A New Form of Redundancy

- Multivalued dependencies (MVD’s) express a condition among tuples of a relation that exists when the relation is trying to represent more than one many-many relationship.
- Then certain attributes become independent of one another, and their values must appear in all combinations.

Example

Drinkers(name, addr, phones, beersLiked)
- A drinker’s phones are independent of the beers they like.
- Thus, each of a drinker’s phones appears with each of the beers they like in all combinations.
- This repetition is unlike redundancy due to FD’s, of which name->addr is the only one.

Tuples Implied by Independence

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>phones</th>
<th>beersLiked</th>
</tr>
</thead>
<tbody>
<tr>
<td>sue</td>
<td>a</td>
<td>p1</td>
<td>b1</td>
</tr>
<tr>
<td>sue</td>
<td>a</td>
<td>p2</td>
<td>b2</td>
</tr>
<tr>
<td>sue</td>
<td>a</td>
<td>p2</td>
<td>b1</td>
</tr>
<tr>
<td>sue</td>
<td>a</td>
<td>p1</td>
<td>b2</td>
</tr>
</tbody>
</table>

Then these tuples must also be in the relation.

Definition of MVD

- A multivalued dependency (MVD) X->->Y is an assertion that if two tuples of a relation agree on all the attributes of X, then their components in the set of attributes Y may be swapped, and the result will be two tuples that are also in the relation.

Example

- The name-addr-phones-beersLiked example illustrated the MVD name->->phones and the MVD name ->-> beersLiked.
Picture of MVD $X \rightarrow \rightarrow Y$

- X is equal
- Y is exchange

MVD Rules

- Every FD is an MVD.
- If $X \rightarrow Y$, then swapping Y's between two tuples that agree on X doesn't change the tuples.
- Therefore, the "new" tuples are surely in the relation, and we know $X \rightarrow \rightarrow Y$.
- Complementation: If $X \rightarrow \rightarrow Y$ and Z is all the other attributes, then $X \rightarrow \rightarrow Z$.

Splitting Doesn't Hold

- Like FD's, we cannot generally split the left side of an MVD.
- But unlike FD's, we cannot split the right side either --- sometimes you have to leave several attributes on the right side.

Example, Continued

- Since the areaCode-phone combinations for a drinker are independent of the beersLiked-manf combinations, we expect that the following MVD's hold:
 - name $\rightarrow \rightarrow$ areaCode phone
 - name $\rightarrow \rightarrow$ beersLiked manf

Example

- Consider a drinkers relation:
 - Drinkers(name, areaCode, phone, beersLiked, manf)
- A drinker can have several phones, with the number divided between areaCode and phone (last 7 digits).
- A drinker can like several beers, each with its own manufacturer.

Example Data

Here is possible data satisfying these MVD's:

<table>
<thead>
<tr>
<th>name</th>
<th>areaCode</th>
<th>phone</th>
<th>beersLiked</th>
<th>manf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>650</td>
<td>555-1111</td>
<td>Bud</td>
<td>A.B.</td>
</tr>
<tr>
<td>Sue</td>
<td>650</td>
<td>555-1111</td>
<td>WickedAle</td>
<td>Pete's</td>
</tr>
<tr>
<td>Sue</td>
<td>415</td>
<td>555-9999</td>
<td>Bud</td>
<td>A.B.</td>
</tr>
<tr>
<td>Sue</td>
<td>415</td>
<td>555-9999</td>
<td>WickedAle</td>
<td>Pete's</td>
</tr>
</tbody>
</table>

But we cannot swap area codes or phones my themselves. That is, neither name $\rightarrow \rightarrow$ areaCode nor name $\rightarrow \rightarrow$ phone holds for this relation.
Fourth Normal Form

- The redundancy that comes from MVD’s is not removable by putting the database schema in BCNF.
- There is a stronger normal form, called 4NF, that (intuitively) treats MVD’s as FD’s when it comes to decomposition, but not when determining keys of the relation.

BCNF Versus 4NF

- Remember that every FD $X \rightarrow Y$ is also an MVD, $X \rightarrow\rightarrow Y$.
- Thus, if R is in 4NF, it is certainly in BCNF.
- Because any BCNF violation is a 4NF violation.
- But R could be in BCNF and not 4NF, because MVD’s are “invisible” to BCNF.

Example

Drinkers($\text{name, addr, phones, beersLiked}$)

FD: $\text{name} \rightarrow \text{addr}$
MVD’s: $\text{name} \rightarrow\rightarrow \text{phones}$ $\text{name} \rightarrow\rightarrow \text{beersLiked}$
- Key is \{name, phones, beersLiked\}.
- All dependencies violate 4NF.

4NF Definition

- A relation R is in 4NF if whenever $X \rightarrow\rightarrow Y$ is a nontrivial MVD, then X is a superkey.
- “Nontrivial means that:
 1. Y is not a subset of X
 2. X and Y are not, together, all the attributes.
- Note that the definition of “superkey” still depends on FD’s only.

Decomposition and 4NF

- If $X \rightarrow\rightarrow Y$ is a 4NF violation for relation R, we can decompose R using the same technique as for BCNF.
 1. XY is one of the decomposed relations.
 2. All but Y–X is the other.

Example, Continued

- Decompose using name -> addr:
 1. Drinkers1(name, addr)
 - In 4NF, only dependency is name -> addr.
 2. Drinkers2(name, phones, beersLiked)
 - Not in 4NF. MVD’s name ->-> phones and name ->-> beersLiked apply. No FD’s, so all three attributes form the key.
Example: Decompose Drinkers2

- Either MVD name ->> phones or
 name ->> beersLiked tells us to decompose to:
 - Drinkers3(name, phones)
 - Drinkers4(name, beersLiked)