Problem Session 1

Products and Joins

Outline

-Announcements
Synopsis of Last Week
-Products and Joins - formal expressions, examples
Products and Joins - sample problems
-Q\&A

Announcements

- Make sure you're on the CS145 Coursework site by today
Gradiance - one due Mon 10/8, two due Wed 10/10
-Challenge Problems \#1 due Mon 10/8
- Correction: \#2 - can use union, intersection, difference as well
- Submit directly through Coursework (text in Assignments preferred, though .doc or .pdf in Drop Box acceptable)
- Always email your questions to the staff list!

Synopsis of Last Week

- Data model: general conceptual way of structuring data
- Relational model = tables (e.g., SQL)
- Semistructured model = trees/graphs (e.g., XML)
- Schema: structure of a particular relation or database under a certain data model
- XML: language for semistructured model. DTD describes the structure.
Relational Algebra: algebra operating on relations. Prelude to SQL.
SQL: select-from-where

Products and Joins

- Product: R1 X R2
$=\{(\mathrm{t} 1, \mathrm{t} 2): \mathrm{t} 1$ in R 1 and t 2 in R 2$\}$
\rightarrow Theta Join: $\mathrm{R} 1 \bowtie_{C} \mathrm{R} 2=\sigma_{C}(\mathrm{R} 1 \times \mathrm{R} 2)$
\checkmark Natural Join: R1 \bowtie R2
$=\Pi_{\text {schema(R1) SETUNION schema(R2) }}$
$\left(\mathrm{R} 1 \bowtie_{R 1 . A=R 2 . A}\right.$ and $R 1 . B=R 2 . B$ and... R 2$)$

Example: Product

R1(

A,	B
1	2
3	4

R2(

B_{1}	C
5	6
4	8
2	10

R3(R3 : = R1 X R2			
	A,	R1.B,	R2.B	C
	1	2	5	6
	1	2	4	8
	1	2	2	10
	3	4	5	6
	3	4	4	8
	3	4	2	10

Example: Theta Join

$\mathrm{R} 3:=\mathrm{R} 1 \bowtie_{R 1 . B=R 2 . B} \mathrm{R} 2$

R3(| A, | $R 1 . B$ | $R 2 . B$, | C |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 5 | 6 |
| 1 | 2 | 4 | 8 |
| 1 | 2 | 2 | 10 |
| 3 | 4 | 5 | 6 |
| 3 | 4 | 4 | 8 |
| 3 | 4 | 2 | 10 |

Example: Natural Join

R1(

A,	B
1	2
3	4

R2 $\left(\begin{array}{|l|l|}\hline \mathrm{B}_{1} & \mathrm{C}) \\ \hline 5 & 6 \\ \hline & \\ \hline & 8 \\ 2 & 10 \\ \hline\end{array}\right.$

	R3 : = R1 \downarrow R2			
R3(A,	R1.B,	R2.B	C
	1	2		6
	1	2	4	8
	1	2	2	10
	3	4	5	6
	3	4	4	8
	-3	4	2	10

Sample Problem \#1

Drinkers(name, addr, phone) Likes(drinker, beer)

Find names and addresses of all drinkers who like Bud.

Sample Problem \#1

Drinkers(name, addr, phone) Likes(drinker, beer)

- Method 1: filter, then concatenate
- Question: how would you write this in SQL?
- One Possible Answer: SELECT name, addr FROM Drinkers, (SELECT * FROM Likes WHERE beer = 'Bud') WHERE name = drinker;

Find names and addresses of all drinkers who like Bud.

Sample Problem \#1

Drinkers(name, addr, phone) Likes(drinker, beer)

- Method 2: concatenate, then filter
- Question: how would you write this in SQL?
- One Possible Answer: SELECT name, addr FROM Drinkers, Likes WHERE name = drinker AND beer = 'Bud';

Find names and addresses of all drinkers who like Bud.

Sample Problem \#2

Drinkers(name, addr, phone)
Find names of all pairs of drinkers who live at the same address.

Sample Problem \#2

Drinkers(name, addr, phone)

- Comparing drinkers with other drinkers, so reuse and rename
- Natural join contains tuples (name, name1, addr, phone, phone1) such that both drinkers live at this address
- Select condition ensures no duplicates
- Exercise: SQL translation?

Find names of all pairs of drinkers who live at the same address.

Q\&A

-What's the difference between the relational and semistructured models?

- See first lecture. Basically, relational = rigid tables and semistructured = flexible graphs.
- The semistructured model is supposed to be flexible, but can't you represent everything in relational algebra if you plan far enough ahead?
- Well, in reality there are a lot of things that you can't possibly plan ahead for, so you need the semistructured model for that.

