Information Integration

Mediators
Warehousing
Answering Queries Using Views
Example Applications

1. Enterprise Information Integration: making separate DB’s, all owned by one company, work together.
2. Scientific DB’s, e.g., genome DB’s.
3. Catalog integration: combining product information from all your suppliers.
Challenges

1. *Legacy databases*: DB’s get used for many applications.
 - You can’t change its structure for the sake of one application, because it will cause others to break.

2. *Incompatibilities*: Two, supposedly similar databases, will mismatch in many ways.
Examples: Incompatibilities

- **Lexical**: `addr` in one DB is `address` in another.
- **Value mismatches**: Is a “red” car the same color in each DB? Is 20 degrees Fahrenheit or Centigrade?
- **Semantic**: Are “employees” in each database the same? What about consultants? Retirees? Contractors?
What Do You Do About It?

- Grubby, handwritten translation at each interface.
 - Some research on automatic inference of relationships.
- Wrapper (aka “adapter”) translates incoming queries and outgoing answers.
Integration Architectures

1. *Federation*: everybody talks directly to everyone else.

2. *Warehouse*: Sources are translated from their local schema to a global schema and copied to a central DB.

3. *Mediator*: Virtual warehouse --- turns a user query into a sequence of source queries.
Federations
Warehouse Diagram

Warehouse

Wrapper

Source 1

Wrapper

Source 2
A Mediator

User query → Mediator

Mediator ↓ Query

Query → Wrapper

Wrapper ↓ Result

Result → Source 1

Result → Wrapper

Wrapper ↓ Query

Query → Source 2

Result → Source 2
Two Mediation Approaches

1. **Global as View**: Mediator processes queries into steps executed at sources.

2. **Local as View**: Sources are defined in terms of global relations; mediator finds all ways to build query from views.
Example: Catalog Integration

- Suppose Dell wants to buy a bus and a disk that share the same protocol.

- **Global schema**:

 \[\begin{align*}
 \text{Buses}(\text{manf, model, protocol}) \\
 \text{Disks}(\text{manf, model, protocol})
 \end{align*} \]

- **Local schemas**: each bus or disk manufacturer has a \((\text{model, protocol})\) relation --- manf is implied.
Example: Global-as-View

- Mediator might start by querying each bus manufacturer for model-protocol pairs.
 - The wrapper would turn them into triples by adding the manf component.

- Then, for each protocol returned, mediator queries disk manufacturers for disks with that protocol.
 - Again, wrapper adds manf component.
Example: Local-as-View

Sources’ capabilities are defined in terms of the global predicates.

- E.g., Quantum’s disk database could be defined by QuantumView(M,P) = Disks(‘Quantum’,M,P).

Mediator discovers all combinations of a bus and disk “view,” equijoin on the protocol components.
A Harder LAV Case

- The mediator supports a \(\text{par}(c,p) \) relation (which doesn’t really exist, but can be queried).
- Sources can support views that are complex expressions of \(\text{par} \).
- A logic is needed to work with queries and view definitions.
 - Datalog is a good choice.
Example: Some Local Views

▸ Source 1 provides some parent facts.
 \[V_1(c,p) \leftarrow \text{par}(c,p) \]

▸ Source 2, run by the “Society of Grandparents,” supports only grandparent facts.
 \[V_2(c,g) \leftarrow \text{par}(c,p) \text{ AND } \text{par}(p,g) \]
Example – (2)

Query (great-grandparents):
\[\text{ggp}(c,x) \leftarrow \text{par}(c,u) \text{ AND par}(u,v) \text{ AND par}(v,x) \]

How can the sources provide solutions that provide all available answers?
Example – (3)

Sol1(c,x) <- V1(c,u) AND V1(u,v) AND V1(u,x)
Sol2(c,x) <- V1(c,u) AND V2(u,x)
Sol3(c,x) <- V2(c,v) AND V1(v,x)

◆ No other queries involving the views can provide more ggp facts.
◆ Deep theory needed to explain.
Comparison: LAV Vs. GAV

- GAV is simpler to implement.
 - Lets you control what the mediator does.
- LAV is more extensible.
 - Add a new source simply by defining what it contributes as a view of the global schema.
 - Can get some use from grandparent info., even if par(c,p) is the only mediator data.
Course Plug

◆ In the Spring 07-08, Alon Halevy (Google) is teaching CS345C Information Integration.

◆ It will cover this technology and many others.