14

Part 1

Relational Database
Modeling

15

Chapter 2

The Relational Model of
Data

This chapter introduces the most important model of data: the two-dimensional
table, or “relation.” We begin with an overview of data models in general. We
give the basic terminology for relations and show how the model can be used to
represent typical forms of data. We then introduce a portion of the language
SQL — that part used to declare relations and their structure. The chapter
closes with an introduction to relational algebra. We see how this notation
serves as both a query language — the aspect of a data model that enables us
to ask questions about the data — and as a constraint language — the aspect
of a data model that lets us restrict the data in the database in various ways.

2.1 An Overview of Data Models

The notion of a “data model” is one of the most fundamental in the study of
database systems. In this brief summary of the concept, we define some basic
terminology and mention the most important data models.

2.1.1 What is a Data Model?

A data model is a notation for describing data or information. The description
generally consists of three parts:

1. Structure of the data. You may be familiar with tools in programming
languages such as C or Java for describing the structure of the data used by
a program: arrays and structures (“structs”) or objects, for example. The
data structures used to implement data in the computer are sometimes
referred to, in discussions of database systems, as a physical data model,
although in fact they are far removed from the gates and electrons that
truly serve as the physical implementation of the data. In the database

17

18 CHAPTER 2. THE RELATIONAL MODEL OF DATA

world, data models are at a somewhat higher level than data structures,
and are sometimes referred to as a conceptual model to emphasize the
difference in level. We shall see examples shortly.

2. Operations on the data. In programming languages, operations on the
data are generally anything that can be programmed. In database data
models, there is usually a limited set of operations that can be performed.
We are generally allowed to perform a limited set of gqueries (operations
that retrieve information) and modifications (operations that change the
database). This limitation is not a weakness, but a strength. By limiting
operations, it is possible for programmers to describe database operations
at a very high level, yet have the database management system implement
the operations efficiently. In comparison, it is generally impossible to
optimize programs in conventional languages like C, to the extent that an
inefficient algorithm (e.g., bubblesort) is replaced by a more efficient one
(e.g., quicksort).

3. Constraints on the data. Database data models usually have a way to
describe limitations on what the data can be. These constraints can range
from the simple (e.g., “a day of the week is an integer between 1 and 7”
or “a movie has at most one title”) to some very complex limitations that
we shall discuss in Sections 7.4 and 7.5.

2.1.2 Important Data Models

Today, the two data models of preeminent importance for database systems are:

1. The relational model, including object-relational extensions.

2. The semistructured-data model, including XML and related standards.

The first, which is present in all commercial database management systems,
is the subject of this chapter. The semistructured model, of which XML is
the primary manifestation, is an added feature of most relational DBMS’s, and
appears in a number of other contexts as well. We turn to this data model
starting in Chapter 11.

2.1.3 The Relational Model in Brief

The relational model is based on tables, of which Fig. 2.1 is an example. We
shall discuss this model beginning in Section 2.2. This relation, or table, de-
scribes movies: their title, the year in which they were made, their length in
minutes, and the genre of the movie. We show three particular movies, but you
should imagine that there are many more rows to this table — one row for each
movie ever made, perhaps.

The structure portion of the relational model might appear to resemble an
array of structs in C, where the column headers are the field names, and each

2.1. AN OVERVIEW OF DATA MODELS 19

title | year | length | genre
Gone With the Wind | 1939 | 231 drama
Star Wars 1977 | 124 sciFi
Wayne’s World 1992 | 95 comedy

Figure 2.1: An example relation

of the rows represent the values of one struct in the array. However, it must be
emphasized that this physical implementation is only one possible way the table
could be implemented in physical data structures. In fact, it is not the normal
way to represent relations, and a large portion of the study of database systems
addresses the right ways to implement such tables. Much of the distinction
comes from the scale of relations — they are not normally implemented as
main-memory structures, and their proper physical implementation must take
into account the need to access relations of very large size that are resident on
disk.

The operations normally associated with the relational model form the “re-
lational algebra,” which we discuss beginning in Section 2.4. These operations
are table-oriented. As an example, we can ask for all those rows of a relation
that have a certain value in a certain column. For example, we can ask of the
table in Fig. 2.1 for all the rows where the genre is “comedy.”

The constraint portion of the relational data model will be touched upon
briefly in Section 2.5 and covered in more detail in Chapter 7. However, as a
brief sample of what kinds of constraints are generally used, we could decide
that there is a fixed list of genres for movies, and that the last column of every
row must have a value that is on this list. Or we might decide (incorrectly,
it turns out) that there could never be two movies with the same title, and
constrain the table so that no two rows could have the same string in the first
component.

2.1.4 The Semistructured Model in Brief

Semistructured data resembles trees or graphs, rather than tables or arrays.
The principal manifestation of this viewpoint today is XML, a way to represent
data by hierarchically nested tagged elements. The tags, similar to those used
in HTML, define the role played by different pieces of data, much as the column
headers do in the relational model. For example, the same data as in Fig. 2.1
might appear in an XML “document” as in Fig. 2.2.

The operations on semistructured data usually involve following paths in
the implied tree from an element to one or more of its nested subelements, then
to subelements nested within those, and so on. For example, starting at the
outer <Movies> element (the entire document in Fig. 2.2), we might move to
each of its nested <Movie> elements, each delimited by the tag <Movie> and
matching </Movie> tag, and from each <Movie> element to its nested <Genre>

20 CHAPTER 2. THE RELATIONAL MODEL OF DATA

<Movies>
<Movie title="Gone With the Wind">
<Year>1939</Year>
<Length>231</Length>
<Genre>drama</Genre>
</Movie>
<Movie title="Star Wars">
<Year>1977</Year>
<Length>124</Length>
<Genre>sciFi</Genre>
</Movie>
<Movie title="Wayne’s World">
<Year>1992</Year>
<Length>95</Length>
<Genre>comedy</Genre>
</Movie>
</Movies>

Figure 2.2: Movie data as XML

element, to see which movies belong to the “comedy” genre.

Constraints on the structure of data in this model often involve the data
type of values associated with a tag. For instance, are the values associated
with the <Length> tag integers or can they be arbitrary character strings?
Other constraints determine which tags can appear nested within which other
tags. For example, must each <Movie> element have a <Length> element nested
within it? What other tags, besides those shown in Fig. 2.2 might be used within
a <Movie> element? Can there be more than one genre for a movie? These and
other matters will be taken up in Section 11.2.

2.1.5 Other Data Models

There are many other models that are, or have been, associated with DBMS’s.
A modern trend is to add object-oriented features to the relational model. There
are two effects of object-orientation on relations:

1. Values can have structure, rather than being elementary types such as
integer or strings, as they were in Fig. 2.1.

2. Relations can have associated methods.

In a sense, these extensions, called the object-relational model, are analogous to
the way structs in C were extended to objects in C++. We shall introduce the
object-relational model in Section 10.3.

2.2. BASICS OF THE RELATIONAL MODEL 21

There are even database models of the purely object-oriented kind. In these,
the relation is no longer the principal data-structuring concept, but becomes
only one option among many structures. We discuss an object-oriented database
model in Section 4.9.

There are several other models that were used in some of the earlier DBMS’s,
but that have now fallen out of use. The hierarchical model was, like semistruc-
tured data, a tree-oriented model. Its drawback was that unlike more modern
models, it really operated at the physical level, which made it impossible for
programmers to write code at a conveniently high level. Another such model
was the network model, which was a graph-oriented, physical-level model. In
truth, both the hierarchical model and today’s semistructured models, allow
full graph structures, and do not limit us strictly to trees. However, the gener-
ality of graphs was built directly into the network model, rather than favoring
trees as these other models do.

2.1.6 Comparison of Modeling Approaches

Even from our brief example, it appears that semistructured models have more
flexibility than relations. This difference becomes even more apparent when
we discuss, as we shall, how full graph structures are embedded into tree-like,
semistructured models. Nevertheless, the relational model is still preferred in
DBMS?’s, and we should understand why. A brief argument follows.

Because databases are large, efficiency of access to data and efficiency of
modifications to that data are of great importance. Also very important is ease
of use — the productivity of programmers who use the data. Surprisingly, both
goals can be achieved with a model, particularly the relational model, that:

1. Provides a simple, limited approach to structuring data, yet is reasonably
versatile, so anything can be modeled.

2. Provides a limited, yet useful, collection of operations on data.

Together, these limitations turn into features. They allow us to implement
languages, such as SQL, that enable the programmer to express their wishes at
a very high level. A few lines of SQL can do the work of thousands of lines of
C, or hundreds of lines of the code that had to be written to access data under
earlier models such as network or hierarchical. Yet the short SQL programs,
because they use a strongly limited sets of operations, can be optimized to run
as fast, or faster than the code written in alternative languages.

2.2 Basics of the Relational Model

The relational model gives us a single way to represent data: as a two-dimen-
sional table called a relation. Figure 2.1, which we copy here as Fig. 2.3, is an
example of a relation, which we shall call Movies. The rows each represent a

22 CHAPTER 2. THE RELATIONAL MODEL OF DATA

movie, and the columns each represent a property of movies. In this section,
we shall introduce the most important terminology regarding relations, and
illustrate them with the Movies relation.

title | year | length | genre
Gone With the Wind | 1939 | 231 drama
Star Wars 1977 | 124 sciFi
Wayne’s World 1992 | 95 comedy

Figure 2.3: The relation Movies

2.2.1 Attributes

The columns of a relation are named by attributes; in Fig. 2.3 the attributes are
title, year, length, and genre. Attributes appear at the tops of the columns.
Usually, an attribute describes the meaning of entries in the column below. For
instance, the column with attribute length holds the length, in minutes, of
each movie.

2.2.2 Schemas

The name of a relation and the set of attributes for a relation is called the
schema for that relation. We show the schema for the relation with the relation
name followed by a parenthesized list of its attributes. Thus, the schema for
relation Movies of Fig. 2.3 is

Movies(title, year, length, genre)

The attributes in a relation schema are a set, not a list. However, in order to
talk about relations we often must specify a “standard” order for the attributes.
Thus, whenever we introduce a relation schema with a list of attributes, as
above, we shall take this ordering to be the standard order whenever we display
the relation or any of its rows.

In the relational model, a database consists of one or more relations. The
set of schemas for the relations of a database is called a relational database
schema, or just a database schema.

2.2.3 Tuples

The rows of a relation, other than the header row containing the attribute
names, are called tuples. A tuple has one component for each attribute of
the relation. For instance, the first of the three tuples in Fig. 2.3 has the
four components Gone With the Wind, 1939, 231, and drama for attributes
title, year, length, and genre, respectively. When we wish to write a tuple

2.2. BASICS OF THE RELATIONAL MODEL 23

Conventions for Relations and Attributes

We shall generally follow the convention that relation names begin with a
capital letter, and attribute names begin with a lower-case letter. However,
later in this book we shall talk of relations in the abstract, where the names
of attributes do not matter. In that case, we shall use single capital letters
for both relations and attributes, e.g., R(A, B,C) for a generic relation
with three attributes.

in isolation, not as part of a relation, we normally use commas to separate
components, and we use parentheses to surround the tuple. For example,

(Gone With the Wind, 1939, 231, drama)

is the first tuple of Fig. 2.3. Notice that when a tuple appears in isolation, the
attributes do not appear, so some indication of the relation to which the tuple
belongs must be given. We shall always use the order in which the attributes
were listed in the relation schema.

2.2.4 Domains

The relational model requires that each component of each tuple be atomic;
that is, it must be of some elementary type such as integer or string. It is not
permitted for a value to be a record structure, set, list, array, or any other type
that reasonably can have its values broken into smaller components.

It is further assumed that associated with each attribute of a relation is a
domain, that is, a particular elementary type. The components of any tuple of
the relation must have, in each component, a value that belongs to the domain of
the corresponding column. For example, tuples of the Movies relation of Fig. 2.3
must have a first component that is a string, second and third components that
are integers, and a fourth component whose value is a string.

It is possible to include the domain, or data type, for each attribute in
a relation schema. We shall do so by appending a colon and a type after
attributes. For example, we could represent the schema for the Movies relation
as:

Movies(title:string, year:integer, length:integer, genre:string)

2.2.5 Equivalent Representations of a Relation

Relations are sets of tuples, not lists of tuples. Thus the order in which the
tuples of a relation are presented is immaterial. For example, we can list the
three tuples of Fig. 2.3 in any of their six possible orders, and the relation is
“the same” as Fig. 2.3.

24 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Moreover, we can reorder the attributes of the relation as we choose, without
changing the relation. However, when we reorder the relation schema, we must
be careful to remember that the attributes are column headers. Thus, when we
change the order of the attributes, we also change the order of their columns.
When the columns move, the components of tuples change their order as well.
The result is that each tuple has its components permuted in the same way as
the attributes are permuted.

For example, Fig. 2.4 shows one of the many relations that could be obtained
from Fig. 2.3 by permuting rows and columns. These two relations are consid-
ered “the same.” More precisely, these two tables are different presentations of
the same relation.

year | genre | title | length
1977 | sciFi Star Wars 124
1992 | comedy | Wayne’s World 95

1939 | drama Gone With the Wind | 231

Figure 2.4: Another presentation of the relation Movies

2.2.6 Relation Instances

A relation about movies is not static; rather, relations change over time. We
expect to insert tuples for new movies, as these appear. We also expect changes
to existing tuples if we get revised or corrected information about a movie, and
perhaps deletion of tuples for movies that are expelled from the database for
some reason.

It is less common for the schema of a relation to change. However, there are
situations where we might want to add or delete attributes. Schema changes,
while possible in commercial database systems, can be very expensive, because
each of perhaps millions of tuples needs to be rewritten to add or delete com-
ponents. Also, if we add an attribute, it may be difficult or even impossible to
generate appropriate values for the new component in the existing tuples.

We shall call a set of tuples for a given relation an instance of that relation.
For example, the three tuples shown in Fig. 2.3 form an instance of relation
Movies. Presumably, the relation Movies has changed over time and will con-
tinue to change over time. For instance, in 1990, Movies did not contain the
tuple for Wayne’s World. However, a conventional database system maintains
only one version of any relation: the set of tuples that are in the relation “now.”
This instance of the relation is called the current instance.!

IDatabases that maintain historical versions of data as it existed in past times are called
temporal databases.

2.2. BASICS OF THE RELATIONAL MODEL 25

2.2.7 Keys of Relations

There are many constraints on relations that the relational model allows us to
place on database schemas. We shall defer much of the discussion of constraints
until Chapter 7. However, one kind of constraint is so fundamental that we shall
introduce it here: key constraints. A set of attributes forms a key for a relation
if we do not allow two tuples in a relation instance to have the same values in
all the attributes of the key.

Example 2.1: We can declare that the relation Movies has a key consisting
of the two attributes title and year. That is, we don’t believe there could
ever be two movies that had both the same title and the same year. Notice
that title by itself does not form a key, since sometimes “remakes” of a movie
appear. For example, there are three movies named King Kong, each made in
a different year. It should also be obvious that year by itself is not a key, since
there are usually many movies made in the same year. 0O

We indicate the attribute or attributes that form a key for a relation by
underlining the key attribute(s). For instance, the Movies relation could have
its schema written as:

Movies(title, year, length, genre)

Remember that the statement that a set of attributes forms a key for a
relation is a statement about all possible instances of the relation, not a state-
ment about a single instance. For example, looking only at the tiny relation of
Fig. 2.3, we might imagine that genre by itself forms a key, since we do not see
two tuples that agree on the value of their genre components. However, we can
easily imagine that if the relation instance contained more movies, there would
be many dramas, many comedies, and so on. Thus, there would be distinct
tuples that agreed on the genre component. As a consequence, it would be
incorrect to assert that genre is a key for the relation Movies.

While we might be sure that title and year can serve as a key for Movies,
many real-world databases use artificial keys, doubting that it is safe to make
any assumption about the values of attributes outside their control. For ex-
ample, companies generally assign employee ID’s to all employees, and these
ID’s are carefully chosen to be unique numbers. One purpose of these ID’s is
to make sure that in the company database each employee can be distinguished
from all others, even if there are several employees with the same name. Thus,
the employee-ID attribute can serve as a key for a relation about employees.

In US corporations, it is normal for every employee to have a Social-Security
number. If the database has an attribute that is the Social-Security number,
then this attribute can also serve as a key for employees. Note that there is
nothing wrong with there being several choices of key, as there would be for
employees having both employee ID’s and Social-Security numbers.

The idea of creating an attribute whose purpose is to serve as a key is quite
widespread. In addition to employee ID’s, we find student ID’s to distinguish

26 CHAPTER 2. THE RELATIONAL MODEL OF DATA

students in a university. We find drivers’ license numbers and automobile reg-
istration numbers to distinguish drivers and automobiles, respectively. You
undoubtedly can find more examples of attributes created for the primary pur-
pose of serving as keys.

Movies(
title:string,
year:integer,
length:integer,
genre:string,
studioName:string,
producerC#:integer

)

MovieStar(
name:string,
address:string,
gender:char,
birthdate:date

)

StarsIn(
movieTitle:string,
movieYear:integer,
starName:string

)

MovieExec(
name:string,
address:string,
cert#:integer,
netWorth:integer

)

Studio(
name:string,
address:string,
presC#:integer

)

Figure 2.5: Example database schema about movies

2.2.8 An Example Database Schema

We shall close this section with an example of a complete database schema.
The topic is movies, and it builds on the relation Movies that has appeared so
far in examples. The database schema, is shown in Fig. 2.5. Here are the things
we need to know to understand the intention of this schema.

2.2. BASICS OF THE RELATIONAL MODEL 27

Movies

This relation is an extension of the example relation we have been discussing
so far. Remember that its key is title and year together. We have added
two new attributes; studioName tells us the studio that owns the movie, and
producerC# is an integer that represents the producer of the movie in a way
that we shall discuss when we talk about the relation MovieExec below.

MovieStar

This relation tells us something about stars. The key is name, the name of the
movie star. It is not usual to assume names of persons are unique and therefore
suitable as a key. However, movie stars are different; one would never take a
name that some other movie star had used. Thus, we shall use the convenient
fiction that movie-star names are unique. A more conventional approach would
be to invent a serial number of some sort, like social-security numbers, so that
we could assign each individual a unique number and use that attribute as the
key. We take that approach for movie executives, as we shall see. Another
interesting point about the MovieStar relation is that we see two new data
types. The gender can be a single character, M or F. Also, birthdate is of type
“date,” which might be a character string of a special form.

StarsIn

This relation connects movies to the stars of that movie, and likewise connects a
star to the movies in which they appeared. Notice that movies are represented
by the key for Movies — the title and year — although we have chosen differ-
ent attribute names to emphasize that attributes movieTitle and movieYear
represent the movie. Likewise, stars are represented by the key for MovieStar,
with the attribute called starName. Finally, notice that all three attributes
are necessary to form a key. It is perfectly reasonable to suppose that relation
StarsIn could have two distinct tuples that agree in any two of the three at-
tributes. For instance, a star might appear in two movies in one year, giving
rise to two tuples that agreed in movieYear and starName, but disagreed in
movieTitle.

MovieExec

This relation tells us about movie executives. It contains their name, address,
and networth as data about the executive. However, for a key we have invented
“certificate numbers” for all movie executives, including producers (as appear
in the relation Movies) and studio presidents (as appear in the relation Studio,
below). These are integers; a different one is assigned to each executive.

28 CHAPTER 2. THE RELATIONAL MODEL OF DATA

acctNo | type | balance

12345 | savings 12000
23456 | checking | 1000
34567 | savings 25

The relation Accounts

firstName | lastName | idNo | account
Robbie Banks 901-222 | 12345
Lena Hand 805-333 | 12345
Lena Hand 805-333 | 23456

The relation Customers

Figure 2.6: Two relations of a banking database

Studio

This relation tells about movie studios. We rely on no two studios having the
same name, and therefore use name as the key. The other attributes are the
address of the studio and the certificate number for the president of the studio.
We assume that the studio president is surely a movie executive and therefore
appears in MovieExec.

2.2.9 Exercises for Section 2.2

Exercise 2.2.1: In Fig. 2.6 are instances of two relations that might constitute
part of a banking database. Indicate the following:

a) The attributes of each relation.

b) The tuples of each relation.

¢) The components of one tuple from each relation.

e) The database schema.

f

)
)
)

d) The relation schema for each relation.
)
) A suitable domain for each attribute.
)

g) Another equivalent way to present each relation.

2.3. DEFINING A RELATION SCHEMA IN SQL 29

Exercise 2.2.2: In Section 2.2.7 we suggested that there are many examples
of attributes that are created for the purpose of serving as keys of relations.
Give some additional examples.

Exercise 2.2.3: How many different ways (considering orders of tuples and
attributes) are there to represent a relation instance if that instance has:

a) Three attributes and three tuples, like the relation Accounts of Fig. 2.67
b) Four attributes and five tuples?

c¢) n attributes and m tuples?

2.3 Defining a Relation Schema in SQL

SQL (pronounced “sequel”) is the principal language used to describe and ma-
nipulate relational databases. There is a current standard for SQL, called SQL-
99. Most commercial database management systems implement something sim-
ilar, but not identical to, the standard. There are two aspects to SQL:

1. The Data-Definition sublanguage for declaring database schemas and

2. The Data-Manipulation sublanguage for querying (asking questions a-
bout) databases and for modifying the database.

The distinction between these two sublanguages is found in most languages;
e.g., C or Java have portions that declare data and other portions that are
executable code. These correspond to data-definition and data-manipulation,
respectively.

In this section we shall begin a discussion of the data-definition portion
of SQL. There is more on the subject in Chapter 7, especially the matter of
constraints on data. The data-manipulation portion is covered extensively in
Chapter 6.

2.3.1 Relations in SQL

SQL makes a distinction between three kinds of relations:

1. Stored relations, which are called tables. These are the kind of relation
we deal with ordinarily — a relation that exists in the database and that
can be modified by changing its tuples, as well as queried.

2. Views, which are relations defined by a computation. These relations are
not stored, but are constructed, in whole or in part, when needed. They
are the subject of Section 8.1.

30 CHAPTER 2. THE RELATIONAL MODEL OF DATA

3. Temporary tables, which are constructed by the SQL language processor
when it performs its job of executing queries and data modifications.
These relations are then thrown away and not stored.

In this section, we shall learn how to declare tables. We do not treat the dec-
laration and definition of views here, and temporary tables are never declared.
The SQL CREATE TABLE statement declares the schema, for a stored relation. It
gives a name for the table, its attributes, and their data types. It also allows
us to declare a key, or even several keys, for a relation. There are many other
features to the CREATE TABLE statement, including many forms of constraints
that can be declared, and the declaration of indexes (data structures that speed
up many operations on the table) but we shall leave those for the appropriate
time.

2.3.2 Data Types

To begin, let us introduce the primitive data types that are supported by SQL
systems. All attributes must have a data type.

1. Character strings of fixed or varying length. The type CHAR(n) denotes
a fixed-length string of up to n characters. VARCHAR(n) also denotes a
string of up to n characters. The difference is implementation-dependent;
typically CHAR implies that short strings are padded to make n characters,
while VARCHAR implies that an endmarker or string-length is used. SQL
permits reasonable coercions between values of character-string types.
Normally, a string is padded by trailing blanks if it becomes the value
of a component that is a fixed-length string of greater length. For ex-
ample, the string *foo’,? if it became the value of a component for an
attribute of type CHAR(5), would assume the value ’foo ’ (with two
blanks following the second o).

2. Bit strings of fixed or varying length. These strings are analogous to fixed
and varying-length character strings, but their values are strings of bits
rather than characters. The type BIT(n) denotes bit strings of length n,
while BIT VARYING(n) denotes bit strings of length up to n.

3. The type BOOLEAN denotes an attribute whose value is logical. The possi-
ble values of such an attribute are TRUE, FALSE, and — although it would
surprise George Boole — UNKNOWN.

4. The type INT or INTEGER (these names are synonyms) denotes typical
integer values. The type SHORTINT also denotes integers, but the number
of bits permitted may be less, depending on the implementation (as with
the types int and short int in C).

2Notice that in SQL, strings are surrounded by single-quotes, not double-quotes as in many
other programming languages.

2.3. DEFINING A RELATION SCHEMA IN SQL 31

Dates and Times in SQL

Different SQL implementations may provide many different representa-
tions for dates and times, but the following is the SQL standard repre-
sentation. A date value is the keyword DATE followed by a quoted string
of a special form. For example, DATE ’1948-05-14’ follows the required
form. The first four characters are digits representing the year. Then come
a hyphen and two digits representing the month. Finally there is another
hyphen and two digits representing the day. Note that single-digit months
and days are padded with a leading 0.

A time value is the keyword TIME and a quoted string. This string has
two digits for the hour, on the military (24-hour) clock. Then come a colon,
two digits for the minute, another colon, and two digits for the second. If
fractions of a second are desired, we may continue with a decimal point and
as many significant digits as we like. For instance, TIME ’15:00:02.5’
represents the time at which all students will have left a class that ends
at 3 PM: two and a half seconds past three o’clock.

5. Floating-point numbers can be represented in a variety of ways. We may
use the type FLOAT or REAL (these are synonyms) for typical floating-
point numbers. A higher precision can be obtained with the type DOUBLE
PRECISION; again the distinction between these types is as in C. SQL also
has types that are real numbers with a fixed decimal point. For exam-
ple, DECIMAL (n,d) allows values that consist of n decimal digits, with the
decimal point assumed to be d positions from the right. Thus, 0123.45
is a possible value of type DECIMAL(6,2). NUMERIC is almost a synonym
for DECIMAL, although there are possible implementation-dependent dif-
ferences.

6. Dates and times can be represented by the data types DATE and TIME,
respectively (see the box on “Dates and Times in SQL”). These values
are essentially character strings of a special form. We may, in fact, coerce
dates and times to string types, and we may do the reverse if the string
“makes sense” as a date or time.

2.3.3 Simple Table Declarations

The simplest form of declaration of a relation schema consists of the key-
words CREATE TABLE followed by the name of the relation and a parenthesized,
comma-separated list of the attribute names and their types.

Example 2.2: The relation Movies with the schema given in Fig. 2.5 can be
declared as in Fig. 2.7. The title is declared as a string of (up to) 100 characters.

32 CHAPTER 2. THE RELATIONAL MODEL OF DATA

CREATE TABLE Movies (

title CHAR(100),
year INT,
length INT,
genre CHAR(10),

studioName CHAR(30),
producerC# INT

Figure 2.7: SQL declaration of the table Movies

The year and length attributes are each integers, and the genre is a string of
(up to) 10 characters. The decision to allow up to 100 characters for a title
is arbitrary, but we don’t want to limit the lengths of titles too strongly, or
long titles would be truncated to fit. We have assumed that 10 characters are
enough to represent a genre of movie; again, that is an arbitrary choice, one
we could regret if we had a genre with a long name. Likewise, we have chosen
30 characters as sufficient for the studio name. The certificate number for the
producer of the movie is another integer. O

Example 2.3: Figure 2.8 is a SQL declaration of the relation MovieStar from
Fig. 2.5. It illustrates some new options for data types. The name of this table
is MovieStar, and it has four attributes. The first two attributes, name and
address, have each been declared to be character strings. However, with the
name, we have made the decision to use a fixed-length string of 30 characters,
padding a name out with blanks at the end if necessary and truncating a name
to 30 characters if it is longer. In contrast, we have declared addresses to be
variable-length character strings of up to 255 characters.® It is not clear that
these two choices are the best possible, but we use them to illustrate the two
major kinds of string data types.

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(1),
birthdate DATE

);

Figure 2.8: Declaring the relation schema for the MovieStar relation

3The number 255 is not the result of some weird notion of what typical addresses look like.
A single byte can store integers between 0 and 255, so it is possible to represent a varying-
length character string of up to 255 bytes by a single byte for the count of characters plus the
bytes to store the string itself. Commercial systems generally support longer varying-length
strings, however.

2.3. DEFINING A RELATION SCHEMA IN SQL 33

The gender attribute has values that are a single letter, M or F. Thus, we
can safely use a single character as the type of this attribute. Finally, the
birthdate attribute naturally deserves the data type DATE. O

2.3.4 Modifying Relation Schemas

We now know how to declare a table. But what if we need to change the schema
of the table after it has been in use for a long time and has many tuples in its
current instance? We can remove the entire table, including all of its current
tuples, or we could change the schema by adding or deleting attributes.

We can delete a relation R by the SQL statement:

DROP TABLE R;

Relation R is no longer part of the database schema, and we can no longer
access any of its tuples.

More frequently than we would drop a relation that is part of a long-lived
database, we may need to modify the schema of an existing relation. These
modifications are done by a statement that begins with the keywords ALTER
TABLE and the name of the relation. We then have several options, the most
important of which are

1. ADD followed by an attribute name and its data type.

2. DROP followed by an attribute name.

Example 2.4: Thus, for instance, we could modify the MovieStar relation by
adding an attribute phone with:

ALTER TABLE MovieStar ADD phone CHAR(16);

As a result, the MovieStar schema now has five attributes: the four mentioned
in Fig. 2.8 and the attribute phone, which is a fixed-length string of 16 bytes.
In the actual relation, tuples would all have components for phone, but we
know of no phone numbers to put there. Thus, the value of each of these
components is set to the special null value, NULL. In Section 2.3.5, we shall see
how it is possible to choose another “default” value to be used instead of NULL
for unknown values.
As another example, the ALTER TABLE statement:

ALTER TABLE MovieStar DROP birthdate;
deletes the birthdate attribute. As a result, the schema for MovieStar no

longer has that attribute, and all tuples of the current MovieStar instance
have the component for birthdate deleted. O

34 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2.3.5 Default Values

When we create or modify tuples, we sometimes do not have values for all
components. For instance, we mentioned in Example 2.4 that when we add a
column to a relation schema, the existing tuples do not have a known value, and
it was suggested that NULL could be used in place of a “real” value. However,
there are times when we would prefer to use another choice of default value, the
value that appears in a column if no other value is known.

In general, any place we declare an attribute and its data type, we may add
the keyword DEFAULT and an appropriate value. That value is either NULL or
a constant. Certain other values that are provided by the system, such as the
current time, may also be options.

Example 2.5: Let us consider Example 2.3. We might wish to use the char-
acter 7 as the default for an unknown gender, and we might also wish to use
the earliest possible date, DATE ’0000-00-00’ for an unknown birthdate. We
could replace the declarations of gender and birthdate in Fig. 2.8 by:

gender CHAR(1) DEFAULT ’7?7°,
birthdate DATE DEFAULT DATE ’0000-00-00’

As another example, we could have declared the default value for new at-
tribute phone to be ’unlisted’ when we added this attribute in Example 2.4.
In that case,

ALTER TABLE MovieStar ADD phone CHAR(16) DEFAULT ’unlisted’;

would be the appropriate ALTER TABLE statement. O

2.3.6 Declaring Keys

There are two ways to declare an attribute or set of attributes to be a key in
the CREATE TABLE statement that defines a stored relation.

1. We may declare one attribute to be a key when that attribute is listed in
the relation schema.

2. We may add to the list of items declared in the schema (which so far
have only been attributes) an additional declaration that says a particular
attribute or set of attributes forms the key.

If the key consists of more than one attribute, we have to use method (2). If
the key is a single attribute, either method may be used.
There are two declarations that may be used to indicate keyness:

a) PRIMARY KEY, or

b) UNIQUE.

2.3. DEFINING A RELATION SCHEMA IN SQL 35

The effect of declaring a set of attributes S to be a key for relation R either
using PRIMARY KEY or UNIQUE is the following:

e Two tuples in R cannot agree on all of the attributes in set S, unless one
of them is NULL. Any attempt to insert or update a tuple that violates
this rule causes the DBMS to reject the action that caused the violation.

In addition, if PRIMARY KEY is used, then attributes in S are not allowed to
have NULL as a value for their components. Again, any attempt to violate this
rule is rejected by the system. NULL is permitted if the set S is declared UNIQUE,
however. A DBMS make make other distinctions between the two terms, if it
wishes.

Example 2.6: Let us reconsider the schema for relation MovieStar. Since no
star would use the name of another star, we shall assume that name by itself
forms a key for this relation. Thus, we can add this fact to the line declaring
name. Figure 2.9 is a revision of Fig. 2.8 that reflects this change. We could
also substitute UNIQUE for PRIMARY KEY in this declaration. If we did so, then
two or more tuples could have NULL as the value of name, but there could be no
other duplicate values for this attribute.

CREATE TABLE MovieStar (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
birthdate DATE

Figure 2.9: Making name the key

Alternatively, we can use a separate definition of the key. The resulting
schema, declaration would look like Fig. 2.10. Again, UNIQUE could replace
PRIMARY KEY. 0O

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(1),
birthdate DATE,
PRIMARY KEY (name)

Figure 2.10: A separate declaration of the key

36 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Example 2.7: In Example 2.6, the form of either Fig. 2.9 or Fig. 2.10 is
acceptable, because the key is a single attribute. However, in a situation where
the key has more than one attribute, we must use the style of Fig. 2.10. For
instance, the relation Movie, whose key is the pair of attributes title and year,
must be declared as in Fig. 2.11. However, as usual, UNIQUE is an option to
replace PRIMARY KEY. O

CREATE TABLE Movies (

title CHAR(100),
year INT,
length INT,
genre CHAR(10),

studioName CHAR(30),
producerC# INT,
PRIMARY KEY (title, year)

Figure 2.11: Making title and year be the key of Movies

2.3.7 Exercises for Section 2.3

Exercise 2.3.1: In this exercise we introduce one of our running examples of
a relational database schema. The database schema consists of four relations,
whose schemas are:

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

The Product relation gives the manufacturer, model number and type (PC,
laptop, or printer) of various products. We assume for convenience that model
numbers are unique over all manufacturers and product types; that assumption
is not realistic, and a real database would include a code for the manufacturer
as part of the model number. The PC relation gives for each model number
that is a PC the speed (of the processor, in gigahertz), the amount of RAM (in
megabytes), the size of the hard disk (in gigabytes), and the price. The Laptop
relation is similar, except that the screen size (in inches) is also included. The
Printer relation records for each printer model whether the printer produces
color output (true, if so), the process type (laser or ink-jet, typically), and the
price.
Write the following declarations:

a) A suitable schema for relation Product.

2.3. DEFINING A RELATION SCHEMA IN SQL 37

b) A suitable schema for relation PC.
c) A suitable schema for relation Laptop.
d) A suitable schema for relation Printer.

e) An alteration to your Printer schema from (d) to delete the attribute
color.

f) An alteration to your Laptop schema from (c) to add the attribute od
(optical-disk type, e.g., cd or dvd). Let the default value for this attribute
be ’none’ if the laptop does not have an optical disk.

Exercise 2.3.2: This exercise introduces another running example, concerning
World War II capital ships. It involves the following relations:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes (ship, battle, result)

Ships are built in “classes” from the same design, and the class is usually named
for the first ship of that class. The relation Classes records the name of the
class, the type (’bb’ for battleship or *bec’ for battlecruiser), the country that
built the ship, the number of main guns, the bore (diameter of the gun barrel,
in inches) of the main guns, and the displacement (weight, in tons). Relation
Ships records the name of the ship, the name of its class, and the year in which
the ship was launched. Relation Battles gives the name and date of battles
involving these ships, and relation Outcomes gives the result (sunk, damaged,
or ok) for each ship in each battle.
Write the following declarations:

a) A suitable schema for relation Classes.
b) A suitable schema for relation Ships.

c) A suitable schema for relation Battles.
d) A suitable schema for relation Dutcomes.

e) An alteration to your Classes relation from (a) to delete the attribute
bore.

f) An alteration to your Ships relation from (b) to include the attribute
yard giving the shipyard where the ship was built.

38 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2.4 An Algebraic Query Language

In this section, we introduce the data-manipulation aspect of the relational
model. Recall that a data model is not just structure; it needs a way to query
the data and to modify the data. To begin our study of operations on relations,
we shall learn about a special algebra, called relational algebra, that consists of
some simple but powerful ways to construct new relations from given relations.
When the given relations are stored data, then the constructed relations can be
answers to queries about this data.

Relational algebra is not used today as a query language in commercial
DBMS’s, although some of the early prototypes did use this algebra directly.
Rather, the “real” query language, SQL, incorporates relational algebra at its
center, and many SQL programs are really “syntactically sugared” expressions
of relational algebra. Further, when a DBMS processes queries, the first thing
that happens to a SQL query is that it gets translated into relational algebra
or a very similar internal representation. Thus, there are several good reasons
to start out learning this algebra.

2.4.1 Why Do We Need a Special Query Language?

Before introducing the operations of relational algebra, one should ask why, or
whether, we need a new kind of programming languages for databases. Won’t
conventional languages like C or Java suffice to ask and answer any computable
question about relations? After all, we can represent a tuple of a relation by a
struct (in C) or an object (in Java), and we can represent relations by arrays
of these elements.

The surprising answer is that relational algebra is useful because it is less
powerful than C or Java. That is, there are computations one can perform in
any conventional language that one cannot perform in relational algebra. An
example is: determine whether the number of tuples in a relation is even or
odd. By limiting what we can say or do in our query language, we get two huge
rewards — ease of programming and the ability of the compiler to produce
highly optimized code — that we discussed in Section 2.1.6.

2.4.2 What is an Algebra?

An algebra, in general, consists of operators and atomic operands. For in-
stance, in the algebra of arithmetic, the atomic operands are variables like x
and constants like 15. The operators are the usual arithmetic ones: addition,
subtraction, multiplication, and division. Any algebra allows us to build ez-
pressions by applying operators to atomic operands and/or other expressions
of the algebra. Usually, parentheses are needed to group operators and their
operands. For instance, in arithmetic we have expressions such as (z +y) * z or

(@+7)/(y-3) +a.

2.4. AN ALGEBRAIC QUERY LANGUAGE 39

Relational algebra is another example of an algebra. Its atomic operands
are:

1. Variables that stand for relations.

2. Constants, which are finite relations.

We shall next see the operators of relational algebra.

2.4.3 Overview of Relational Algebra

The operations of the traditional relational algebra fall into four broad classes:

a) The usual set operations — union, intersection, and difference — applied
to relations.

b) Operations that remove parts of a relation: “selection” eliminates some
rows (tuples), and “projection” eliminates some columns.

c) Operations that combine the tuples of two relations, including “Cartesian
product,” which pairs the tuples of two relations in all possible ways, and
various kinds of “join” operations, which selectively pair tuples from two
relations.

d) An operation called “renaming” that does not affect the tuples of a re-
lation, but changes the relation schema, i.e., the names of the attributes
and/or the name of the relation itself.

We generally shall refer to expressions of relational algebra as queries.

2.4.4 Set Operations on Relations

The three most common operations on sets are union, intersection, and differ-
ence. We assume the reader is familiar with these operations, which are defined
as follows on arbitrary sets R and S:

e RU S, the union of R and S, is the set of elements that are in R or S or
both. An element appears only once in the union even if it is present in
both R and S.

e RN S, the intersection of R and S, is the set of elements that are in both
R and S.

e R— S, the difference of R and S, is the set of elements that are in R but
not in S. Note that R — S is different from S — R; the latter is the set of
elements that are in S but not in R.

When we apply these operations to relations, we need to put some conditions
on R and S:

40 CHAPTER 2. THE RELATIONAL MODEL OF DATA

1. R and S must have schemas with identical sets of attributes, and the
types (domains) for each attribute must be the same in R and S.

2. Before we compute the set-theoretic union, intersection, or difference of
sets of tuples, the columns of R and S must be ordered so that the order
of attributes is the same for both relations.

Sometimes we would like to take the union, intersection, or difference of
relations that have the same number of attributes, with corresponding domains,
but that use different names for their attributes. If so, we may use the renaming
operator to be discussed in Section 2.4.11 to change the schema of one or both
relations and give them the same set of attributes.

name | address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood | F 9/9/99
Mark Hamill 456 Oak Rd., Brentwood M 8/8/88
Relation R
name | address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood F 9/9/99
Harrison Ford | 789 Palm Dr., Beverly Hills | M T/7/77

Relation S

Figure 2.12: Two relations

Example 2.8: Suppose we have the two relations R and S, whose schemas
are both that of relation MovieStar Section 2.2.8. Current instances of R and
S are shown in Fig. 2.12. Then the union R U S is

name | address | gender| birthdate
Carrie Fisher | 123 Maple St., Hollywood F 9/9/99
Mark Hamill 456 Dak Rd., Brentwood M 8/8/88
Harrison Ford | 789 Palm Dr., Beverly Hills | M 7/7/77

Note that the two tuples for Carrie Fisher from the two relations appear only

once in the result.
The intersection R N S is

name | address | gender | birthdate
Carrie Fisher | 123 Maple St., Hollywood | F | 9/9/99

Now, only the Carrie Fisher tuple appears, because only it is in both relations.
The difference R — S is

2.4. AN ALGEBRAIC QUERY LANGUAGE 41

name | address | gender | birthdate
Mark Hamill | 456 Oak Rd., Brentwood | M | 8/8/88

That is, the Fisher and Hamill tuples appear in R and thus are candidates for
R — S. However, the Fisher tuple also appears in S and soisnotin R—S§. O
2.4.5 Projection

The projection operator is used to produce from a relation R a new relation
that has only some of R’s columns. The value of expression w4, 4,,... .4, (R) is

a relation that has only the columns for attributes A;, As,..., A, of R. The
schema for the resulting value is the set of attributes {4;, As,... , A,}, which
we conventionally show in the order listed.

title | year | length | genre | studioName | producerC#

Star Wars 1977 | 124 sciFi Fox 12345

Galaxy Quest 1999 | 104 comedy | DreamWorks | 67890

Wayne’s World | 1992 | 95 comedy | Paramount 99999

Figure 2.13: The relation Movies

Example 2.9: Consider the relation Movies with the relation schema de-
scribed in Section 2.2.8. An instance of this relation is shown in Fig. 2.13. We
can project this relation onto the first three attributes with the expression:

Ttitle,year,length (MOVieS)
The resulting relation is

title | year | length
Star Wars 1977 | 124

Galaxy Quest 1999 | 104
Wayne’s World | 1992 | 95

As another example, we can project onto the attribute genre with the ex-
pression 7Tgenre (Movies). The result is the single-column relation

genre
sciFi
comedy
Notice that there are only two tuples in the resulting relation, since the last two

tuples of Fig. 2.13 have the same value in their component for attribute genre,
and in the relational algebra of sets, duplicate tuples are always eliminated. O

42 CHAPTER 2. THE RELATIONAL MODEL OF DATA

A Note About Data Quality :-)

While we have endeavored to make example data as accurate as possible,
we have used bogus values for addresses and other personal information
about movie stars, in order to protect the privacy of members of the acting
profession, many of whom are shy individuals who shun publicity.

2.4.6 Selection

The selection operator, applied to a relation R, produces a new relation with a
subset of R’s tuples. The tuples in the resulting relation are those that satisfy
some condition C' that involves the attributes of R. We denote this operation
oc(R). The schema for the resulting relation is the same as R’s schema, and
we conventionally show the attributes in the same order as we use for R.

C is a conditional expression of the type with which we are familiar from
conventional programming languages; for example, conditional expressions fol-
low the keyword if in programming languages such as C or Java. The only
difference is that the operands in condition C' are either constants or attributes
of R. We apply C to each tuple t of R by substituting, for each attribute A
appearing in condition C, the component of ¢ for attribute A. If after substi-
tuting for each attribute of C' the condition C' is true, then ¢ is one of the tuples
that appear in the result of ¢ (R); otherwise ¢ is not in the result.

Example 2.10: Let the relation Movies be as in Fig. 2.13. Then the value of
eXpression ojengeh>100 (Movies) is

title | year | length | inColor | studioName | producerC#
Star Wars 1977 | 124 sciFi Fox 12345
Galaxy Quest | 1999 | 104 comedy | DreamWorks | 67890

The first tuple satisfies the condition length > 100 because when we substitute
for length the value 124 found in the component of the first tuple for attribute
length, the condition becomes 124 > 100. The latter condition is true, so we
accept the first tuple. The same argument explains why the second tuple of
Fig. 2.13 is in the result.

The third tuple has a length component 95. Thus, when we substitute for
length we get the condition 95 > 100, which is false. Hence the last tuple of
Fig. 2.13 is not in the result. O

Example 2.11: Suppose we want the set of tuples in the relation Movies that
represent Fox movies at least 100 minutes long. We can get these tuples with
a more complicated condition, involving the AND of two subconditions. The
expression is

Olength>100 AND studioName="’Fox’ (Movj'es)

2.4. AN ALGEBRAIC QUERY LANGUAGE 43

The tuple
title | year | length | inColor | studioName | producerC#
Star Wars | 1977 | 124 | true | Fox | 12345

is the only one in the resulting relation. O

2.4.7 Cartesian Product

The Cartesian product (or cross-product, or just product) of two sets R and
S is the set of pairs that can be formed by choosing the first element of the
pair to be any element of R and the second any element of S. This product
is denoted R x S. When R and S are relations, the product is essentially the
same. However, since the members of R and S are tuples, usually consisting
of more than one component, the result of pairing a tuple from R with a tuple
from S is a longer tuple, with one component for each of the components of the
constituent tuples. By convention, the components from R (the left operand)
precede the components from S in the attribute order for the result.

The relation schema for the resulting relation is the union of the schemas
for R and S. However, if R and S should happen to have some attributes in
common, then we need to invent new names for at least one of each pair of
identical attributes. To disambiguate an attribute A that is in the schemas of
both R and S, we use R.A for the attribute from R and S.A for the attribute
from S.

Example 2.12: For conciseness, let us use an abstract example that illustrates
the product operation. Let relations R and S have the schemas and tuples
shown in Fig. 2.14(a) and (b). Then the product R x S consists of the six
tuples shown in Fig. 2.14(c). Note how we have paired each of the two tuples of
R with each of the three tuples of S. Since B is an attribute of both schemas,
we have used R.B and S.B in the schema for R x S. The other attributes are
unambiguous, and their names appear in the resulting schema unchanged. O

2.4.8 Natural Joins

More often than we want to take the product of two relations, we find a need to
join them by pairing only those tuples that match in some way. The simplest
sort of match is the natural join of two relations R and S, denoted R < S, in
which we pair only those tuples from R and S that agree in whatever attributes
are common to the schemas of R and S. More precisely, let Ay, As,..., A, be
all the attributes that are in both the schema of R and the schema of S. Then
a tuple r from R and a tuple s from S are successfully paired if and only if r
and s agree on each of the attributes Ay, As, ..., A,.

If the tuples r and s are successfully paired in the join R < S, then the
result of the pairing is a tuple, called the joined tuple, with one component for
each of the attributes in the union of the schemas of R and S. The joined tuple

44 CHAPTER 2. THE RELATIONAL MODEL OF DATA

:

B
2

4

-

(a) Relation R

B|C | D
2 |5 6
4 |7 8
9 10| 11

(b) Relation S

A|RB|SB|C|D
1]2 2 5 6
1]2 4 7 8
1|2 9 10 | 11
3 |4 2 5 6
3 |4 4 7 8
3 |4 9 10 | 11

(c) Result R x S

Figure 2.14: Two relations and their Cartesian product

agrees with tuple r in each attribute in the schema of R, and it agrees with
s in each attribute in the schema of S. Since r and s are successfully paired,
the joined tuple is able to agree with both these tuples on the attributes they
have in common. The construction of the joined tuple is suggested by Fig. 2.15.
However, the order of the attributes need not be that convenient; the attributes
of R and S can appear in any order.

Example 2.13: The natural join of the relations R and S from Fig. 2.14(a)
and (b) is

AlB|C]
1]2 5
3|4 |7

The only attribute common to R and S is B. Thus, to pair successfully, tuples
need only to agree in their B components. If so, the resulting tuple has com-
ponents for attributes A (from R), B (from either R or S), C (from S), and D
(from S).

0 Oty

2.4. AN ALGEBRAIC QUERY LANGUAGE 45

R

’HH |
HHHHH‘

joined tuple

Figure 2.15: Joining tuples

In this example, the first tuple of R successfully pairs with only the first
tuple of S; they share the value 2 on their common attribute B. This pairing
yields the first tuple of the result: (1,2,5,6). The second tuple of R pairs
successfully only with the second tuple of S, and the pairing yields (3,4, 7, 8).
Note that the third tuple of S does not pair with any tuple of R and thus has
no effect on the result of R < S. A tuple that fails to pair with any tuple of
the other relation in a join is said to be a dangling tuple. O

Example 2.14: The previous example does not illustrate all the possibilities
inherent in the natural join operator. For example, no tuple paired successfully
with more than one tuple, and there was only one attribute in common to the
two relation schemas. In Fig. 2.16 we see two other relations, U and V, that
share two attributes between their schemas: B and C. We also show an instance
in which one tuple joins with several tuples.

For tuples to pair successfully, they must agree in both the B and C' com-
ponents. Thus, the first tuple of U joins with the first two tuples of V, while
the second and third tuples of U join with the third tuple of V. The result of
these four pairings is shown in Fig. 2.16(c). O

2.4.9 Theta-Joins

The natural join forces us to pair tuples using one specific condition. While this
way, equating shared attributes, is the most common basis on which relations
are joined, it is sometimes desirable to pair tuples from two relations on some
other basis. For that purpose, we have a related notation called the theta-
join. Historically, the “theta” refers to an arbitrary condition, which we shall
represent by C rather than 6.

The notation for a theta-join of relations R and S based on condition C is
R < S. The result of this operation is constructed as follows:

1. Take the product of R and S.

2. Select from the product only those tuples that satisfy the condition C.

46 CHAPTER 2. THE RELATIONAL MODEL OF DATA

© o R 5w
~N NN
®© o w|lq

(a) Relation U

B|C|D
2 13 |4
2 |13 |5
718 |10

(b) Relation V

D
4
5

10

10

~N NN N
0 00w wilq

A
1
1
6
9
(c) Result U V

Figure 2.16: Natural join of relations

As with the product operation, the schema for the result is the union of the
schemas of R and S, with “R.” or “S.” prefixed to attributes if necessary to
indicate from which schema the attribute came.

Example 2.15: Consider the operation U >t 4«p V, where U and V are the
relations from Fig. 2.16(a) and (b). We must consider all nine pairs of tuples,
one from each relation, and see whether the A component from the U-tuple
is less than the D component of the V-tuple. The first tuple of U, with an A
component of 1, successfully pairs with each of the tuples from V. However, the
second and third tuples from U, with A components of 6 and 9, respectively,
pair successfully with only the last tuple of V. Thus, the result has only five
tuples, constructed from the five successful pairings. This relation is shown in
Fig. 2.17. O

Notice that the schema for the result in Fig. 2.17 consists of all six attributes,
with U and V prefixed to their respective occurrences of attributes B and C to
distinguish them. Thus, the theta-join contrasts with natural join, since in the
latter common attributes are merged into one copy. Of course it makes sense to

2.4. AN ALGEBRAIC QUERY LANGUAGE 47

A|UB|UC|V.B|VC|D
1]2 3 2 3 4
1]2 3 2 3 5
1|2 3 7 8 10
6 |7 8 7 8 10
9 |7 8 7 8 10

Figure 2.17: Result of U b 4<p V'

do so in the case of the natural join, since tuples don’t pair unless they agree in
their common attributes. In the case of a theta-join, there is no guarantee that
compared attributes will agree in the result, since they may not be compared
with =.

Example 2.16: Here is a theta-join on the same relations U and V that has
a more complex condition:

U > 4<p anD U.B#V.B Vv

That is, we require for successful pairing not only that the A component of the
U-tuple be less than the D component of the V-tuple, but that the two tuples
disagree on their respective B components. The tuple

A|UB|UC|VB|VC|D
|2 |3 [7 [8 [10

is the only one to satisfy both conditions, so this relation is the result of the
theta-join above. 0O

2.4.10 Combining Operations to Form Queries

If all we could do was to write single operations on one or two relations as
queries, then relational algebra would not be nearly as useful as it is. However,
relational algebra, like all algebras, allows us to form expressions of arbitrary
complexity by applying operations to the result of other operations.

One can construct expressions of relational algebra by applying operators
to subexpressions, using parentheses when necessary to indicate grouping of
operands. It is also possible to represent expressions as expression trees; the
latter often are easier for us to read, although they are less convenient as a
machine-readable notation.

Example 2.17: Suppose we want to know, from our running Movies relation,
“What are the titles and years of movies made by Fox that are at least 100
minutes long?” One way to compute the answer to this query is:

1. Select those Movies tuples that have length > 100.

48 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2. Select those Movies tuples that have studioName = *Fox’.
3. Compute the intersection of (1) and (2).

4. Project the relation from (3) onto attributes title and year.

Ty e, year

A

N

0 length >= 100 O sudioName= ' Fox’

Movi es Movi es

Figure 2.18: Expression tree for a relational algebra expression

In Fig. 2.18 we see the above steps represented as an expression tree. Ex-
pression trees are evaluated bottom-up by applying the operator at an interior
node to the arguments, which are the results of its children. By proceeding
bottom-up, we know that the arguments will be available when we need them.
The two selection nodes correspond to steps (1) and (2). The intersection node
corresponds to step (3), and the projection node is step (4).

Alternatively, we could represent the same expression in a conventional,
linear notation, with parentheses. The formula

Ttitle,year (Ulengthz 100 (MOVies) N OstudioName="Fox’ (Movies))

represents the same expression.

Incidentally, there is often more than one relational algebra expression that
represents the same computation. For instance, the above query could also be
written by replacing the intersection by logical AND within a single selection
operation. That is,

Ttitle,year (UlengchIOO AND studioName="’Fox’ (MOVieS))

is an equivalent form of the query. O

2.4. AN ALGEBRAIC QUERY LANGUAGE 49

Equivalent Expressions and Query Optimization

All database systems have a query-answering system, and many of them
are based on a language that is similar in expressive power to relational
algebra. Thus, the query asked by a user may have many equivalent ex-
pressions (expressions that produce the same answer whenever they are
given the same relations as operands), and some of these may be much
more quickly evaluated. An important job of the query “optimizer” dis-
cussed briefly in Section 1.2.5 is to replace one expression of relational
algebra by an equivalent expression that is more efficiently evaluated.

2.4.11 Naming and Renaming

In order to control the names of the attributes used for relations that are con-
structed by applying relational-algebra operations, it is often convenient to
use an operator that explicitly renames relations. We shall use the operator
PS(A1,As,..., A,) (R) to rename a relation R. The resulting relation has exactly
the same tuples as R, but the name of the relation is S. Moreover, the at-
tributes of the result relation S are named A;, As,... , A,, in order from the
left. If we only want to change the name of the relation to S and leave the
attributes as they are in R, we can just say ps(R).

Example 2.18: In Example 2.12 we took the product of two relations R and
S from Fig. 2.14(a) and (b) and used the convention that when an attribute
appears in both operands, it is renamed by prefixing the relation name to it.
Suppose, however, that we do not wish to call the two versions of B by names
R.B and S.B; rather we want to continue to use the name B for the attribute
that comes from R, and we want to use X as the name of the attribute B
coming from S. We can rename the attributes of S so the first is called X. The
result of the expression pg(x,c,p)(S) is a relation named S that looks just like
the relation S from Fig. 2.14, but its first column has attribute X instead of B.

A|B|x|C|D
112 |2 5 6
112 |4 7 8
11219 10 | 11
3 (4 |2 5 6
3 (4 (4 |7 8
3 (14 |9 10 | 11

Figure 2.19: R x PS(x,C,D) (S)

50 CHAPTER 2. THE RELATIONAL MODEL OF DATA

When we take the product of R with this new relation, there is no conflict
of names among the attributes, so no further renaming is done. That is, the
result of the expression R x pg(x,c,p)(S) is the relation Rx S from Fig. 2.14(c),
except that the five columns are labeled A, B, X, C, and D, from the left. This
relation is shown in Fig. 2.19.

As an alternative, we could take the product without renaming, as we did
in Example 2.12, and then rename the result. The expression

PRS(A,B,x,c,D) (R x 5)

yields the same relation as in Fig. 2.19, with the same set of attributes. But
this relation has a name, RS, while the result relation in Fig. 2.19 has no name.
O

2.4.12 Relationships Among Operations

Some of the operations that we have described in Section 2.4 can be expressed
in terms of other relational-algebra operations. For example, intersection can
be expressed in terms of set difference:

RNS=R—(R-S5)

That is, if R and S are any two relations with the same schema, the intersection
of R and S can be computed by first subtracting S from R to form a relation
T consisting of all those tuples in R but not S. We then subtract T from R,
leaving only those tuples of R that are also in S.

The two forms of join are also expressible in terms of other operations.
Theta-join can be expressed by product and selection:

R<xc S=o0c(RxS)

The natural join of R and S can be expressed by starting with the product
R x S. We then apply the selection operator with a condition C' of the form

R.A; = S.A; AND R. Ay = S.Ay AND---AND R.A, = S.4,

where Ay, As, ..., A, are all the attributes appearing in the schemas of both R
and S. Finally, we must project out one copy of each of the equated attributes.
Let L be the list of attributes in the schema of R followed by those attributes
in the schema of S that are not also in the schema of R. Then

RNSZWL<00(RXS))

Example 2.19: The natural join of the relations U and V from Fig. 2.16 can
be written in terms of product, selection, and projection as:

TA,U.B,U.C,D (UU.B:V.B AND v.e=v.c(U x V))

2.4. AN ALGEBRAIC QUERY LANGUAGE 51

That is, we take the product U x V. Then we select for equality between each
pair of attributes with the same name — B and C in this example. Finally,
we project onto all the attributes except one of the B’s and one of the C’s; we
have chosen to eliminate the attributes of V' whose names also appear in the
schema of U.

For another example, the theta-join of Example 2.16 can be written

O A<D AND U.B.—,éV.B(U x V)

That is, we take the product of the relations U and V and then apply the
condition that appeared in the theta-join. O

The rewriting rules mentioned in this section are the only “redundancies”
among the operations that we have introduced. The six remaining operations —
union, difference, selection, projection, product, and renaming — form an in-
dependent set, none of which can be written in terms of the other five.

2.4.13 A Linear Notation for Algebraic Expressions

In Section 2.4.10 we used an expression tree to represent a complex expression
of relational algebra. An alternative is to invent names for the temporary
relations that correspond to the interior nodes of the tree and write a sequence
of assignments that create a value for each. The order of the assignments is
flexible, as long as the children of a node N have had their values created before
we attempt to create the value for N itself.

The notation we shall use for assignment statements is:

1. A relation name and parenthesized list of attributes for that relation. The
name Answer will be used conventionally for the result of the final step;
i.e., the name of the relation at the root of the expression tree.

2. The assignment symbol :=.

3. Any algebraic expression on the right. We can choose to use only one
operator per assignment, in which case each interior node of the tree gets
its own assignment statement. However, it is also permissible to combine
several algebraic operations in one right side, if it is convenient to do so.

Example 2.20: Consider the tree of Fig. 2.18. One possible sequence of as-
signments to evaluate this expression is:

R(t,y,1,i,8,pP) := Oiengin>100 (Movies)
S(t,y,1,1,8,P) := OstudioName='Fox> (Movies)
T(t,y,1l,i,s,p) :=R N S

Answer (title, year) := my,(T)

52 CHAPTER 2. THE RELATIONAL MODEL OF DATA

The first step computes the relation of the interior node labeled oiengtn>100 in
Fig. 2.18, and the second step computes the node labeled ostydi0Name='Fox’ -
Notice that we get renaming “for free,” since we can use any attributes and
relation name we wish for the left side of an assignment. The last two steps
compute the intersection and the projection in the obvious way.

It is also permissible to combine some of the steps. For instance, we could
combine the last two steps and write:

R(t,y,1,1,8,P) := Olength>100 (Movies)
S(t,y,l,i,S,P) 1= OstudioName="Fox’ (Movies)
Answer (title, year) := m (R N S)

We could even substitute for R and S in the last line and write the entire
expression in one line. O

2.4.14 Exercises for Section 2.4

Exercise 2.4.1: This exercise builds upon the products schema of Exercise
2.3.1. Recall that the database schema consists of four relations, whose schemas
are:

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Some sample data for the relation Product is shown in Fig. 2.20. Sample
data for the other three relations is shown in Fig. 2.21. Manufacturers and
model numbers have been “sanitized,” but the data is typical of products on
sale at the beginning of 2007.

Write expressions of relational algebra to answer the following queries. You
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs.
2.20 and 2.21, show the result of your query. However, your answer should work
for arbitrary data, not just the data of these figures.

a) What PC models have a speed of at least 3.00?
b) Which manufacturers make laptops with a hard disk of at least 100GB?

¢) Find the model number and price of all products (of any type) made by
manufacturer B.

d) Find the model numbers of all color laser printers.
e) Find those manufacturers that sell Laptops, but not PC’s.

! f) Find those hard-disk sizes that occur in two or more PC’s.

2.4. AN ALGEBRAIC QUERY LANGUAGE

maker |7nodel| type

1001
1002
1003
2004
2005
2006
1004
1005
1006
2007
1007
1008
1009
1010
3004
3005
1011
1012
1013
2001
2002
2003
3001
3002
3003
2008
2009
2010
3006
3007

=== =R > Je s e M e I e i 5 I e B o T I I I I » Bl w Bl & B & B w B @ v < v~ B v s v o - - - 8

Figure 2.20: Sample data for Product

pPc
pc

pc
laptop
laptop
laptop
pc

pc

pc
laptop
pc

pc

pPcC

pPcC
printer
printer
pc

pc

pc
laptop
laptop
laptop
printer
printer
printer
laptop
laptop
laptop
printer
printer

53

CHAPTER 2. THE RELATIONAL MODEL OF DATA

7nodel| speed| ram | hd | price

1001 | 2.66 | 1024 | 250 | 2114
1002 | 2.10 512 | 2560 995
1003 1.42 512 80 478
1004 | 2.80 | 1024 | 250 649
1005 | 3.20 512 | 2560 630
1006 | 3.20 | 1024 | 320 | 1049
1007 | 2.20 | 1024 | 200 510
1008 | 2.20 | 2048 | 250 770
1009 | 2.00 | 1024 | 250 650
1010 | 2.80 | 2048 | 300 770
1011 1.86 | 2048 | 160 959
1012 | 2.80 | 1024 | 160 649
1013 | 3.06 512 80 529

(a) Sample data for relation PC

model | speed | ram | hd | screen | price

2001 | 2.00 | 2048 | 240 | 20.1 3673
2002 | 1.73 | 1024 80 | 17.0 949
2003 | 1.80 512 60 | 15.4 549
2004 | 2.00 512 60 | 13.3 1150
2005 | 2.16 | 1024 | 120 | 17.0 2500
2006 | 2.00 | 2048 80 | 15.4 1700
2007 | 1.83 | 1024 | 120 | 13.3 1429
2008 | 1.60 | 1024 | 100 | 15.4 900
2009 | 1.60 512 80 | 14.1 680
2010 | 2.00 | 2048 | 160 | 15.4 2300

(b) Sample data for relation Laptop

7nodel| color |type | price
3001 | true ink-jet 99
3002 false | laser 239
3003 true laser 899
3004 | true ink-jet 120
3005 false | laser 120
3006 | true ink-jet 100
3007 true laser 200

(c) Sample data for relation Printer

Figure 2.21: Sample data for relations of Exercise 2.4.1

2.4. AN ALGEBRAIC QUERY LANGUAGE 55

! g) Find those pairs of PC models that have both the same speed and RAM.
A pair should be listed only once; e.g., list (7,5) but not (j,4).

" h) Find those manufacturers of at least two different computers (PC’s or
laptops) with speeds of at least 2.80.

1i) Find the manufacturer(s) of the computer (PC or laptop) with the highest
available speed.

! j) Find the manufacturers of PC’s with at least three different speeds.
' k) Find the manufacturers who sell exactly three different models of PC.

Exercise 2.4.2: Draw expression trees for each of your expressions of Exer-
cise 2.4.1.

Exercise 2.4.3: This exercise builds upon Exercise 2.3.2 concerning World
War II capital ships. Recall it involves the following relations:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes (ship, battle, result)

Figures 2.22 and 2.23 give some sample data for these four relations.* Note
that, unlike the data for Exercise 2.4.1, there are some “dangling tuples” in this
data, e.g., ships mentioned in Outcomes that are not mentioned in Ships.

Write expressions of relational algebra to answer the following queries. You
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs.
2.22 and 2.23, show the result of your query. However, your answer should work
for arbitrary data, not just the data of these figures.

a) Give the class names and countries of the classes that carried guns of at
least 16-inch bore.

b) Find the ships launched prior to 1921.
c¢) Find the ships sunk in the battle of the Denmark Strait.

d) The treaty of Washington in 1921 prohibited capital ships heavier than
35,000 tons. List the ships that violated the treaty of Washington.

e) List the name, displacement, and number of guns of the ships engaged in
the battle of Guadalcanal.

f) List all the capital ships mentioned in the database. (Remember that all
these ships may not appear in the Ships relation.)

4Source: J. N. Westwood, Fighting Ships of World War II, Follett Publishing, Chicago,
1975 and R. C. Stern, US Battleships in Action, Squadron/Signal Publications, Carrollton,
TX, 1980.

56 CHAPTER 2. THE RELATIONAL MODEL OF DATA
class | type | country | numGuns | bore | displacement
Bismarck bb Germany 8 15 42000
Iowa bb UsA 9 16 46000
Kongo bc Japan 8 14 32000
North Carolina | bb USA 9 16 37000
Renown bc Gt. Britain | 6 15 32000
Revenge bb Gt. Britain | 8 15 29000
Tennessee bb USA 12 14 32000
Yamato bb Japan 9 18 65000

(a) Sample data for relation Classes

name | date

Denmark Strait | 5/24-27/41

Guadalcanal 11/15/42

North Cape 12/26/43

Surigao Strait | 10/25/44

(b) Sample data for relation Battles

ship | battle | result
Arizona Pearl Harbor sunk
Bismarck Denmark Strait | sunk
California Surigao Strait | ok
Duke of York North Cape ok
Fuso Surigao Strait | sunk
Hood Denmark Strait | sunk
King George V Denmark Strait | ok
Kirishima Guadalcanal sunk
Prince of Wales | Denmark Strait | damaged
Rodney Denmark Strait | ok
Scharnhorst North Cape sunk
South Dakota Guadalcanal damaged
Tennessee Surigao Strait | ok
Washington Guadalcanal ok
West Virginia Surigao Strait | ok
Yamashiro Surigao Strait | sunk

(c) Sample data for relation Outcomes

Figure 2.22: Data for Exercise 2.4.3

2.4. AN ALGEBRAIC QUERY LANGUAGE 57

name | class | launched
California Tennessee 1921
Haruna Kongo 1915
Hiei Kongo 1914
Towa Iowa 1943
Kirishima Kongo 1915
Kongo Kongo 1913
Missouri Iowa 1944
Musashi Yamato 1942
New Jersey Towa 1943
North Carolina North Carolina | 1941
Ramillies Revenge 1917
Renown Renown 1916
Repulse Renown 1916
Resolution Revenge 1916
Revenge Revenge 1916
Royal Oak Revenge 1916
Royal Sovereign | Revenge 1916
Tennessee Tennessee 1920
Washington North Carolina | 1941
Wisconsin Towa 1944
Yamato Yamato 1941

Figure 2.23: Sample data for relation Ships

! g) Find the classes that had only one ship as a member of that class.
! h) Find those countries that had both battleships and battlecruisers.

!i) Find those ships that “lived to fight another day”; they were damaged in
one battle, but later fought in another.

Exercise 2.4.4: Draw expression trees for each of your expressions of Exer-
cise 2.4.3.

Exercise 2.4.5: What is the difference between the natural join R > S and
the theta-join R <1 S where the condition C' is that R.A = S.A for each
attribute A appearing in the schemas of both R and S?

Exercise 2.4.6: An operator on relations is said to be monotone if whenever
we add a tuple to one of its arguments, the result contains all the tuples that
it contained before adding the tuple, plus perhaps more tuples. Which of the
operators described in this section are monotone? For each, either explain why
it is monotone or give an example showing it is not.

58 CHAPTER 2. THE RELATIONAL MODEL OF DATA

! Exercise 2.4.7: Suppose relations R and S have n tuples and m tuples, re-
spectively. Give the minimum and maximum numbers of tuples that the results
of the following expressions can have.

! Exercise 2.4.8: The semijoin of relations R and S, written RD><S, is the set
of tuples ¢ in R such that there is at least one tuple in S that agrees with ¢ in
all attributes that R and S have in common. Give three different expressions
of relational algebra that are equivalent to R D<S.

! Exercise 2.4.9: The antisemijoin R D< S is the set of tuples ¢ in R that do
not agree with any tuple of S in the attributes common to R and S. Give an
expression of relational algebra equivalent to R D< S.

1! Exercise 2.4.10: Let R be a relation with schema
(A17A25 .. aAn;BIJ-325 e ;Bm)

and let S be a relation with schema (Bi, Ba, ... ,By); that is, the attributes
of S are a subset of the attributes of R. The quotient of R and S, denoted
R =+ S, is the set of tuples t over attributes A;, A, ..., A, (i-e., the attributes
of R that are not attributes of S) such that for every tuple s in S, the tuple
ts, consisting of the components of ¢ for Ay, As,..., A, and the components
of s for By, Bs,...,B,, is a member of R. Give an expression of relational
algebra, using the operators we have defined previously in this section, that is
equivalent to R + S.

2.5 Constraints on Relations

We now take up the third important aspect of a data model: the ability to
restrict the data that may be stored in a database. So far, we have seen only one
kind of constraint, the requirement that an attribute or attributes form a key
(Section 2.3.6). These and many other kinds of constraints can be expressed in
relational algebra. In this section, we show how to express both key constraints
and “referential-integrity” constraints; the latter require that a value appearing
in one column of one relation also appear in some other column of the same
or a different relation. In Chapter 7, we see how SQL database systems can
enforce the same sorts of constraints as we can express in relational algebra.

2.5. CONSTRAINTS ON RELATIONS 59

2.5.1 Relational Algebra as a Constraint Language

There are two ways in which we can use expressions of relational algebra to
express constraints.

1. If R is an expression of relational algebra, then R = () is a constraint
that says “The value of R must be empty,” or equivalently “There are no
tuples in the result of R.”

2. If R and S are expressions of relational algebra, then R C S is a constraint
that says “Every tuple in the result of R must also be in the result of S.”
Of course the result of S may contain additional tuples not produced by
R.

These ways of expressing constraints are actually equivalent in what they
can express, but sometimes one or the other is clearer or more succinct. That
is, the constraint R C S could just as well have been written R — S = . To
see why, notice that if every tuple in R is also in S, then surely R — S is empty.
Conversely, if R — S contains no tuples, then every tuple in R must be in S (or
else it would be in R — 5).

On the other hand, a constraint of the first form, R =), could just as
well have been written R C (. Technically, () is not an expression of relational
algebra, but since there are expressions that evaluate to (), such as R — R, there
is no harm in using () as a relational-algebra expression.

In the following sections, we shall see how to express significant constraints
in one of these two styles. As we shall see in Chapter 7, it is the first style —
equal-to-the-emptyset — that is most commonly used in SQL programming.
However, as shown above, we are free to think in terms of set-containment if
we wish and later convert our constraint to the equal-to-the-emptyset style.

2.5.2 Referential Integrity Constraints

A common kind of constraint, called a referential integrity constraint, asserts
that a value appearing in one context also appears in another, related context.
For example, in our movies database, should we see a StarsIn tuple that has
person p in the starName component, we would expect that p appears as the
name of some star in the MovieStar relation. If not, then we would question
whether the listed “star” really was a star.

In general, if we have any value v as the component in attribute A of some
tuple in one relation R, then because of our design intentions we may expect
that v will appear in a particular component (say for attribute B) of some tuple
of another relation S. We can express this integrity constraint in relational
algebra as m4(R) C 7p(S), or equivalently, m4(R) — wg(S) = 0.

Example 2.21: Consider the two relations from our running movie database:

Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)

60 CHAPTER 2. THE RELATIONAL MODEL OF DATA

We might reasonably assume that the producer of every movie would have to
appear in the MovieExec relation. If not, there is something wrong, and we
would at least want a system implementing a relational database to inform us
that we had a movie with a producer of which the database had no knowledge.

To be more precise, the producerC# component of each Movies tuple must
also appear in the cert# component of some MovieExec tuple. Since executives
are uniquely identified by their certificate numbers, we would thus be assured
that the movie’s producer is found among the movie executives. We can express
this constraint by the set-containment

Wproducerg#(Movies) C T eert# (MovieExe C)

The value of the expression on the left is the set of all certificate numbers ap-
pearing in producerC# components of Movies tuples. Likewise, the expression
on the right’s value is the set of all certificates in the cert# component of
MovieExec tuples. Our constraint says that every certificate in the former set
must also be in the latter set. O

Example 2.22: We can similarly express a referential integrity constraint
where the “value” involved is represented by more than one attribute. For
instance, we may want to assert that any movie mentioned in the relation

StarsIn(movieTitle, movieYear, starName)
also appears in the relation
Movies(title, year, length, genre, studioName, producerC#)

Movies are represented in both relations by title-year pairs, because we agreed
that one of these attributes alone was not sufficient to identify a movie. The
constraint

WmovieTitle, movieYear(StarSIn) g 7Ttitle, year(MOVieS)

expresses this referential integrity constraint by comparing the title-year pairs
produced by projecting both relations onto the appropriate lists of components.
O

2.5.3 Key Constraints

The same constraint notation allows us to express far more than referential
integrity. Here, we shall see how we can express algebraically the constraint
that a certain attribute or set of attributes is a key for a relation.

Example 2.23: Recall that name is the key for relation

MovieStar (name, address, gender, birthdate)

2.5. CONSTRAINTS ON RELATIONS 61

That is, no two tuples agree on the name component. We shall express alge-
braically one of several implications of this constraint: that if two tuples agree
on name, then they must also agree on address. Note that in fact these “two”
tuples, which agree on the key name, must be the same tuple and therefore
certainly agree in all attributes.

The idea is that if we construct all pairs of MovieStar tuples (¢1,%2), we
must not find a pair that agree in the name component and disagree in the
address component. To construct the pairs we use a Cartesian product, and
to search for pairs that violate the condition we use a selection. We then assert
the constraint by equating the result to .

To begin, since we are taking the product of a relation with itself, we need
to rename at least one copy, in order to have names for the attributes of the
product. For succinctness, let us use two new names, MS1 and MS2, to refer
to the MovieStar relation. Then the requirement can be expressed by the
algebraic constraint:

O MS1.name=MS2.name AND MSI.address#MSQ.address(MSl X MSQ) = @

In the above, MS1 in the product MS1 x MS2 is shorthand for the renaming;:

pMSI(name,address,gender,bz’rthdate) (MovieStar)

and MS2 is a similar renaming of MovieStar. O

2.5.4 Additional Constraint Examples

There are many other kinds of constraints that we can express in relational
algebra and that are useful for restricting database contents. A large family
of constraints involve the permitted values in a context. For example, the fact
that each attribute has a type constrains the values of that attribute. Often
the constraint is quite straightforward, such as “integers only” or “character
strings of length up to 30.” Other times we want the values that may appear in
an attribute to be restricted to a small enumerated set of values. Other times,
there are complex limitations on the values that may appear. We shall give two
examples, one of a simple domain constraint for an attribute, and the second a
more complicated restriction.

Example 2.24: Suppose we wish to specify that the only legal values for the
gender attribute of MovieStar are *F’ and ’M’. We can express this constraint
algebraically by:

O gender#’F’ AND gender‘;é’M’(MOVieStar) = @

That is, the set of tuples in MovieStar whose gender component is equal to
neither *F’ nor ’M’ is empty. O

62 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Example 2.25: Suppose we wish to require that one must have a net worth
of at least $10,000,000 to be the president of a movie studio. We can express
this constraint algebraically as follows. First, we need to theta-join the two
relations

MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

using the condition that presC# from Studio and cert# from MovieExec are
equal. That join combines pairs of tuples consisting of a studio and an executive,
such that the executive is the president of the studio. If we select from this
relation those tuples where the net worth is less than ten million, we have a set
that, according to our constraint, must be empty. Thus, we may express the
constraint as:

O net Worth<10000000 (StUdio X presC#=cert# MOVieExeC) =0

An alternative way to express the same constraint is to compare the set
of certificates that represent studio presidents with the set of certificates that
represent executives with a net worth of at least $10,000,000; the former must
be a subset of the latter. The containment

TpresC# (StU-dio) Cc T cert# (Unet Worth>10000000 (MOVieExeC))

expresses the above idea. 0O

2.5.5 Exercises for Section 2.5

Exercise 2.5.1: Express the following constraints about the relations of Ex-
ercise 2.3.1, reproduced here:

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer (model, color, type, price)

You may write your constraints either as containments or by equating an ex-
pression to the empty set. For the data of Exercise 2.4.1, indicate any violations
to your constraints.

a) A PC with a processor speed less than 2.00 must not sell for more than
$500.

b) A laptop with a screen size less than 15.4 inches must have at least a 100
gigabyte hard disk or sell for less than $1000.

! ¢) No manufacturer of PC’s may also make laptops.

2.6. SUMMARY OF CHAPTER 2 63

1" d) A manufacturer of a PC must also make a laptop with at least as great a
processor speed.

!'e) If a laptop has a larger main memory than a PC, then the laptop must
also have a higher price than the PC.

Exercise 2.5.2: Express the following constraints in relational algebra. The
constraints are based on the relations of Exercise 2.3.2:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes (ship, battle, result)

You may write your constraints either as containments or by equating an ex-
pression to the empty set. For the data of Exercise 2.4.3, indicate any violations
to your constraints.

a) No class of ships may have guns with larger than 16-inch bore.

b) If a class of ships has more than 9 guns, then their bore must be no larger
than 14 inches.

! ¢) No class may have more than 2 ships.
! d) No country may have both battleships and battlecruisers.

1 e) No ship with more than 9 guns may be in a battle with a ship having
fewer than 9 guns that was sunk.

Exercise 2.5.3: Suppose R and S are two relations. Let C be the referen-
tial integrity constraint that says: whenever R has a tuple with some values
v1,V2,... , U, in particular attributes A1, As, ... , A,, there must be a tuple of S
that has the same values vy, vs, ... ,v, in particular attributes By, Ba,... , By,.
Show how to express constraint C' in relational algebra.

Exercise 2.5.4: Another algebraic way to express a constraint is E; = FEj,
where both E; and E» are relational-algebra expressions. Can this form of
constraint express more than the two forms we discussed in this section?

2.6 Summary of Chapter 2

O Data Models: A data model is a notation for describing the structure of
the data in a database, along with the constraints on that data. The data
model also normally provides a notation for describing operations on that
data: queries and data modifications.

64

CHAPTER 2. THE RELATIONAL MODEL OF DATA

Relational Model: Relations are tables representing information. Columns
are headed by attributes; each attribute has an associated domain, or
data type. Rows are called tuples, and a tuple has one component for
each attribute of the relation.

Schemas: A relation name, together with the attributes of that relation
and their types, form the relation schema. A collection of relation schemas
forms a database schema. Particular data for a relation or collection of
relations is called an instance of that relation schema or database schema.

Keys: An important type of constraint on relations is the assertion that
an attribute or set of attributes forms a key for the relation. No two
tuples of a relation can agree on all attributes of the key, although they
can agree on some of the key attributes.

Semistructured Data Model: In this model, data is organized in a tree or
graph structure. XML is an important example of a semistructured data
model.

SQL: The language SQL is the principal query language for relational
database systems. The current standard is called SQL-99. Commercial
systems generally vary from this standard but adhere to much of it.

Data Definition: SQL has statements to declare elements of a database
schema. The CREATE TABLE statement allows us to declare the schema
for stored relations (called tables), specifying the attributes, their types,
default values, and keys.

Altering Schemas: We can change parts of the database schema with an
ALTER statement. These changes include adding and removing attributes
from relation schemas and changing the default value associated with an
attribute. We may also use a DROP statement to completely eliminate
relations or other schema elements.

Relational Algebra: This algebra underlies most query languages for the
relational model. Its principal operators are union, intersection, differ-
ence, selection, projection, Cartesian product, natural join, theta-join,
and renaming.

Selection and Projection: The selection operator produces a result con-
sisting of all tuples of the argument relation that satisfy the selection
condition. Projection removes undesired columns from the argument re-
lation to produce the result.

Joins: We join two relations by comparing tuples, one from each relation.
In a natural join, we splice together those pairs of tuples that agree on all
attributes common to the two relations. In a theta-join, pairs of tuples
are concatenated if they meet a selection condition associated with the
theta-join.

2.7. REFERENCES FOR CHAPTER 2 65

O Constraints in Relational Algebra: Many common kinds of constraints can
be expressed as the containment of one relational algebra expression in
another, or as the equality of a relational algebra expression to the empty
set.

2.7 References for Chapter 2

The classic paper by Codd on the relational model is [1]. This paper introduces
relational algebra, as well. The use of relational algebra to describe constraints
is from [2]. References for SQL are given in the bibliographic notes for Chap-
ter 6.

The semistructured data model is from [3]. XML is a standard developed
by the World-Wide-Web Consortium. The home page for information about
XML is [4].

1. E. F. Codd, “A relational model for large shared data banks,” Comm.
ACM 13:6, pp. 377-387, 1970.

2. J.-M. Nicolas, “Logic for improving integrity checking in relational data-
bases,” Acta Informatica 18:3, pp. 227-253, 1982.

3. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object ex-
change across heterogeneous information sources,” IEEE Intl. Conf. on
Data Engineering, pp. 251-260, March 1995.

4. World-Wide-Web Consortium, http://www.w3.org/XML/

