
STYLES OF SYNTAX-DIRECTED TRANSLATIONS

SDT (Syntax-Directed Translation scheme)

Generates code while parsing, following rules associated with each production.

SDD (Syntax-Directed De�nition)

De�nes translation(s) associated with each node of the parse tree. Translation at root is the output.

Five Styles of Translation

1. Construct parse tree and perform a SDD.

2. Recursive procedures associated with nonterminals (like recursive-descent parser).

3. Recursive procedures that spit out code as a side-e�ect.

4. SDT on an LL grammar; top-down parse.

5. SDT on an LR grammar; bottom-up parse.

� (1) is completely general. (2) through (5) require an \L-attributed SDD."

Syntax-Directed Translations

The most common form of translator is an SDT, where the productions of a grammar have embedded
within them certain actions, which cause side-e�ects.

Example:

The following grammar generates expressions over + and �, while the SDT translates them into post�x.

E ! E + T f print `+' g
E ! T f g
T ! T � F f print `�' g
T ! F f g
F ! (E) f g
F ! i f print i:name g

Here, i:name is a translation of identi�ers, found by taking the \lexical value" for i, which is a pointer to
the appropriate symbol table entry, and obtaining from there the name of the identi�er.

Order of Actions

The interpretation of an SDT is that the action associated with a production is executed immediately af-
ter the terminals generated from any grammar symbols to its left are recognized.

Typical case: The parser is bottom-up, and all actions come at the end of the productions (called a post�x

SDT). Then the actions take place when we reduce by their productions.

General rule: The actions are viewed as \dummy" terminals embedded in the parse tree. They are ex-
ecuted in the order of a preorder traversal of the tree. Thus, the result of the SDT is the same whether
parsing is top-down, bottom-up, or something else.

Example:

Here is a parse tree from the previous grammar, with actions embedded as terminals. The input is a+b�c.
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E

E + T print `+'

T T � F print `�'

F F i print `c'

i print `a'
i print `b'

The output from a preorder traversal of this tree is abc �+.

� That is also the output obtained by executing the actions at the time of reduction during a bottom-
up parse.

� The underlying grammar is not suitable for top-down parsing because of left-recursion.

Conversion to Top-Down Parsable SDT

The SDT notion is robust enough to allow conversion to a top-down parsable grammar, while we carry
along the actions as though they were terminals. That is, the SDT performed is not changed by such a
transformation, just as the input language accepted is unchanged.

Recall that we can eliminate left-recursion from the productions

A ! A� j �

by replacing them with

A ! �B

B ! �B j �

Example:

Consider

E ! E + T f print `+' g
E ! T

Here, � = + T f print `+' g and � = T . The new rules for the SDT are thus:

E ! T D

D ! + T f print `+' g D
D ! �

The fact that the action is embedded within the second production is not, in principle, a problem. It says
that immediately after seeing on the input a string consisting of a +-sign and a string that parses to a
term (T ), we emit the symbol +, before looking for another expression tail (D).

If we make a similar transformation for nonterminal T , we obtain an LL grammar for expressions, whose
parse tree, with embedded actions, for the input a+ b � c is:
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E

T D

F + T print `+' D

i print `a' F S �

i print `b' � F print `�' S

i print `c' �

Notice that a preorder traversal of this tree also yields output abc �+.

Syntax-Directed De�nitions

When translating according to an SDT, it is normal not to construct the parse tree. Rather we perform
actions as we parse; that is, we \go through the motions" of building the parse tree.

To perform a translation that cannot be expressed by an SDT directly, it helps to build the parse tree
�rst. For example, while we can translate in�x to post�x by an SDT, we cannot translate to pre�x.

De�ne one or more attributes of each terminal and nonterminal, and give rules relating the values of these
translations at the various nodes of the parse tree.

� Rules can be associated with productions, because they relate translations at a node to translations at
its parent and/or children.

The rules for computing these translations together form a syntax-directed de�nition (SDD).

� Rules with no side e�ects (such as printing output) are called an attribute grammar.

Example:

We can translate expressions to pre�x form if we are allowed to associate a string (the pre�x expression)
with every node labeled E, T , or F .

The string for a node corresponding to the left side of a production is formed from the strings correspond-

ing to the nonterminals on the right by concatenation, denoted . Put another way, strings are computed
bottom-up, from children to parents.

Thus, an SDD for in�x-to-pre�x translation is

E ! E1 + T f E:pre :=

`+' E1:pre T:pre g

E ! T f E:pre := T:pre g
T ! T1 � F f T:pre :=

`�' T1:pre F:pre g

T ! F f T:pre := F:pre g
F ! (E) f F:pre := E:pre g
F ! i f F:pre := i:name g

� Note that E1 and T1 are instances of nonterminals E and T , respectively; the \sub 1" is intended to
remind the listener that the occurrence on the right is referred to.
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Replacing Concatenation by Indirection

The above de�nition implies that as we go up the tree, a string is computed by copying at each node, so
the root of the tree for a+ b � c would look like:

E + a � bc

E a + T � bc

In practice, one would use pointers to structures representing the strings at the children, and each node
would have a record with literals and pointers, as:

E + � �

E + T

Synthesized Attributes

A SDD de�nes zero or more attributes for each nonterminal and terminal. A synthesized attribute has its
value de�ned in terms of attributes at its children.

Example:

A production A ! BC and a rule like

A:att := f(B:att1; B:att2; C:att3)

makes A:att a synthesized attribute.

� It is conventional to call the attributes of terminals, which are generally lexical values returned by the
lexical analyzer, \synthesized."

� A SDD with only synthesized attributes is called an S-attributed de�nition. All the examples seen so
far are S-attributed.

Implementing S-attributed De�nitions

It is easy to implement an S-attributed de�nition on an LR grammar by a post�x SDT.

� Values of attributes for symbol X are stored along with any occurrence of X on the parsing stack.

� When a reduction occurs, the values of attributes for the nonterminal on the left are computed from
the attributes for the symbols on the right (which are all at the top of the stack), before the stack is
popped and the left side pushed onto the stack, along with its attributes.

\Main Attributes"

It is common for there to be one \main" attribute, which is a long string, e.g., intermediate code, while
other attributes are short \auxiliaries," e.g., types of expressions or labels of statements used for control
ow in the intermediate code.

If the rule for the main attribute concatenates the main attributes of the nonterminals on the right side of
the production, in the same order, perhaps with additional literals among them, then we can implement
the SDD by an SDT whose actions are to emit the literals in their proper place (as well as computing all
auxiliaries on the parsing stack).

Example:

The in�x-to-post�x SDD involves one attribute for each nonterminal, which we may call post. The SDD
has rules like:
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E:post := E1:post T:post `+'

which can be turned into SDT

E ! E + T f print `+' g

In principle, if we wanted to translate to pre�x, we could blithely write the SDD with rules like:

E:pre = `+' E1:pre T:pre

The corresponding SDT, with rules like

E ! f print `+' g E + T

is legal, but cannot be executed as written, because the grammar will not let the parser know when to ex-
ecute the print actions. Rather, it must be implemented as discussed previously: build the parse tree and
then traverse it in preorder to execute the actions.

Important Points:

� Notice that an SDT is an implementation of an SDD.

� The proper SDT to use for an SDD may depend on the type of parser used.

� If an SDD can be converted to a post�x SDT, where all actions take place at the ends of productions,
and the underlying grammar is bottom-up parsable, then the SDD can be implemented without ex-
plicitly building the parse tree.

� If we must build the parse tree, we can do so with an SDT and either a top-down or a bottom-up
parser (create nodes when reducing or expanding).

Example:

(This works bottom-up; see Dragon book for top-down construction.)

E ! E1 + T f E:node :=
getnode(`+', E1:node; T:node) g

Note the action describes a manipulation of the parsing stack, where pointers to nodes of the parse tree
are kept.

Inherited Attributes

Any attribute that is not synthesized is called inherited.

� The typical inherited attribute is computed at a child node as a function of attributes of its parent.

� It is also possible that attributes at sibling nodes (including the node itself) will be used.

Example:

Consider the grammar with nonterminals

1. D = type de�nition.

2. T = type (integer or real).

3. L = list of identi�ers.

and SDD
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D ! T L

L:type := T:type

T ! int

T:type := INT
T ! real

T:type := REAL

L ! L1 ; id

L1:type := L:type;
addtype(id:entry; L:type)

L ! id

addtype(id:entry; L:type)

Notes

� The call to addtype is a side-e�ect of the SDD. The timing of the call is not clear, but it must take
place at least once for every occurrence of the last two productions in the parse tree.

� We shall discuss \L-attributed de�nitions," where there is a natural order of evaluation, making ambi-
guities like this one disappear.

� We assume that terminal id has an attribute entry, which is a pointer to the symbol table entry for
that identi�er. The e�ect of addtype is to enter the declared type for that identi�er.

Circularity and Order of Evaluation

When we have inherited attributes, the order of events becomes unclear, and we frequently must create
the parse tree, then follow the rules for computing the attributes at the various nodes.

When so doing, we may have to visit the same node many times, and the process may not even converge.

� The Dragon book discusses dependency graphs. These are de�ned for each parse tree, and show how
attributes at various nodes depend on one another.

� Cycles in the dependency graph for any parse tree indicates the whole SDD is defective.

Example:

For the input

int a, b, c

The parse tree and dependencies, according to the SDD for types given above, are

D

T T:type L L:type

; id

int L L:type

; id

L L:type

id
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� Note there are no cycles in this parse tree. To show the SDD is noncircular, we need to show that
about every parse tree.

Example: Simplifying Code Generation for Control Flow by Using Inherited Attributes

We shall now work one example in �ve di�erent translation styles. The example concerns the translation
of while-statements.

While we can translate common control constructs (while, if, etc.) with synthesized attributes only, by the
technique known as \backpatching," it is handy to use inherited attributes to pass down the parse tree
certain labels representing targets of jumps.

Style I: General SDD

Our SDD rule for while-statements is

S ! while C do S1
L1 := new();
L2 := new();
S1:next := L1;
C:false := S:next;
C:true := L2;

S:code := `label' L1 C:code

`label' L2 S1:code

� S (statement) has synthesized attribute code (code to execute the statement) and inherited attribute
next (label to go to after executing code).

� C (condition) has synthesized attribute code (to test the condition) and inherited attributes true and
false (the labels to go to if the condition is found true or false, respectively).

� new() is a procedure that produces a new label each time called.

� Other types of statements must have rules that follow the same discipline, producing appropriate val-
ues for these attributes.

� This SDD can be executed directly if we build the parse tree, then execute the rule (and similar rules
for other language parts) at each node in the parse tree in a greedy order; that is, statements are ex-
ecuted at a node as soon as the values on which they depend have been computed at themselves or
other nodes.

L-Attributed De�nitions

A SDD is L-attributed if all attributes are either

1. Synthesized,

2. Extended synthesized attributes, which can depend not only on attributes at the children, but on in-
herited attributes at the node itself, or

3. Inherited, but depending only on inherited attributes at the parent and any attributes at siblings to
the left.

For L-attributed SDD's, there is a natural order in which to evaluate the attributes attached to a parse
tree. traverse the tree in preorder, computing inherited attributes the �rst time a node is reached and syn-
thesized attributes the last time it is reached.
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A:i A A:s

B:i B B:s C:i C C:s

Style II: Recursive Descent

If the underlying grammar is LL, we can design a \recursive descent" parser that consists of a collection of
recursive procedures, one for each nonterminal.

The procedure A for nonterminal A takes as arguments all the inherited attributes of A, and it returns
all the synthesized attributes of A, which we assume for convenience are bundled into one synthesized at-
tribute.

Example (While-Statements):

procedure S(next);
string Ccode; Scode; /� store returned values

C:code and S1:code locally �/
label L1, L2;
begin

if (current input = `while') then begin
advance input;
L1 := new();
L2 := new();
Ccode := C(next; L2);
check `do' on input and advance;
Scode := S(L1);

return(`label' L1 Ccode

`label' L2 Scode)
end
else /� other statement types �/

� We do not actually return a concatenation of strings, but rather a structure with pointers to represent
the desired result.

Style III: On-The-Fly Code Generation

If each nonterminal, like S and C, has a \main" attribute code, we can generate code on the y, rather
than as a return value.

� In each production the code for the left side must consist of literals and the code for the nonterminals
on the right side, in order.

Thus, we may write the procedure S as
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procedure S(next);
begin

if (current input = `while') then begin
advance input;
L1 := new();
L2 := new();
print `label'; print L1;
C(next; L2);
print `label'; print L2;
check input = `do' and advance;
S(L1)

end
else /� etc. �/

Style IV: SDT on an LL Grammar

We can convert an L-attributed SDD into an SDT if we

1. Place the computation of inherited attributes for a nonterminal immediately before that nonterminal
in right sides of productions.

2. Place the computation of synthesized attributes at the ends of productions.

� If the underlying grammar is LL, then we can parse top-down, and the SDT will \work."

� If we execute actions during an LL parse, A:i will be available just before we expand A at the top of
the stack, and A:s will be produced at the point where A was on the stack.

� Store A:i with A on the stack, and put A:s with the symbol below A on the stack.

Example:

The previous SDD could be converted into an SDT with rules like:

S ! while
f L1 := new();

L2 := new();
print `label'; print L1;
C:false := S:next;
C:true := L2;

g
C

do
f print `label'; print L2;

S1:next := L1;
g
S1

Locating Attributes on the Parser Stack

If the underlying grammar is LL, the above SDT makes sense, but we have to be careful where we store
values associated with the S on the left, as the parser stack is manipulated.

For example, suppose S:next is available along with S on the stack. When that S is expanded, any of its
actions could, in principle, need the value S:next.
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� If we are clever, we can observe that the only thing done with S:next is that it becomes the value of
C:false, and immediately place that value in the stack cell for C as we expand S.

� More generally, we would store S:next, like all translations of the expanded nonterminal, in the stack
cells representing each of the actions in the rule.

� Then, the �rst action would copy S:next into the cell below it, as the value of C:false. The second
action would not use its copy of S:next.

Style V: SDT on an LR Grammar

� It has long been supposed that LL parsing made up for the fact that the class of suitable grammars
was smaller, by being more versatile for translation than LR parsing.

� In fact that is not the case.

� Whenever we have an LL grammar and an L-attributed translation scheme, we can insert marker

nonterminals into the right sides of productions so that all inherited and (if needed) synthesized at-
tributes can be found on the bottom-up parsing stack a �xed distance away from the nonterminal
owning those attributes.

� The general rules are found in Section 5.6 of the Dragon Book. We shall only give the intuitive idea.

Moving Actions to the End of Productions

One essential for bottom-up parsing is that actions take place only at reduction time, so all actions must
be at the right end of productions. Thus, if we have a production like:

A ! B f action g C

we introduce a marker M , rewriting the SDT as

A ! BMC

M ! � f action g

� If the original grammar is LL, the new one will be LR, but if the old were only LR, the new might
not be LR.

Keeping Inherited Attributes Immediately Below Their Nonterminal

The second necessary trick is to keep each inherited attribute of some nonterminal, say A, immediately
below A on the stack; that is, it is associated with the grammar symbol immediately to the left of A in a
sentential form.

� We must have these attributes available before we reduce to A, in fact, immediately before we start to
reduce an input substring to A.

� It is possible to keep the needed attributes more than one position below that of A on the stack, but
the position must not depend on what is below A on the stack.

Example:

Suppose we have production A ! BC. Inherited attributes for B can only depend on inherited at-
tributes of A. If we have a rule B:i := f(A:i), we can introduce a marker M with rules:

A ! MBC

M ! �

f M:i := A:i; M:s := f(M:i) g
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Now B:i is available on the stack (as M:s) immediately below where B will eventually appear, even
though we have just now begun to recognize B.

Similarly, an inherited attribute of C can depend on inherited attributes of A and all attributes of B.

� Inherited attributes of A can be copied to a new marker N , preceding C.

� Attributes of B will appear with B on the stack before we begin the recognition of C. They also can
be copied to N when we reduce � to N .

Example:

The while-statement can be handled bottom-up by the following SDT. Note that L1 and L2 are regarded
here as synthesized attributes of the marker M .

S ! whileM C do N S1

M ! �

f L1 := new();
L2 := new();
C:true := L2;
C:false := S:next;
print `label'; print L1;

g

N ! �

f S1:next := L1;
print `label'; print L2;

g

Before we �nd while on the input, the top of the parsing stack has, by the inductive hypothesis, the in-
herited attribute S:next for the statement we are about to recognize. We shift the while, leaving

� � � [S:next] while

Then, we reduce � to M , executing the action associated with that reduction. It involves the computation
of L1, L2, C:true, and C:false, all of which are associated with that M on the stack.

� � � [S:next] whileM [L1; L2; C:true; C:false]

To compute C:false, we had only to reach into the stack, �nd S:next, and copy it.

We now have the inherited attributes of C sitting on top of the stack and are ready to recognize C. After
we do so, we push C onto the stack, the keyword do onto the stack, and reduce � to N .

The action for N requires us to �nd L1, which is at the level of M , the third below the top. That value
becomes S1:next, which we place on top of the stack and we are ready to recognize S1.

� � � [S:next] whileM [L1; L2; C:true; C:false]
C do N [S1:next]
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