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Logic As a Query Language

�If-then logical rules have been used in 
many systems.

� Important example: EII (Enterprise 
Information Integration).

�Nonrecursive rules are equivalent to the 
core relational algebra.

�Recursive rules extend relational 
algebra and appear in SQL-99.
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Example: Enterprise Integration

�Goal: integrated view of the menus at 
many bars Sells(bar, beer, price).

�Joe has data JoeMenu(beer, price).

�Approach 1: Describe Sells in terms of 
JoeMenu and other local data sources.

Sells(’Joe’’s Bar’, b, p) <- JoeMenu(b, p)
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EII – (2)

�Approach 2: Describe how JoeMenu
can be used as a view to help answer 
queries about Sells and other relations.

JoeMenu(b, p) <- Sells(’Joe’’s Bar’, b, p)

�More about information integration 
later.
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A Logical Rule

�Our first example of a rule uses the 
relations Frequents(drinker, bar), 
Likes(drinker, beer), and          
Sells(bar, beer, price).

�The rule is a query asking for “happy” 
drinkers --- those that frequent a bar 
that serves a beer that they like.
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Anatomy of a Rule

Happy(d) <- Frequents(d,bar) AND

Likes(d,beer) AND Sells(bar,beer,p)

Body = antecedent =
AND of subgoals.

Head = consequent,
a single subgoal

Read this
symbol “if”
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Subgoals Are Atoms

�An atom is a predicate, or relation 
name with variables or constants as 
arguments.

�The head is an atom; the body is the 
AND of one or more atoms.

�Convention: Predicates begin with a 
capital, variables begin with lower-case.
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Example: Atom

Sells(bar, beer, p)

The predicate
= name of a
relation

Arguments are
variables (or constants).
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Interpreting Rules

�A variable appearing in the head is 
distinguished ; otherwise it is 
nondistinguished.

�Rule meaning: The head is true for given 
values of the distinguished variables if 
there exist values of the nondistinguished 
variables that make all subgoals of the 
body true.



10

Example: Interpretation

Happy(d) <- Frequents(d,bar) AND

Likes(d,beer) AND Sells(bar,beer,p)

Distinguished
variable

Nondistinguished
variables

Interpretation: drinker d is happy if there exist a
bar, a beer, and a price p such that d frequents
the bar, likes the beer, and the bar sells the beer
at price p.
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Applying a Rule

�Approach 1: consider all combinations 
of values of the variables.

�If all subgoals are true, then evaluate 
the head.

�The resulting head is a tuple in the 
result.
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Example: Rule Evaluation

Happy(d) <- Frequents(d,bar) AND

Likes(d,beer) AND Sells(bar,beer,p)

FOR (each d, bar, beer, p)

IF (Frequents(d,bar), Likes(d,beer), and 
Sells(bar,beer,p) are all true)

add Happy(d) to the result

�Note: set semantics so add only once.
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A Glitch (Fixed Later)

�Relations are finite sets.

�We want rule evaluations to be finite 
and lead to finite results.

�“Unsafe” rules like P(x)<-Q(y) have 
infinite results, even if Q is finite.

�Even P(x)<-Q(x) requires examining an 
infinity of x-values.
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Applying a Rule – (2)

�Approach 2: For each subgoal, consider 
all tuples that make the subgoal true.

�If a selection of tuples define a single 
value for each variable, then add the 
head to the result.

�Leads to finite search for P(x)<-Q(x), 
but P(x)<-Q(y) is problematic.
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Example: Rule Evaluation – (2)

Happy(d) <- Frequents(d,bar) AND

Likes(d,beer) AND Sells(bar,beer,p)

FOR (each f in Frequents, i in Likes, and

s in Sells)

IF (f[1]=i[1] and f[2]=s[1] and 
i[2]=s[2])

add Happy(f[1]) to the result
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Arithmetic Subgoals

�In addition to relations as predicates, a 
predicate for a subgoal of the body can 
be an arithmetic comparison.

�We write arithmetic subgoals in the 
usual way, e.g., x < y.
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Example: Arithmetic

�A beer is “cheap” if there are at least 
two bars that sell it for under $2.

Cheap(beer) <- Sells(bar1,beer,p1) AND

Sells(bar2,beer,p2) AND p1 < 2.00

AND p2 < 2.00 AND bar1 <> bar2
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Negated Subgoals

�NOT in front of a subgoal negates its 
meaning.

�Example: Think of Arc(a,b) as arcs in a 
graph.
� S(x,y) says the graph is not transitive from 
x to y ; i.e., there is a path of length 2 
from x to y, but no arc from x to y.

S(x,y) <- Arc(x,z) AND Arc(z,y)

AND NOT Arc(x,y)
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Safe Rules

� A rule is safe if:

1. Each distinguished variable,

2. Each variable in an arithmetic subgoal, and

3. Each variable in a negated subgoal,

also appears in a nonnegated,

relational subgoal.

� Safe rules prevent infinite results.
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Example: Unsafe Rules

� Each of the following is unsafe and 
not allowed:

1. S(x) <- R(y)

2. S(x) <- R(y) AND NOT R(x)

3. S(x) <- R(y) AND x < y

� In each case, an infinity of x ’s can 
satisfy the rule, even if R is a finite 
relation.
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An Advantage of Safe Rules

�We can use “approach 2” to evaluation, 
where we select tuples from only the 
nonnegated, relational subgoals.

�The head, negated relational subgoals, 
and arithmetic subgoals thus have all 
their variables defined and can be 
evaluated.
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Datalog Programs

� Datalog program = collection of rules.

� In a program, predicates can be either

1. EDB = Extensional Database = stored 
table.

2. IDB = Intensional Database = relation 
defined by rules.

� Never both!  No EDB in heads.
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Evaluating Datalog Programs

�As long as there is no recursion, we can 
pick an order to evaluate the IDB 
predicates, so that all the predicates in 
the body of its rules have already been 
evaluated.

�If an IDB predicate has more than one 
rule, each rule contributes tuples to its 
relation. 
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Example: Datalog Program

�Using EDB Sells(bar, beer, price) and 
Beers(name, manf), find the 
manufacturers of beers Joe doesn’t sell.

JoeSells(b) <- Sells(’Joe’’s Bar’, b, p)

Answer(m) <- Beers(b,m)

AND NOT JoeSells(b)
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Example: Evaluation

�Step 1: Examine all Sells tuples with 
first component ’Joe’’s Bar’.

� Add the second component to JoeSells.

�Step 2: Examine all Beers tuples (b,m).

� If b is not in JoeSells, add m to Answer.
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Expressive Power of Datalog

�Without recursion, Datalog can express 
all and only the queries of core 
relational algebra.

� The same as SQL select-from-where, 
without aggregation and grouping.

�But with recursion, Datalog can express 
more than these languages.

�Yet still not Turing-complete.
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Recursive Example

�EDB: Par(c,p) = p is a parent of c.

�Generalized cousins: people with common 
ancestors one or more generations back:

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp) AND Par(y,yp)

AND Cousin(xp,yp)
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Definition of Recursion

�Form a dependency graph whose 
nodes = IDB predicates.

�Arc X ->Y if and only if there is a rule 
with X in the head and Y in the body.

�Cycle = recursion; no cycle = no 
recursion.
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Example: Dependency Graphs

Cousin

Sib

Answer

JoeSells

Recursive Nonrecursive
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Evaluating Recursive Rules

� The following works when there is no 
negation:

1. Start by assuming all IDB relations are 
empty.

2. Repeatedly evaluate the rules using the 
EDB and the previous IDB, to get a new 
IDB.

3. End when no change to IDB.
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The “Naïve” Evaluation Algorithm

Start:
IDB = 0

Apply rules
to IDB, EDB

Change
to IDB?

noyes
done
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Seminaive Evaluation

�Since the EDB never changes, on each 
round we only get new IDB tuples if we 
use at least one IDB tuple that was 
obtained on the previous round.

�Saves work; lets us avoid rediscovering 
most known facts.

� A fact could still be derived in a second 
way.
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Example: Evaluation of Cousin

�We’ll proceed in rounds to infer Sib facts 
(red) and Cousin facts (green).

�Remember the rules:

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp) AND Par(y,yp)

AND Cousin(xp,yp)
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Par Data: Parent Above Child

a d

b c e

f g h

j k i

Round 1

Round 2

Round 4

Round 3

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y

Cousin(x,y) <- Par(x,xp) AND Par(y,yp)

AND Cousin(xp,yp)

Cousin(x,y) <- Sib(x,y)
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SQL-99 Recursion

�Datalog recursion has inspired the 
addition of recursion to the SQL-99 
standard.

�Tricky, because SQL allows negation 
grouping-and-aggregation, which 
interact with recursion in strange ways.
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Form of SQL Recursive Queries

WITH

<stuff that looks like Datalog rules>

<a SQL query about EDB, IDB>

“Datalog rule” =

[RECURSIVE] <name>(<arguments>)

AS <query>
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Example: SQL Recursion – (1)

�Find Sally’s cousins, using SQL like the 
recursive Datalog example.

�Par(child,parent) is the EDB.

WITH Sib(x,y) AS

SELECT p1.child, p2.child

FROM Par p1, Par p2

WHERE p1.parent = p2.parent AND

p1.child <> p2.child;

Like Sib(x,y) <-
Par(x,p) AND
Par(y,p) AND
x <> y
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Example: SQL Recursion – (2)

WITH …

RECURSIVE Cousin(x,y) AS

(SELECT * FROM Sib)

UNION

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin

WHERE p1.parent = Cousin.x AND

p2.parent = Cousin.y);

Reflects Cousin(x,y) <-
Sib(x,y)

Reflects
Cousin(x,y) <-
Par(x,xp) AND
Par(y,yp) AND
Cousin(xp,yp)

Required – Cousin
is recursive
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Example: SQL Recursion – (3)

�With those definitions, we can add the 
query, which is about the virtual view 
Cousin(x,y):

SELECT y

FROM Cousin

WHERE x = ’Sally’;
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Legal SQL Recursion

�It is possible to define SQL recursions 
that do not have a meaning.

�The SQL standard restricts recursion so 
there is a meaning.

�And that meaning can be obtained by 
seminaïve evaluation.
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Example: Meaningless Recursion

�EDB: P(x) = {(1)}.

�IDB: Q(x) <- P(x) AND NOT Q(x).

�Is (1) in Q(x)?

� If so, the recursive rule says it is not.

� If not, the recursive rule says it is.
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Plan to Explain Legal SQL 
Recursion

1. Define “monotone” recursions.

2. Define a “stratum graph” to represent 
the connections among subqueries.

3. Define proper SQL recursions in terms 
of the stratum graph.
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Monotonicity

�If relation P is a function of relation Q
(and perhaps other relations), we say P
is monotone in Q if inserting tuples 
into Q cannot cause any tuple to be 
deleted from P.

�Examples:
� P = Q ∪ R.

� P = σa =10(Q ).
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Example: Nonmonotonicity

SELECT AVG(price)

FROM Sells

WHERE bar = ’Joe’’s Bar’;

is not monotone in Sells.

�Inserting a Joe’s-Bar tuple into Sells 
usually changes the average price and 
thus deletes the old average price.
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Stratum Graph

� Nodes =

1. IDB relations declared in WITH clause.

2. Subqueries in the body of the “rules.”

� Includes subqueries at any level of nesting.
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Stratum Graph – (2)

� Arcs P ->Q :

1. P is a rule head and Q is a relation in the 
FROM list (not of a subquery).

2. P is a rule head and Q is an immediate 
subquery of that rule.

3. P is a subquery, and Q is a relation in its FROM 
or an immediate subquery (like 1 and 2).

� Put “–” on an arc if P is not monotone in Q.
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Stratified SQL

�A SQL recursion is stratified if there is 
a finite bound on the number of – signs 
along any path in its stratum graph.

� Including paths with cycles.

�Legal SQL recursion = recursion with a 
stratified stratum graph. 
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Example: Stratum Graph

�In our Cousin example, the structure of 
the rules was:

Sib = … 

Cousin = ( … FROM Sib )

UNION

( … FROM Cousin … )

Subquery S1

Subquery S2
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The Graph

Sib

S2S1

Cousin

No “–” at all,
so surely
stratified.
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Nonmonotone Example

�Change the UNION in the Cousin 
example to EXCEPT:

Sib = … 

Cousin = ( … FROM Sib )

EXCEPT

( … FROM Cousin … )

Subquery S1

Subquery S2

Inserting a tuple into S2Can delete a tuple from Cousin
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The Graph

Sib

S2S1

Cousin

_

An infinite number
of –’s exist on
cycles involving
Cousin and S2.


