

and a DL-monotonic query Q on D
output: a uldb D′ = Q(D)

1: Rq ← ∅ ; λRq ← undefined function

2: Let D = R1, . . . , Rn be the ldb such that ∀k, k ∈ [1, n]
R̄k = { tuples s(i, j) | s(i, j) is an alternative in Rk}
Remember with each tuple s(i, j) that it represents
alternative j of x-tuple ti .

3: Compute Q(D̄) = D̄ + (R̄q , I (R̄q ), λR̄q
)

4: Group the tuples in R̄q by the x-tuple identifiers
corresponding to the tuples in their lineage

5: for each group of tuples with the same set of x-tuple
identifiers t1, . . . , tn do

6: create a maybe x-tuple tl in Rq with all the tuples
of the group as alternatives

7: ∀s(l,k) alternative of tl , set λRq (s(l,k)) as in λR̄q

8: end for
9: return D′ = D + (Rq , I (Rq ), λRq )

To prove this theorem, we need the following lemma,
which establishes that a ULDB can be grown monotonically
by adding new x-tuples and well-behaved lineages: 
�
Lemma 1 Given a uldb D = (R̄, S, λ) with possible ldbs
D1, . . . , Dn, and a maybe x-tuple t , such that (1) t �∈ D and
(2) t has well-behaved non-empty lineage λ(t) ⊆ I (R̄), then
the uldb D′ = D + ({t}, I (t), λ(t)) has possible instances
D′1, . . . D′n such that ∀i , Di ⊆ D′i .

In this case, we say that D′ preserves the possible instances
of D.

Proof Any possible ldb P ′i of D′makes the same alternative
choices for all x-tuples of D as one and only one possible
ldb Pj of D, or it wouldn’t be consistent. Clearly, Pj ⊆ P ′i .

Conversely, for any possible ldb Pj of D, one and only
one choice is possible for t :

• either the alternatives chosen by Pj for the x-tuples in the
lineage of t (all the same, by uniformity) form the lineage
of one of the alternatives of t , and this alternative (unique
by determinism) must be chosen to get a consistent ldb,
or

• the alternatives chosen by Pj for the x-tuples in the line-
age of t do not correspond to the lineage of any alternative.
In this case the only choice for t is not picking an alterna-
tive, which is possible because t is a maybe x-tuple and
none of the alternative’s lineage is satisfied.

Acyclicity ensures that the choice made for t does not affect
the rest of the ldb. The obtained ldb is the unique possible
ldb P ′i of D′ s.t. Pj ⊆ P ′i . 
�
Proof (Theorem 3) The algorithm returns a uldb D′ =
(Rq , I (Rq), λRq ) which adds to D the x-relation Rq contain-
ing exclusively maybe x-tuples with well-behaved lineage.

Therefore, by the above lemma, D′ preserves the possible
instances of D. We now show that if Di is a possible possible
ldb of D, then the corresponding ldb D′i of D′ is precisely
Q(Di ).

As Di ⊆ D̄, by monotonicity Q(Di ) ⊆ Q(D̄). Every
tuple in Q(Di ) becomes an alternative in Rq with lineage
pointing to alternatives of D that are picked by Di . Since
Di ⊆ D′i , D′i can (and must) pick those alternatives. Hence,
Q(Di ) ⊆ D′i .

To show that D′i ⊆ Q(Di ), suppose D′i picks some s(i, j) �∈
Q(Di ). Clearly, λ(s(i, j)) ⊆ Di , and by definition of lineage
for positive queries Q(Di |λ(s(i, j))) produces s(i, j), which
implies by monotonicity that s(i, j) ∈ Q(Di ), a contradic-
tion.

Finally, if D is well-behaved, the addition of x-tuples with
well-behaved lineage clearly preserves acyclicity, determin-
ism and uniformity, hence D′ is well-behaved. 
�

Observe that our algorithm is based on evaluating Q over
a conventional database D. Since the size of D is the same
as the size of x-relations R1, . . . , Rn , complexity does not
increase due to uncertainty. More importantly, we can imple-
ment Algorithm 1 readily using a standard relational DBMS,
without having to build a special-purpose query engine for
uldbs. In fact, as we describe in Sect. 6, our implementa-
tion of the Trio prototype has taken exactly this approach.
Of course special-purpose techniques also may be interest-
ing in order to maximize performance of query processing
on uldbs.

4.3 uldb minimality

An interesting aspect of uldbs is that they do not have a
unique representation. That is, we can have two different
x-relations that have exactly the same set of possible
instances. Therefore, it is interesting to ask whether a uldb
has a minimal representation. We now define two notions of
minimality for uldbs: data minimality and lineage minimal-
ity, and then show how we can answer membership queries
on minimal uldbs efficiently.

4.3.1 Data minimality

As the following example illustrates, a uldb may contain
extraneous data, including “impossible” alternatives in an
x-tuple, or x-tuples unnecessarily marked with ‘?’. As a spe-
cial case, an entire x-tuple is extraneous if all its alternatives
are extraneous.

Example 6 In Example 3, the ‘?’ on x-tuple 44 is extrane-
ous because the alternative (24,1) is present in every possi-
ble ldb. As an example of an extraneous alternative (entire
x-tuple in this case), consider the following x-relations,
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where Car1 and Car2 represent separate lists of possible
crime vehicles.

ID Saw(witness, car)

1 (Carol,Acura) || (Carol,Lexus)

ID Car1(car)

2 Acura

ID Car2(car)

3 Lexus

Suppose we perform Saw1 = (Car1 �� Saw) and Saw2 =

(Car2 �� Saw) to get sightings related to the two car lists:

ID Saw1(witness,car)

4 (Carol,Acura)

ID Saw2(witness,car)

5 (Carol,Lexus)

λ(4,1)={(1,1),(2,1)} λ(5,1)={(1,2),(3,1)}

Finally, suppose we compute (Saw1 ��witness Saw2) to
find pairs of car sightings in Car1 and Car2 by the same
witness:

ID (witness,car1,car2)

6 (Carol,Acura,Lexus) ? λ(6,1)={(4,1),(5,1)}

There is no possible instance of the database with alterna-
tive (6,1). Intuitively, Carol saw either an Acura or a Lexus,
while both sightings would be necessary to derive x-tuple
(Carol,Acura,Lexus). Thus, (Carol,Acura,Lexus) is
extraneous.

We now define data minimality formally.

Definition 9 (D-minimality) An alternative (i, j) of an
x-tuple ti in a uldb D is said to be extraneous if removing it
from the x-relation does not change the possible instances of
D. Similarly, a ‘?’ on an x-tuple in D is said to be extraneous
if removing it does not change the possible instances of D.
A uldb D is D-minimal if it does not include any extraneous
alternatives or ‘?’s.

The following theorems provide conditions on uldbs that
enable us to detect extraneous data.

Theorem 4 (extraneous alternative) Let D be a well-behaved
uldb. An alternative with identifier (k, l) (in x-tuple tk) in D
is extraneous if and only if there exist s(i, j1) and s(i, j2), both
in λ∗(s(k,l)), with j1 �= j2.

Proof Clearly, if s(i, j1), s(i, j2) ∈ λ(s(k,l)), the alternative is
extraneous. It now suffices to show that if (k, l) is extrane-
ous, there exist s(i, j1) and s(i, j2), both in λ(s(k,l)). We prove
the contrapositive in two steps:

1. We show that the tuple t , corresponding to this alterna-
tive, appears in some possible instance if the base tuples
in λ(s(k,l)) are picked. That is, t ∈ Q(D) where D is the

ldb constituting the base tuples λ(s(k,l)), and Q is the
query performed to obtain the x-relation of s(k,l) from
the base relations.

2. There exists a possible instance ldb of the base relations
D′ that satisfies D ⊆ D′. Now t ∈ Q(D) and D ⊆ D′
and so by Definition 8, t ∈ Q(D′). Therefore, t appears
in a possible instance with D′ and is not extraneous. 
�

In other words, an alternative is extraneous if and only if
it has contradictory lineage. Let us now consider extraneous
‘?’. Let η(ti ) denote the number of alternatives in x-tuple ti
that are not extraneous. Let h(ti ) denote the set of base x-
tuples from which ti is derived, i.e., t j ∈ h(ti ) if ∃s(i,k), ∃s( j,l)

such that s( j,l) ∈ λ∗(s(i,k)) and ∀m, λ(s( j,m)) = ∅.
Theorem 5 (extraneous ‘?’) Let D be a well-behaved uldb.
A ‘?’ on an x-tuple t ∈ D is extraneous if and only if:

1. No x-tuple in h(t) has a ‘?’
2. η(t) =∏

t ′∈h(t) η(t ′)

Proof First note that even if one of the tuples in h(t) has
a ?, the ? in t is not extraneous because choosing the ? in
the base tuple results in t not having any tuple. Now, we
claim that even if one of the combinations of alternatives in
h(t) does not give an alternative in t , the ? in it is not extra-
neous. This follows from an argument similar to the proof
of Theorem 4, i.e., choosing a possible instance containing
the combination in h(t) not having an alternative result in a
possible instance of the database with no alternative being
picked from t . Finally, the only way ? can be picked for t is
if no alternative of t is satisfied; and, this can only happen if
some combination of alternatives in h(t) does not result in
an alternative in t . 
�
We can now use Theorems 4 and 5 to D-minimize uldb rep-
resentations. Since minimization needs to work on the transi-
tive closure λ∗ of the lineage, we can follow two approaches
to D-minimization: (1) a lazy approach in which λ∗ is com-
puted during minimization, and (2) an eager approach in
which the algorithm for operations maintains λ∗ and also the
D-minimal form. Algorithm 2 presents the lazy approach
for D-minimizing a uldb D; the eager approach uses the
same idea but performs the computation incrementally with
operations. It is easy to see that the algorithm returns the
D-minimal representation.

4.3.2 Lineage minimality

A second notion of minimality has to do with lineage. For
uldb D = (R̄, S, λ), let its internal lineage be the restriction
of λ to only symbols in I (R̄). (Recall the domain of symbols
S = I (R̄) ∪ E also includes external symbols E .)
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Algorithm 2 Lazy Algorithm for D-minimization
1: input: A well-behaved uldb D
2: output: An equivalent D-minimized version of D
3: for each x-relation R in D do
4: Skip if R has been D-minimized
5: Recursively perform Steps 3-8 to D-minimize all x-relations
{R1, R2, . . . , Rn} that contain lineage of some x-tuple in R.

6: Compute λ∗ for each alternative of R using the already computed
λ∗ for each Ri

7: Delete all extraneous alternatives using the condition of Theorem 4
8: Compute η(t) for all x-tuples t in R and for all x-tuples in h(t)
9: Use the condition in Theorem 5 to delete any extraneous ‘?’s
10: Mark R as D-minimized
11: end for
12: return D

Definition 10 (L-minimal uldb) A uldb D = (R̄, S, λ)

is L-minimal if for any D′ = (R̄, S′, λ′) over the same
x-relations R̄ such that:

1. S′ ⊆ S, λ′∗ ⊆ λ∗
2. D and D′ have the same internal lineage

D′ has the same possible instances as D only if S′ = S and
λ′∗ = λ∗.

We have the following main theorem about L-minimality.

Theorem 6 (L-minimality of Algorithm 1) Given a well-
behaved L-minimal uldb D and a query Q, the result Q(D)

of Algorithm 1 is an L-minimal uldb.

Proof (sketch) Let the x-relation added by Q be Rq . We
first show that the newly generated lineage is minimal, i.e.,
removing any symbol from λ(x) where x is a symbol of R
generates a possible instance not in Q(D). Next, if Q(D) is
not L-minimal and some λ(y) can be made smaller without
changing the possible instances where y is in some relation
of D, then λ(y) can be reduced in the same way in D too.

The above theorem guarantees that query processing pre-
serves L-minimality. Algorithms for “L-minimizing” a uldb
D, i.e., finding an L-minimal D′ that coincides with D on data
and internal lineage, are the topic of ongoing work. Finding
one L-minimal uldb equivalent to D can be done efficiently,
by iteratively pruning the external lineage of D. However,
the result of L-minimization is not unique. It is still open
whether we can efficiently find a “global minimum” among
all possible L-minimizations, with respect to the size of their
representation. 
�

4.3.3 Membership queries

One useful side-effect of minimization is that it helps us
answer membership queries [2,23,29–31]: determining
whether a particular tuple or relation is present in some

(or every) possible instance of an uncertain database. In the
context of uldbs, these problems are defined as follows.

Definition 11 (membership queries)

• Tuple membership (resp. certainty): Given a uldb D con-
taining an x-relation R, and given a tuple alternative t ∈
R, determine whether t ∈ R in some (resp. all) possible
instance(s) of D.

• Instance membership (resp. certainty): Given a uldb D
containing an x-relation R, and a multiset T of tuple alter-
natives from R, determine whether R contains exactly the
tuples of T in some (resp. all) possible instance(s) of D.

Note that, in the context of uldbs, membership and certainty
problems are defined in term of specific tuple alternatives of
the database, identified by their s(i, j) symbols. This is a slight
variation from the traditional definition of these problems,
which is based on tuple values. This difference reflects the
fact that, in our model, tuples are defined not only by their
values, but also by their lineage.

The following theorem shows that it is tractable to answer
the tuple-membership and tuple-certainty problems. The
algorithms to do so (outlined in the proof) build directly on
D-minimization. However, as is true of all complete uncer-
tainty models [23] including uldbs, the instance-member-
ship and instance certainty problems are intractable.

Theorem 7 Let D be a well-behaved uldb.

1. The tuple-membership and tuple-certainty problems are
solvable in polynomial time in the size of D.

2. The instance-membership and instance-certainty prob-
lems are NP-hard.

Proof By Definition 9, a D-minimal uldb does not have
extraneous tuples or ‘?’s, i.e., all alternatives do appear in
some possible instance. The tuple-membership problem for
t and R thus returns “yes” if t is an alternative of the x-relation
for R, and otherwise returns “no”. Similarly, the tuple-cer-
tainty problem returns “yes” if there is an x-tuple with a
single alternative t and no ‘?’. Therefore, tuple-membership
and tuple-certainty can be answered in linear time in the size
of D, if D is D-minimal. Finally, note that the D-minimi-
zation algorithm takes linear time in the size of the lineage
of D. Therefore, these problems are also answered in linear
time if D is not D-minimal.

The proof for instance-membership is by a reduction from
the NP-complete graph 3-colorability problem, and for
instance-certainty by a reduction from the Co-NP-complete
graph non 3-colorability problem. The hardness of both these
problems for c-tables was first shown in [2]. The
colorability problems were reduced to instance-membership
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(or certainty) of the result of positive existential queries on
base c-tables. These base c-tables, which represented the
graph structure and possible colorings, can be represented as
well-behaved base x-relations. Therefore, the instance mem-
bership and certainty problems are hard for uldbs too. 
�

The minimization algorithms we described in this sec-
tion are currently being implemented and their performance
is being measured. We are also experimenting with various
strategies of eager versus lazy minimization.

4.4 Extraction

Typically, after issuing a query to a database, users are inter-
ested in seeing only the result relation, not the entire database.
More generally, given a uldb, we may want to extract a sub-
set of its relations, but in a way that preserves the possible
instances of the extracted subset. In principle, whenever a
database includes constraints across relations, extracting a
subset of the database is an interesting question; otherwise,
the meaning of every relation is independent of the others,
and therefore extraction is trivial.

Extraction is also important in the context of data inte-
gration. If the data in a uldb comes from multiple external
sources, a flexible way to bring into the uldb just the data that
is needed from these sources is to create x-relations defined
as queries on them. Performing extraction on these x-rela-
tions preserves their information, while discarding irrelevant
data and lineage. Note that this idea is similar to how que-
ries are used to define source mappings in traditional data
integration systems such as mediators or data warehouses.

Definition 12 (extraction) Let D be a well-behaved uldb
with x-relations R and possible instances P , and let X̄ be a
subset of R. The problem of extracting X̄ from R is to return
a well-behaved uldb D′ with R′ = X̄ and possible instances
P ′, such that the restriction of P to X̄ equals P ′ with respect
to data and internal lineage.

Simply removing the relations in R− X̄ and their symbols
does not give a correct extracted result. For instance, if the
x-relation Accuses from Example 3 is extracted without
any lineage, x-tuple 43 may now occur without x-tuple 41,
which is not allowed by any of the possible instances of the
original uldb.

The following algorithm produces the correct extraction.

Algorithm 3 Algorithm relationExtract
1: input: uldb D = (R̄, S, λ), and X̄ ⊆ R̄
2: output: a uldb D′ = (X̄ , S′, λ′)
3: S′ = I (X̄) ∪ (

⋃
x∈I (X̄) λ∗(x))

4: λ′ = λ|S′ , the restriction of λ to S′
5: return D′

Effectively, the algorithm works by identifying all lineage
that is necessary to ensure that the possible instances of the
extracted relations are preserved. Lineage that is not within
the extracted relations is converted from internal (identifiers
(i, j) in I (R̄)) to external (the corresponding symbols s(i, j)).
Note that by our definitions, the mutual exclusion of x-tuple
alternatives carries over to what are now external symbols.
One subtlety is that we must associate a logical ‘?’ with each
set of external symbols that were created from an x-tuple
having a ‘?’.

Consider again the Accuses example discussed above.
If we extract Accuses from the database shown in Exam-
ple 3, we retain the lineage on the x-tuples of Accuses,
except it now refers to external symbols. By doing so, Def-
inition 5 of possible instances correctly prohibits a possi-
ble instance containing one but not the other of x-tuples 41
and 43.

We have the following theorem about our extraction
algorithm.

Theorem 8 Let D = (R̄, S, λ)be a well-behaved D-minimal
uldb, and consider any X̄ ⊆ R̄.

1. Algorithm relationExtract returns a correct extraction
D′.

2. Algorithm relationExtract runs in polynomial time in
the size of D.

3. The result D′ is D-minimal.

Proof (sketch) The correctness of the algorithm follows from
the fact that all lineage that constrains the possible instances
for x-tuples in X̄ is retained in D′. Since the algorithm needs
only one traversal of the lineage of all x-tuples in X̄ , the
running time is polynomial in the size of D. Finally, if D is
D-minimal, there are no extraneous alternatives or ‘?’s. Now
if we restrict the possible instances to X̄ , all alternatives in X̄
still appear in some possible instance. Similarly, all x-tuples
with ‘?’ continue to give the empty instance in some possible
instance in D′. Therefore, D′ is D-minimal. 
�

5 Confidences and probabilistic data

We now show how uldbs can be extended to include confi-
dence values and probabilistic query processing. With con-
fidences, uldbs subsume the typical notion of probabilistic
databases, which assign a confidence value to tuples, with-
out alternatives or lineage [4,12,21,34]. A noteworthy fea-
ture of probabilistic query processing using uldbs is that we
can decouple the computation of data in query results from
the computation of the data’s probability (confidence) val-
ues. This decoupling enables more freedom with query plan
selection than is typically available for probabilistic query
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processing [22], and it allows confidence values to be com-
puted selectively as needed.

In some applications, confidence values come directly
from the data. This is mostly the case for sensor data, where a
confidence can be determined from the strength of the signal
received by an individual sensor. However, in most cases,
confidences are generated by the layers of processing tra-
versed by the data (which advocates for keeping track of the
lineage). For instance, in data integration applications, oper-
ations such as extraction from text, reference reconciliation,
or schema matching rely on a variety of techniques (e.g., dis-
tance metrics, probabilistic models) that naturally generate
confidence values along with their results.

Note that the confidence computations presented here are
exact. This makes the system consistent with respect to query
composition: A query will produce the same results and prob-
abilities, regardless of the intermediary x-relations that may
be materialized. Exact computation also avoids loosing pre-
cision on probabilities as layers of x-relations are built on top
of each other. For well-behaved uldbs, the cost of this exact
computation is manageable, since it is polynomial in the size
of the x-tuples for which confidences are computed and their
lineage, and intermediary results may be cached and reused.

5.1 Confidence values

In the remainder of this section we assume uldbs to be well-
behaved and D-minimized. If we consider the semantics of
x-relations probabilistically, then without lineage different
alternatives of the same x-tuple represent disjoint events,
while different x-tuples represent independent events. Recall
from Sect. 3.2 that in well-behaved uldbs, the possible
instances are determined entirely by the choices for the base
x-tuples; the choices for derived x-tuples are determined by
their lineage.

We preserve this intuition when extending uldbs with
confidences. Now, each base alternative a has an associated
confidence value c(a). For each base x-tuple t , the sum σ(t)
of the confidence values of its alternatives must be at most
1, and exactly 1 if t has no ‘?’. The confidence of ‘?’ for any
x-tuple is (1− σ(t)).

For flexibility, we support confidence values that are not
necessarily modeled as probabilities. In Sect. 6 we give an
example of where an application may want to use a differ-
ent interpretation. However, in the rest of this section, we
assume that the confidence values are interpreted as proba-
bilities. In particular, when we discuss possible instances, we
say that each instance has a probability of being the “correct”
instance, and this probability is based on confidences in the
data comprising the instance. Specifically, the probability of
a possible instance is the product of the confidences of the
base alternatives and ‘?’ chosen in it.

Example 7 Suppose Amy sighted an Acura with confidence
0.8, while Betty is sure she saw either an Acura or a Maz-
da with confidences 0.4 and 0.6 respectively. Furthermore,
Hank drives an Acura with confidence 0.6. We have:

ID Saw(witness, car)

11 (Amy,Acura):0.8
12 (Betty,Acura):0.4 || (Betty,Mazda):0.6

?

ID Drives(person, car)

51 (Hank,Acura):0.6 ?

This database has eight possible instances, since each of the
three x-tuples has two possible choices. For example, the
possible instance where Amy saw an Acura, Betty saw a
Mazda, and Hank does not drive an Acura has confidence
0.8 ∗ 0.6 ∗ (1− 0.6) ≈ 0.20.

It can be shown that for any well-behaved D-minimal
uldb with confidences, the following desirable properties
hold.

1. The sum of probabilities of its possible instances is 1.
2. The confidence of a base alternative a (resp. ‘?’ on an x-

tuple t) equals the sum of the confidences of the possible
instances where a (resp. no alternative of t) is picked.

5.2 Query processing

The presence of lineage allows us to decouple uldb query
processing with confidences into two steps:

1. Data computation, in which we compute the data and
lineage in query results, just as in uldbs without confi-
dences.

2. Confidence computation, in which we compute confi-
dence values for query results based on their lineage (and
confidence values on base data).

We first motivate why this decoupling works. Then we dis-
cuss data and confidence computation in Sect. 5.3.

Suppose we have a derived x-tuple t , and consider one
of its alternatives a. With well-behaved lineage, a appears
in a possible instance if and only if all of the base x-tuple
alternatives in the transitive closure of a’s lineage appear in
the instance. Furthermore, these base x-tuple alternatives are
independent, since they have no lineage of their own and can-
not be alternatives of the same x-tuple. Thus, the confidence
of a is computed as the product of the confidences of the
base-tuple alternatives in the transitive closure of its lineage.
For an x-tuple t with a ‘?’, confidence for the ‘?’ is (1−σ(t)),
where σ(t) is the sum of the confidences of t’s alternatives.
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Thus, the confidence value for every result alternative a
is a function of the confidence values for the base alterna-
tives reachable by a’s transitive lineage. Hence we need not
compute confidence values during query processing—we can
compute them afterwards using the lineage on query results
together with the original base data confidences.

Next, we show how decoupling data and confidence com-
putation overcomes a previously identified shortcoming of
query processing in probabilistic databases, and we briefly
discuss efficient confidence computation in the decoupled
scenario.

5.3 Confidence computation

Dalvi and Suciu [21] show that naive propagation of confi-
dences during query processing—essentially assuming inde-
pendence of tuples in intermediate results—may lead to
incorrect confidences in the result. We illustrate the problem
with an example, and also show how our decoupled technique
operates (correctly) on the same example.

In [25], we study the problem of exploiting lineage to effi-
ciently compute confidences. The reader is referred to [25]
for details on model extensions, and query processing tech-
niques.

Example 8 Let us simplify the data in Example 7 to:

ID Saw(witness,car)

11 (Amy,Acura):0.8
12 (Betty,Acura):0.4

?
?

ID Drives(person,car)

51 (Hank,Acura):0.6 ?

Suppose we want the list of accused persons with confi-
dences:Accused= Πperson (Saw �� Drives). Here we are
using a duplicate-eliminating projection. We consider three
ways of executing this query: two query plans that compute
confidences as part of operator execution, and a third method
showing our decoupled approach.

Query Plan 1 (correct): Evaluating the query using the fol-
lowing plan gives the correct confidences in the result:

Πperson(Πcar(Saw) �� Drives)
In Πcar(Saw), there is just one tuple (Acura) whose confi-
dence is given by:

Pr((11, 1)∨(12, 1)) = Pr((11, 1))+Pr((12, 1))−Pr((11, 1)∧
(12, 1))

Since alternatives (11, 1) and (12, 1) are independent,
Pr((Acura)) evaluates to 0.8+0.4−(0.8∗0.4) = 0.88. Now
joining (Acura) with x-tuple 51, we get the confidence of
the result (Hank,Acura) to be 0.88 ∗ 0.6 = 0.528. In the

final step, projecting onto person, the confidence remains
0.528.

Query Plan 2 (incorrect): Suppose instead we use plan:

Πperson (Saw �� Drives)

Now we get an incorrect result, because the intermediate
x-tuples (Amy,Acura,Hank) and (Betty,Acura,Hank)

from (Saw �� Drives) are not independent. Let these tuples
have IDs (61, 1) and (62, 1) respectively. The confidence of
(Amy,Acura,Hank) is:

Pr((61, 1)) = Pr((11, 1) ∧ (51, 1))

giving 0.8 ∗ 0.6 = 0.48. Similarly, the confidence of
(Betty,Acura,Hank) is 0.6 ∗ 0.4 = 0.24. Now the x-tuple
Hank after projecting onto person has confidence given by

Pr((61, 1)∨(62, 1)) = Pr((61, 1))+Pr((62, 1))−Pr((61, 1)∧
(62, 1))

Assuming independence of tuples (61, 1) and (62, 1), the
confidence evaluates to 0.48 + 0.24 − 0.48 ∗ 24 = 0.6048,
which is incorrect. See [21] for further discussion of these
issues.

Query Plan 3 (decoupled approach): In our approach, we
first compute the query result using any execution plan. We
get the one x-tuple (Hank); let its identifier be (71, 1).
Because of the duplicate-elimination operator, which is not
DL-monotonic, λ((71, 1)) is no longer a set of tuple alter-
natives (indicating conjunction), but rather a Boolean for-
mula over alternatives. (Disjunctive and negative lineage is
required once we go beyond the DL-monotonic operations;
details are the subject of ongoing work.) Specifically,
λ((71, 1)) = ((51, 1) ∧ ((11, 1) ∨ (12, 1))).

Now, we compute the confidence of the (Hank) tuple
based on its lineage formula and confidence values for the
(independent) base alternatives:

Pr((71, 1)) = Pr(((51, 1) ∧ ((11, 1) ∨ (12, 1)))

With Pr((51, 1)) = 0.6, Pr((11, 1)) = 0.8, and Pr((12, 1)) =
0.4, we obtain the correct result Pr((71, 1)) = 0.528.

Our decoupled approach has two important advantages:
First, the data computation step has the flexibility to use the
most efficient execution plan, without worrying about plans
that produce incorrect confidences as illustrated above. Sec-
ond, in the case where confidence values may not be required
for all data in all query results, the values can be computed
selectively and on-demand.

To avoid the erroneous confidence calculations as exhib-
ited in Example 8, reference [21] characterizes logical query
plans that are guaranteed to propagate confidences correctly,
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and restricts considered evaluation strategies to such plans. In
our decoupled approach, we have the luxury of a wider space
of plans, which can be shown to result in arbitrarily large per-
formance improvements (confidence computation included)
in extreme cases. Consider a query Q that produces an empty
result. Our approach does not need to perform any confi-
dence computation for Q since there are no result x-tuples.
The alternative approach computes confidences during query
execution until finally the result is discovered to be empty.
Furthermore, an expensive plan may need to be used in order
to correctly compute confidence values that are eventually
thrown away.

More concretely, suppose we have 2n large relations,
R1(X), . . . , Rn(X) and S1(Z), . . . , Sn(Z), and two small
relations A(X, Y ) and B(Y, Z). Consider a query Q(Y ) that
computes the natural join of all the relations and projects onto
Y , and suppose A �� B is empty. With simple statistics any
standard optimizer will choose to perform A �� B first. How-
ever, in the plans permitted by [21] (or any other plans that
require independence of tuples for confidence propagation),
A �� B must be performed last. In these plans, we can make
the cost of computing R1 �� · · · �� Rn and S1 �� · · · �� Sn

arbitrarily large.
Of course this example was contrived, and reference [21]

shows that for some queries, computing results with confi-
dences has #P-hard data complexity, regardless. In such sit-
uations, our decoupled approach offers a practical solution:
Answers without confidence values give an approximation of
the result, and their lineage can be used to selectively com-
pute confidence values for tuples of interest. If the latter is
still too expensive, we can use approximate techniques like
the Monte Carlo simulations proposed in [33] to estimate the
confidences.

We do incur some overhead when confidences are finally
computed, particularly if we follow the most naive approach
of tracing the entire lineage of each result x-tuple alternative
to obtain the base data confidences. The following are a few
methods for optimizing the computation, two of which are
supported in our implementation:

• The confidence value for a derived alternative can be com-
puted from confidence values for a set of “closest inde-
pendent descendants” (CIDs) for the alternative, rather
than from confidence values on base data. Roughly, the
CID of an alternative a is a minimal set S of alternatives
in a’s transitive lineage such that the alternatives in S do
not share a common base alternative in their transitive
lineage. It can be shown that CIDs are unique, and for
more complex types of lineage, recursive computation of
confidence values based on CIDs can be much cheaper
than not using CIDs.

• CIDs also enable memoization, which avoids performing
redundant confidence computations. Memoization can be

useful within the computation for a single alternative, as
well as across confidence computations, as long as inter-
vening updates don’t alter the relevant lineage or confi-
dences.

• If transitive lineage λ∗ is already being maintained for
eager D-minimization (Sect. 4.3.1), it can then also be
applied to considerably speed up confidence computa-
tions.

• So far we have discussed computing the confidence value
for a single alternative. In the case where we wish to
compute confidences for an x-tuple or an entire x-rela-
tion, batch techniques can be used based on the structure
guaranteed by well-behaved lineage.

6 The Trio system

We now describe the Trio system, our implementation of a
relational DBMS that supports uncertainty and lineage. The
Trio system is based on the uldb data model, and accepts
queries in the TriQL language [44], our extension of SQL
with uncertainty and lineage-specific features. The Trio sys-
tem already supports richer lineages and wider classes of que-
ries than those studied in this paper. Namely, lineages can be
propositional and queries are not necessarily DL-monotonic.
We focus here on the parts of the system that support the
features of uldbs discussed in previous sections. Further
extensions are described in [38,44].

The current incarnation of the Trio system, dubbed Trio-
One, is primarily layered on top of a conventional relational
DBMS. From the user and application standpoint, Trio-One
appears to be a “native” implementation of uldbs. However,
Trio-One encodes the uncertainty and lineage present in the
uldb data model in conventional relational tables, and uses a
rewrite-based approach for most data management and query
processing. A small number of stored procedures are used for
specific functionality and increased efficiency.

We first present the general architecture of Trio-One
(Sect. 6.1) and the encoding of uldb data (Sect. 6.2), then
present TriQL queries, their evaluation, and the features they
add to SQL (Sect. 6.3). Finally, we discuss the implemen-
tation of the additional operations supported by the system,
such as confidence computation, and extraneous data removal
(Sect. 6.4).

6.1 General architecture

Figure 3 shows the basic three-layer Trio-One architecture.
The core system is implemented in Python and mediates
between the underlying relational DBMS (currently the Post-
greSQL open-source DBMS) and Trio interfaces and appli-
cations. The Python layer presents a simple Trio API that
extends the standard Python DB 2.0 API for database access
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Fig. 3 System Architecture

(Python’s analog of JDBC). The Trio API accepts TriQL
queries (see Sect. 6.3) in addition to regular SQL, and query
results may be x-tuples as well as regular tuples. The API also
exposes lineage tracing, along with the other uldb-specific
operations discussed in Sects. 4 and 5. Using the Trio API,
we built a generic command-line interactive client similar to
that provided by most DBMS’s, and a full-featured graphical
user interface called TrioExplorer.

TrioExplorer offers a rich interface for interacting with
the Trio system. It implements a Python-generated, multi-
threaded web server using the CherryPy framework [15], and
it supports multiple users logged into private and/or shared
databases. It accepts Trio DDL and DML commands and pro-
vides numerous features for browsing and exploring schema,
data, uncertainty, and lineage. It also enables on-demand
confidence computation, coexistence checks, and extraneous
data removal. Finally, it supports loading of scripts, com-
mand recall, and other user conveniences. Figure 4 shows a
snapshot of TrioExplorer’s schema visualizer, which displays
schema-level lineage relationships among tables.

Trio DDL commands are translated via Python to SQL
DDL commands based on the encoding of data described
in Sect. 6.2. The translation is fairly straightforward, as is
the corresponding translation of insert statements and bulk
load.

TriQL query processing is discussed in Sect. 6.3.1. TriQL
query results can either be stored or transient. Stored query
results are placed in a new persistent table, and lineage rela-
tionships from the query’s result data to data in the query’s
input tables also is stored persistently. Transient query results

are accessed through the Trio API in a typical cursor-
oriented fashion, with an additional method that can be
invoked to explore the lineage of each returned tuple. For
transient queries, query result processing and lineage crea-
tion occurs in response to cursor fetch calls, and neither the
result data nor its lineage are persistent.

6.2 Encoding uldb data

We now describe how uldb databases are encoded in regular
relational tables. Hereafter we use x-tuple to refer to a tuple
in the uldb model, and tuple to denote a regular relational
tuple.

Let T (A1, . . . , An) be an x-relation whose x-tuples may
have both confidences and lineage. We store the data portion
of T as a conventional table (which we will also refer to as
T ) with four additional attributes: T (aid, xid, conf, num,
A1, . . . , An). Each alternative in the original x-relation is
stored as its own tuple in T , and the additional attributes
function as follows:

• aid is a unique alternative identifier (across the table)
• xid identifies the x-tuple that this alternative belongs to

(also across the table)
• conf stores the confidence of the alternative, or NULL if

there are no confidence values or if this confidence value
has not yet been computed. (Each table either permits
confidence values on all alternatives or on none of them;
this table type is part of the schema information.)

• num is a nonnegative integer that tracks whether the alter-
native’s x-tuple has a “?”. Our scheme essentially main-
tains the invariant that an alternative’s x-tuple has a “?” if
and only if its num field exceeds the x-tuple’s number of
alternatives. (Sect. 6.3.1 explains how this field is used to
propagate “?” annotations during query processing, and
to avoid unnecessary grouping for certain data.)

The system always creates indexes on aid and xid. In addi-
tion, Trio users may create indexes on any of the original data
attributes A1, . . . , An using standard CREATE INDEX com-
mands that are simply passed through Trio to the underlying
DBMS.

The lineage information for each table T is stored in a
separate table lin_T (aid, src_aid, src_table), indexed
on aid and src_aid. A tuple (a1, a2, T2) in lin_T denotes
that T ’s alternative a1 has alternative a2 from table T2 in its
lineage.

To illustrate, the uldb of Example 3 can be encoded as
follows:

Example 9 Relational encoding of the uldb of Example 3.
The num and conf attributes are placed at the end of the tables
for readability.
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Fig. 4 TrioExplorer Screenshot

Saw

aid xid witness car num conf

211 21 Amy Mazda 3 NULL
212 21 Amy Toyota 3 NULL
221 22 Betty Honda 1 NULL

Drives

aid xid person car num conf

311 31 Jimmy Mazda 1 NULL
321 32 Jimmy Toyota 1 NULL
331 33 Billy Mazda 1 NULL
341 34 Billy Honda 1 NULL

Accuses

aid xid witness person num conf

411 41 Amy Jimmy 3 NULL
421 42 Amy Jimmy 3 NULL
431 43 Amy Billy 3 NULL
441 44 Betty Billy 1 NULL

Lin_Accuses

aid src_aid src_table

411 211 Saw
411 311 Drives
421 212 Saw
421 321 Drives
431 211 Saw
431 331 Drives
441 231 Saw
431 341 Drives

Note that the first three x-tuples in Accuses have a “?”
(their single alternative has num > 1), while x-tuple 44 has
no “?”. We saw in Example 6, that the “?” on x-tuple 44 was

extraneous. In the next section we see how the num value is
computed.

The same uldb with confidences would only vary by the
presence of numerical values in the conf column, adding up
to less than or equal to 1 for alternatives of the same x-tuple,
and consistent with the num annotation.

6.3 Trio queries

TriQL [7,44], Trio’s query language for uldbs, is an exten-
sion of SQL. TriQL queries return uncertain relations in the
uldb model, with lineage that connects query result data to
the queried data. As mentioned in Sect. 6.1, a TriQL query
result may be transient, offering a cursor interface and a spe-
cial method for retrieving lineage, or the query result and
its lineage may be stored in persistent tables according to
the encoding scheme described in Sect. 6.2. As a first exam-
ple, the join query from Sect. 3 with its result stored in table
Accuses would be written in TriQL simply as:

TriQL> CREATE TABLE Accuses AS
TriQL> SELECT person
TriQL> FROM Saw, Drives
TriQL> WHERE Saw.car = Drives.car

In Example 9, tables Accuses and Lin_Accuses are the
(stored) result of the above query.

In addition to modifying SQL semantics for uldbs,
TriQL adds a number of new constructs for querying and
manipulating both uncertainty and lineage. A comprehensive
specification for TriQL’s query and update language appears
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in [44]. In the remainder of this section, we use examples to
illustrate TriQL semantics and functionality, and how TriQL
queries are rewritten automatically into standard SQL over
the relationally-encoded uldb data.

6.3.1 Basic rewriting scheme

Trio essentially evaluates queries on uldbs using the algo-
rithm we presented in Sect. 4.2. The system leverages the
encoding of uldbs presented above to (1) make the book-
keeping of lineages, “?” annotations and confidences effi-
cient, and (2) delegate as much of the processing to the query
engine of the underlying DBMS.

TriQL query processing proceeds in two phases. In the
translation phase, a TriQL parse tree is created and progres-
sively transformed into a tree representing one or more stan-
dard SQL statements, based on the data encoding scheme. In
the execution phase, the SQL statements are executed against
the relational database encoding. Depending on the original
TriQL query, Trio stored procedures may be invoked and
some post-processing may occur.

Consider the Accuses query shown above, first in its tran-
sient form (i.e., without CREATE TABLE). The Trio Python
layer translates the TriQL query into the following SQL
query, sends it to the underlying DBMS, and opens a cur-
sor on the result:

SQL> SELECT Drives.person,
SQL> Saw.aid, Drives.aid,
SQL> Saw.xid, Drives.xid,
SQL> (Saw.num * Drives.num) AS num
SQL> FROM Saw, Drives
SQL> WHERE Saw.car = Drives.car
SQL> ORDER BY Saw.xid, Drives.xid

Let Tfetch denote a cursor call to the Trio API for the original
TriQL query, and let Sfetch denote a cursor call to the under-
lying DBMS for the translated SQL query. Each call to Tfetch
must return a complete x-tuple, which may entail several calls
to Sfetch: Each tuple returned from Sfetch on the SQL query
corresponds to one alternative in the TriQL query result, and
the set of alternatives with the same returned Saw.xid and
Drives.xid pair comprise a single result x-tuple. (The Tri-
QL operational join semantics presented in [7] makes this
property very clear.) Thus, on Tfetch, Trio collects all SQL
result tuples for a single Saw.xid/Drives.xid pair (enabled
by the ORDER BY clause in the SQL query), generates a new
xid and new aid’s, and constructs and returns the result x-
tuple.

Note that the underlying SQL query also returns the aid’s
from Saw and Drives. These values (together with the table
names) comprise the lineage for the alternatives in the result
x-tuple.

To propagate the “?” annotations (encoded in the num

field), the query simply multiplies the num values of the

underlying base tuples. Note that this propagation avoids
generating extraneous “?” annotations for the obvious case
where the underlying x-tuples are not maybe x-tuples. This is
the case in Example 9 of tuple 441 (x-tuple 44) in Accuses.
However, extraneous “?” annotations (and alternatives) may
still exist because of intricate lineage dependencies, as dis-
cussed in Sect. 4.3.1.

The numfield is a also useful when processing certain data.
The generation of a new xid and aid for alternatives in the
result is trivial if we can detect that they are certain. This is
done by checking whether num = 1, which is the case for
result tuples produced exclusively from base tuples having
num = 1. Therefore, when processing data that is certain
from the start, the overhead induced by uldbs is very small.

Finally, since result confidence values for joins are not
computed until they are explicitly requested (see Sect. 6.4),
Tfetch initially returns NULL confidence for all alternatives,
whether or not the query result logically contains confidence
values.

For the stored (CREATE TABLE) version of the query, Trio
first issues DDL commands to create new tables for the query
result and its lineage. Trio then executes the same SQL query
shown above, except instead of constructing and returning
x-tuples one at a time, the system directly inserts the new
alternatives and their lineage into the result and lineage tables,
already in their encoded form. All processing occurs within
a stored procedure on the database server (written in C,
executed through the Postgres SPI interface) thus avoiding
unnecessary roundtrips between the Python module and the
underlying DBMS.

6.3.2 Built-in predicates and functions

TriQL goes beyond SQL by offering constructs to query the
lineage, maybe annotations and confidences of uldb data.
Because these additions keep queries DL-monotonic (see
Sect. 4.1), the basic rewriting scheme presented above can
be easily extended to support them.

TriQL provides three built-in predicates and functions:
Conf(), Maybe(), and Lineage(). Function Conf() can be
used to filter query results based on the confidence of the
input data (e.g., Conf(Saw)) and the confidence of the result
(Conf(*)). For example, if we want to compute suspects
only considering sightings with confidence > 0.5 and only
retaining results whose confidence would be > 0.4, we add
the following conjuncts to our original join query:

TriQL> AND Conf(Saw) > 0.5 AND Conf(*) > 0.4

Built-in predicate Maybe() takes no arguments and is true if
and only if the current x-tuple has a “?”.

Built-in predicate Lineage() allows lineage to be traced
as part of a TriQL query. For example, we can ask for all
witnesses contributing to Hank being a suspect:
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TriQL> SELECT Saw.witness
TriQL> FROM Accuses, Saw
TriQL> WHERE Lineage(Accuses,Saw)
TriQL> AND Accuses.person = ’Hank’

Lineage(X,Y) (which can also be written as “X==>Y”) is
true whenever Y is reachable from X by one or more lineage
steps. That is, it considers the transitive closure of the lineage
function λ, λ∗.

Function Conf() is implemented as an SPI stored pro-
cedure. If it has just one argument T, the procedure first
examines the current T.conf field to see if a value is pres-
ent. If so, that value is returned. If T.conf is NULL, on-
demand confidence computation is invoked (see Sect. 6.4.2),
and the resulting confidence value is stored permanently and
returned. Conf(*) always activates confidence computation,
and includes the resulting confidence value in the query result
(instead of NULL) as well as returning it from the function.

The Maybe() and Lineage() predicates are incorporated
into the query translation phase. PredicateMaybe() is straigh-
tforward: It translates to a simple comparison between the
num attribute and the number of alternatives in the current x-
tuple. (One subtlety is that Maybe() returns true even when
a tuple’s question mark is “extraneous”—that is, the tuple in
fact always has an alternative present, due to its lineage.)

Predicate Lineage(X,Y) is translated into one or more
SQL subqueries that check if the lineage relationship holds:
Schema-level lineage information is used to determine the
possible table-level “paths” from X to Y. Each path produces
a subquery that joins lineage tables along that path, with X and
Y at the endpoints. Suppose for the sake of illustration that
a table Saw2 was derived from Saw, and then Accuses was
derived from Saw2. Then Lineage(Accuses,Saw)would be
translated as follows, recalling the lineage encoding described
in Sect. 6.2.

SQL> EXISTS (SELECT *
SQL> FROM lin_Accuses L1, lin_Saw2 L2
SQL> WHERE Accuses.aid = L1.aid
SQL> AND L1.src_table = ’Saw2’
SQL> AND L1.src_aid = L2.aid
SQL> AND L2.src_table = ’Saw’
SQL> AND L2.src_aid = Saw.aid )

6.3.3 Querying uncertainty

“Horizontal” subqueries in TriQL enable querying across
the alternatives that comprise individual x-tuples, i.e., across
possible worlds. While horizontal queries depend on the par-
ticular uldb at hand, they are a first foray into the (so far
mainly unexplored) realm of queries on the uncertainty of
data. As an (admittedly contrived) example, we can select
from table Saw all vehicles sighted that are not Mazdas, but
a Mazda sighting appears as another alternative of the same
x-tuple:

TriQL> SELECT car
TriQL> FROM Saw
TriQL> WHERE car <> ’Mazda’
TriQL> AND EXISTS [car = ’Mazda’]

On the uldb of Example 3, this query would return a maybe
x-tuple with Toyota, the car from the second alternative of
tuple 21.

In general, enclosing a subquery in [] instead of () causes
the subquery to be evaluated over the “current” x-tuple, treat-
ing its alternatives as if they are a table. Syntactic shortcuts
are provided for common cases, such as simple filtering pred-
icates as in the example above. Full details of horizontal sub-
queries and numerous examples can be found in [44].

Horizontal subqueries are very powerful, but surprisingly
easy to implement based on our data encoding. First, syntac-
tic shortcuts are expanded. In our example above, [car =

’Mazda’] is a shortcut for [SELECT * FROM Saw WHERE

car=’Mazda’]. Here, Saw within the horizontal subquery
refers to the Saw alternatives in the current x-tuple being
evaluated [44].) Second, the horizontal subquery is replaced
with a standard SQL subquery that adds aliases for inner
tables and a condition correlating xid’s with the outer query:

SQL> ... AND EXISTS (SELECT * FROM Saw S
SQL> WHERE car = ’Maz\-da’
SQL> AND S.xid = Saw.xid)

S.xid=Saw.xid restricts the horizontal subquery to operate
on the data in the current x-tuple. Translation for the general
case involves a fair amount of context and bookkeeping to
ensure proper aliasing and ambiguity checks, but all horizon-
tal subqueries, regardless of their complexity, have a direct
translation to regular SQL subqueries with additional xid
equality conditions.

6.3.4 Query-defined result confidences

By default, confidence values on query results respect a prob-
abilistic interpretation, and they are computed by the sys-
tem on-demand. (A “COMPUTE CONFIDENCES” clause can be
added to a query force confidence computation as part of
query execution.) Algorithms for probabilistic confidence
computation are discussed in Sect. 6.4.2.

A query can override the default result confidence val-
ues by assigning values in its SELECT clause to the reserved
attribute name conf. Suppose in our Accuses join query we
prefer result confidences to be the lesser of the two input con-
fidences, instead of their (probabilistic) product. Assuming
a built-in function min, we write:

TriQL> SELECT person,
TriQL> min(Conf(S),Conf(D)) AS conf
TriQL> FROM Saw S, Drives D
TriQL> WHERE S.car = D.car

123



Databases with uncertainty and lineage 261

Recall from Sect. 6.2 that our data encoding scheme adds
a column conf to each underlying table to store confidence
values. Consequently, “AS conf” clauses simply pass through
the query translation phase unmodified.

6.4 Additional Trio features

TriQL queries and updates are the typical way of interacting
with Trio data, just as SQL is used in a standard relational
DBMS. However, uncertainty and lineage in uldbs introduce
several interesting features beyond just query execution.

6.4.1 Lineage

As TriQL queries are executed and their results are stored,
and additional queries are posed over previous results,
complex lineage relationships can arise. As we have seen,
data-level lineage is used for confidence computation and
Lineage() predicates; it is also used for coexistence checks
(Sect. 6.4.3) and extraneous data removal (Sect. 6.4.4). Trio
also maintains a schema-level lineage graph that is used for
Lineage() predicate translation (Sect. 6.3.2) and for some
confidence-computation optimizations. This graph can also
be a useful tool for the user; it is depicted in the TrioExplorer
screenshot of Fig. 4.

TrioExplorer supports data-level lineage tracing through
special buttons next to each displayed alternative. This fea-
ture is built on a method ExplainLineage() in the Trio API:
For any alternative a, ExplainLineage(a) returns a repre-
sentation of the Boolean formulaλ(a), containing the alterna-
tives in a’s immediate lineage. Lineage can be traced further
by calling ExplainLineage() on the alternatives from the
first-level result. Another method, BaseLineage(a), returns
a’s lineage formula traced and “unfolded” all the way to the
base data—the result of a BaseLineage() call is comprised
of alternatives that have no further lineage.

6.4.2 Confidence computation

Recall that each possible instance of a uldb has a probabil-
ity based on the confidences of the data in that instance. In
query results, lineage ties the possible result instances to the
possible instances of the queried data. Thus, using lineage,
each result alternative has a confidence value that captures
the fraction of possible instances in which its lineage appears.
This confidence value is correctly computed by constructing
an alternative’s lineage formula in terms of base data (i.e.,
the result of the BaseLineage() method described above)
and then evaluating the probability of the formula using the
confidence values on the base alternatives, as explained in
Sect. 5.

Thus, when confidence computation is invoked for an
alternative a, the system effectively invokesBaseLineage(a)

and then evaluates the probability of the resulting formula
using base-data confidences.

As discussed in Sect. 5.3, a number of optimizations to
this simple scheme are possible. CIDs are currently being
investigated and implemented. For now the system supports
the following optimizations:

• Whenever confidence values are computed, they are mem-
oized for future use.

• We have developed algorithms for batch confidence com-
putation that are implemented through SQL queries.
These algorithms are appropriate and efficient when con-
fidence values are desired for a significant portion of a
result table.

6.4.3 Coexistence checks

A user may wish to select a set of alternatives from one or
more tables and ask whether those alternatives can all coexist.
Two alternatives from the same x-tuple clearly cannot coex-
ist, but the general case must take into account arbitrarily
complex lineage relationships as well as tuple alternatives.
For example, if we asked about alternatives (42,1) and (43,1)
in Example 3, the system would tell us these alternatives
cannot coexist. Coexistence checking can be performed by
generating base-lineage formulas for the set of alternatives,
augmenting them with formulas capturing mutual exclusion
of tuple-alternatives, and then checking satisfiability.

6.4.4 Extraneous data removal

As seen in Sect. 4.3, the natural execution of TriQL queries
can generate extraneous data: a tuple alternative is extrane-
ous if it can never be chosen (i.e., its lineage includes the
conjunction of data that cannot coexist); a “?” annotation is
extraneous if its tuple is always present. It is possible to check
for extraneous alternatives and ?’s immediately after query
execution (and, sometimes, as part of query execution). How-
ever, like confidence computation and coexistence checks,
extraneous data detection may require tracing lineage to the
base data. Because we expect extraneous data and ?’s to be
relatively uncommon, and users may not be concerned about
their presence, we have chosen to implement extraneous data
removal as a separate operation, roughly akin to garbage col-
lection.

The astute reader may note that all of the features dis-
cussed in this section are interconnected. In fact they share
code in the system, and they can share some of the optimiza-
tions discussed in Sects. 6.4.2 and 5.3 as well. For example,
we can determine if an alternative is extraneous by com-
puting its confidence and checking if it is equal to 0, while
conversely a “?” is extraneous if the confidence values for its
tuple sum to 1. Similarly, a set of alternatives can coexist iff,
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when treated as conjunctive lineage for a dummy alternative
a, the confidence of a is >0.

7 Related work

In [46], we described the original motivation that led to the
work in this paper: development of a general-purpose data-
base management system that incorporates data, lineage, and
uncertainty. In [23], we explored the space of incomplete and
complete models for uncertainty, without considering line-
age. In [24], we posed and solved a number of new theoretical
problems with respect to representation schemes for uncer-
tainty, again without lineage.

We are not aware of any previously proposed formal data
representation that integrates both lineage and uncertainty.
We briefly overview some of the work that addresses uncer-
tainty and lineage independently.

Representation schemes and query answering for uncer-
tain databases has been studied extensively, e.g., [2,4,5,10,
27,29–31,34,45]. Much of this previous work is theoreti-
cal, but there has been recent interest in building systems,
e.g., [9,14,46] for uncertainty, and [32,42] for integrating
inconsistent data sources. Query answering in probabilistic
databases has seen considerable progress and efficient solu-
tions have been proposed [20–22]. We build on that work in
this paper, showing how lineage can further improve query
processing.

Approximate query answering has also received signifi-
cant attention over the last decade [3,26,28,43], but we focus
on exact queries over uncertain data rather than inexact que-
ries over certain data. However, the simple representation of
uncertainty in uldbs is likely to facilitate approximate que-
rying, and we plan to investigate this avenue of future work.

Integrating lineage (also known as provenance) has been
proposed for relational databases, e.g., [11,39,40], and for
data warehouses, e.g., [17–19]. It has been observed that there
are various choices in defining lineage, and in this paper we
use a definition similar to the where lineage of [11]. The main
differences with [11] are that (1) our model is relational while
theirs is tree-based and (2) we track and persist lineage at the
granularity of tuples, while they track it at the granularity
of individual values inside tuples. The finer granularity of
lineage they consider is necessary to explain why and how
individual values appear in query results. Our lineage model
is simpler, but sufficient to track uncertainty. Moreover, we
persist lineage as part of the database, which enables queries
to be posed against the lineage itself.

Analysis of possible lineage information was also used
for optimizing query evaluation and determining indepen-
dence of queries from updates [36]. A recent system being
developed around data provenance is described in [8,16].

8 Conclusions and future work

We introduce uldbs as a representation for databases with
both lineage and uncertainty. With simple extensions to the
relational model (tuple alternatives, maybe tuples, and line-
age functions), uldbs can represent any finite set of possible
instances containing data and lineage, and uldbs are ame-
nable to efficient query processing using standard relational
techniques. uldbs can be extended naturally to represent and
query probabilistic data; moreover, because lineage enables
query evaluation to be decoupled from the computation of
confidences, substantial performance gains may be achieved
over computing query operators and confidences in tandem.

In this paper, we focused on a specific class of DL-mono-
tonic queries and their lineage. We are extending our tech-
niques and results to a larger set of operations, e.g., duplicate-
elimination, aggregation, and negation. Doing so primarily
entails extending the types of lineage allowed, e.g., adding
disjunctive and negative lineage, as briefly shown in Sect. 5.3.

As described in Sect. 6, Trio is currently implemented on
top of a standard relational DBMS, and is able through sim-
ple rewriting techniques to evaluate DL-monotonic queries
on uldbs without altering any system internals. However,
new techniques are required if we are to handle all aspects of
uldbs covered in this paper, e.g., keeping a uldb D-mini-
mized as query results are added, and efficiently L-minimiz-
ing the result of an extraction.

We highlighted throughout the paper how the main fea-
tures of uldbs are crucial for data integration applications:
lineage is indispensable to track the origin of data and its
journey through data integration operations. Uncertainty is
inherent to almost every single one of these operations. We
also stressed the importance of uldb features such as extrac-
tion and confidence computations in a data integration con-
text.

While uldbs provide essential primitives for data inte-
gration, they are not expressive enough to fully represent
the effects on data of some of its complex operations. Well-
behaved lineage is suitable to represent traditional relational
queries, but confines the uncertainty to base data, and falls
short to capture operations which generate additional uncer-
tainty. Whether the right approach is to extend uldbs with
richer primitives to support data integration (at the price of a
greater complexity), or to keep data integration “outside the
uldb box” and transfer the lineage and uncertainty primi-
tives to data integration systems remains unclear, and is an
interesting question we plan to tackle.

Another challenging question in the context of data inte-
gration is the relationship between the data in a uldb and
the data in the data sources. We mentioned the possible use
of extraction to define a flexible boundary between the uldb
and the external world. The open question of L-minimization
is obviously also relevant to making this interface efficient.
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Beyond those, the changing nature of external data sources
needs to be accounted for. Revising the (uncertain) knowl-
edge of a uldb based on source changes, and propagating
it (through lineage) to the derived x-relations of the uldb is
another important question on our future research agenda.

There are a number of other current and future directions
of work in uldbs:

• Updates: We are currently identifying a set of update
primitives for uldbs, and considering the design of effi-
cient update algorithms.

• Implementation: uldbs introduce several new physical
design issues, such as data layout, indexing, partitioning,
and materialized views, and their integration into query
optimization. Fully exploring these topics is likely to
entail modifying our prototype to operate inside (instead
of on top of) a DBMS.

• Theory: There are numerous interesting theoretical prob-
lems to work on. We can reconsider nearly every topic in
relational database theory in the context of uldbs, e.g.,
dependency theory, query containment, and sampling and
statistics.

• Long-Term goals: Our agenda for the overall Trio pro-
ject [46] includes several features not yet present in
uldbs, such as uncertainty in the form of continuous dis-
tributions, incomplete relations, and versioning of data,
uncertainty, and lineage.
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