

Trio: A System for Data, Uncertainty, and Lineage

Search "stanford trio"

Stanford Report: March '06

The Trio database system, developed by Professor Jennifer Widom and her research team, can account for the uncertainty of data and its sourcing.

Stanford

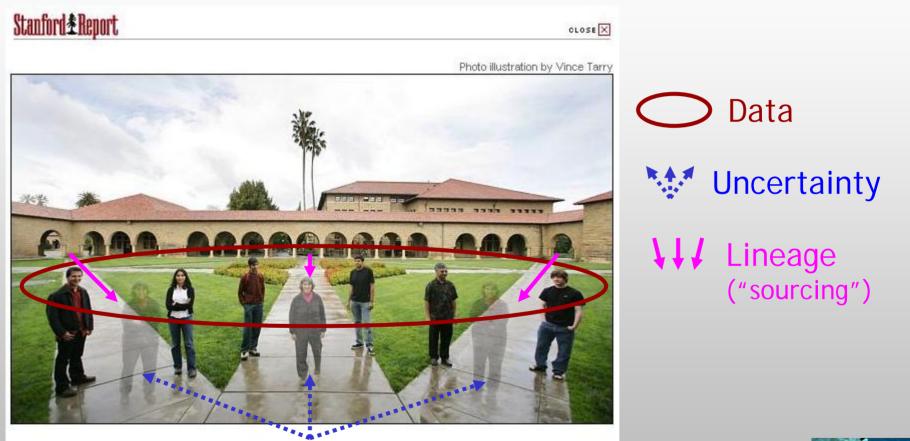
Trio

1. Data

Student #123 is majoring in Econ: (123, Econ) ∈ Major

2. Uncertainty

Student #123 is majoring in Econ or CS: (123, Econ || CS) ∈ Major With confidence 60% student #456 is a CS major: (456, CS: 0.6) ∈ Major


3. Lineage

(456) ∈ HardWorker derived from: (456, CS) ∈ Major "CS is hard" ∈ some web page

The Picture

The Trio database system, developed by Professor Jennifer Widom and her research team, can account for the uncertainty of data and its sourcing.

Why Uncertainty + Lineage?

Many applications seem to need both

- Information extraction systems
- Scientific and sensor data management
- Information integration
- Deduplication (data cleaning)
- Approximate query processing

Why Uncertainty + Lineage?

From a technical standpoint, it turns out that lineage...

- 1. Enables simple and consistent representation of uncertain data
- 2. Correlates uncertainty in query results with uncertainty in the input data
- 3. Can make computation over uncertain data more efficient

Goal

A new kind of DBMS in which:

- 1. Data
- Uncertainty
 Lineage

are all first-class interrelated concepts

With all the usual DBMS features Scalable, reliable, efficient, ad-hoc declarative queries and updates, ...

The Trio Trio

1. Data Model

Simplest extension to relational model that's sufficiently expressive

2. Query Language

Simple extension to SQL with well-defined semantics and intuitive behavior

3. System

A complete open-source DBMS that people want to use

The Trio Trio

1. Data Model

Uncertainty-Lineage Databases (ULDBs)

- 2. Query Language TriQL
- 3. System

First prototype built on top of standard DBMS

Saw(witness, car) // may be uncertain Drives(person, car) // may be uncertain

Suspects(person) = π_{person} (Saw \bowtie Drives)

Data Model: Uncertainty

An uncertain database represents a set of possible instances

- Amy saw either a Honda or a Toyota
- Jimmy drives a Toyota, a Mazda, or both
- Betty saw an Acura with confidence 0.5 or a Toyota with confidence 0.3
- Hank is a suspect with confidence 0.7

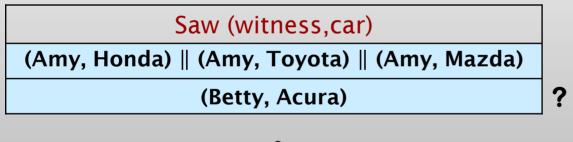
11

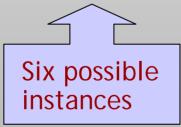
- 1. Alternatives
- 2. '?' (Maybe) Annotations
- 3. Confidences

- 1. Alternatives: uncertainty about value
- 2. '?' (Maybe) Annotations
- 3. Confidences

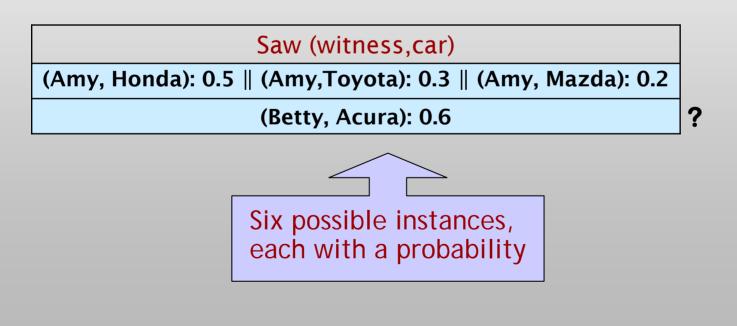
Saw (witness, car)

(Amy, Honda) || (Amy, Toyota) || (Amy, Mazda)




=	witness	car
	Amy	{ Honda, Toyota, Mazda }

- 1. Alternatives
- 2. '?' (Maybe): uncertainty about presence
- 3. Confidences

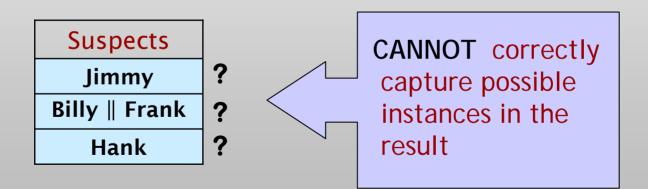


- 1. Alternatives
- 2. '?' (Maybe) Annotations
- 3. Confidences: weighted uncertainty

Deficiency in Model

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)


Drives (person, car)

(Jimmy, Toyota) || (Jimmy, Mazda)

(Billy, Honda) || (Frank, Honda)

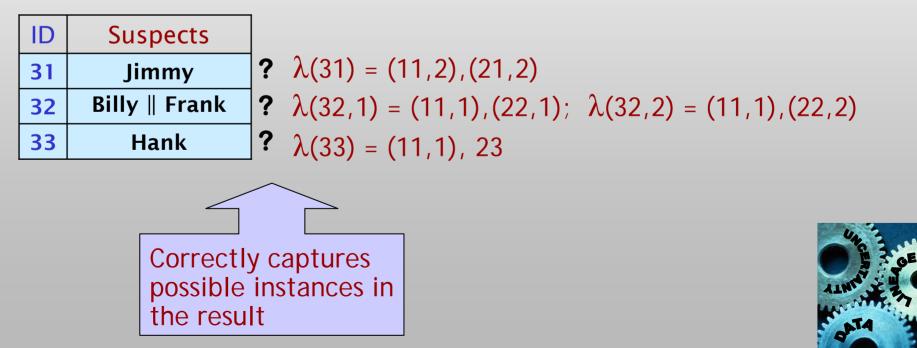
(Hank, Honda)

Suspects = π_{person} (Saw \bowtie Drives)

Lineage (provenance): "where data came from"

- Internal lineage
- External lineage

In Trio: A function λ from alternatives to other alternatives (or external sources)


Example with Lineage

ID	Saw (witness,car)	
11	(Cathy, Honda) (Cathy, Mazda)	

ID	Drives (person,car)	
21	(Jimmy, Toyota) (Jimmy, Mazda)	
22	(Billy, Honda) (Frank, Honda)	
23	(Hank, Honda)	

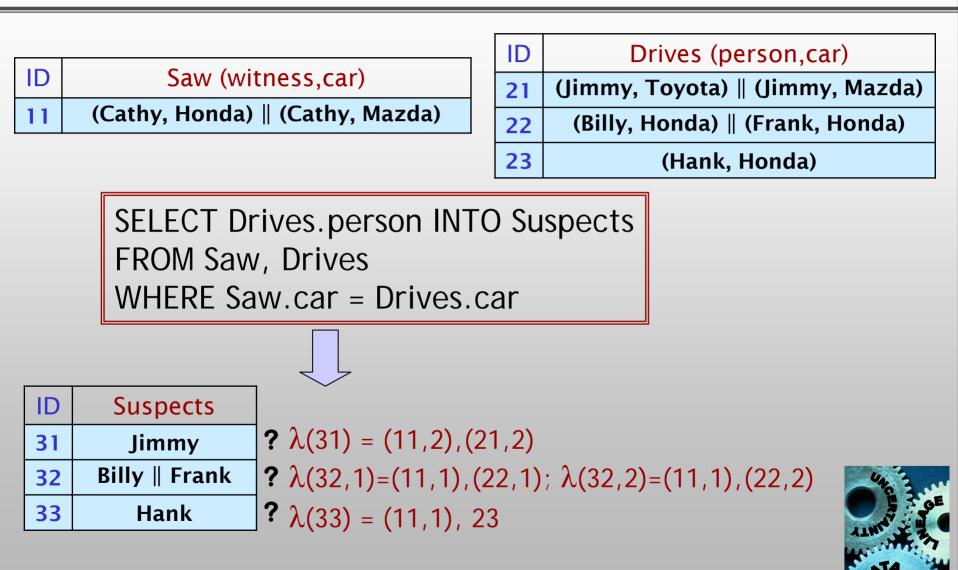
Suspects = π_{person} (Saw \bowtie Drives)

Uncertainty-Lineage Databases (ULDBs)

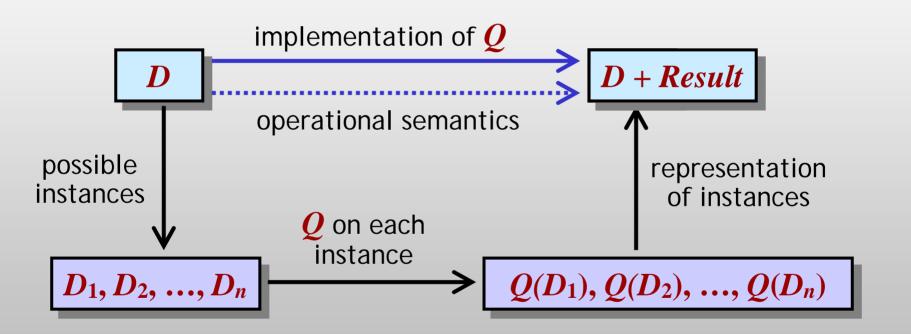
- 1. Alternatives
- 2. '?' (Maybe) Annotations
- 3. Confidences
- 4. Lineage

The ULDB model is "complete"

Querying ULDBs



- Simple extension to SQL
- Formal semantics, intuitive meaning
- Query uncertainty, confidences, and lineage


Initial TriQL Example

Query Q on ULDB D

Built-in function: Conf()

SELECT Drives.person INTO Suspects FROM Saw, Drives WHERE Saw.car = Drives.car AND Conf(Saw) > 0.5 AND Conf(Drives) > 0.8

TriQL: Querying Lineage

Built-in join predicate: Lineage()

SELECT Saw.witness INTO AccusesHank FROM Suspects, Saw WHERE Lineage(Suspects, Saw) AND Suspects.person = 'Hank'

Operational Semantics

SELECT attr-list [INTO table] FROM X1, X2, ..., Xn WHERE predicate

Over conventional relational database:

For each tuple in cross-product of X_1, X_2, \ldots, X_n

- 1. Evaluate the predicate
- 2. If true, project attr-list to create result tuple
- 3. If INTO clause, insert into table

Operational Semantics

SELECT attr-list [INTO table] FROM X1, X2, ..., Xn WHERE predicate

Over ULDB:

For each tuple in cross-product of X_1, X_2, \ldots, X_n

- 1. Create "super tuple" T from all combinations of alternatives
- 2. Evaluate predicate on each alternative in T; keep only the true ones
- 3. Project attr-list on each alternative to create result tuple
- 4. Details: '?', lineage, confidences

SELECT Drives.person FROM Saw, Drives WHERE Saw.car = Drives.car

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)

SELECT Drives.person FROM Saw, Drives WHERE Saw.car = Drives.car

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda)||(Cathy,Honda,Bill,Mazda)||(Cathy,Mazda,Jim,Mazda)||(Cathy,Mazda,Bill,Mazda)

SELECT Drives.person FROM Saw, Drives WHERE Saw.car = Drives.car

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda) || (Cathy,Honda,Bill,Mazda) || (Cathy,Mazda,Jim,Mazda) || (Cathy,Mazda,Bill,Mazda)

SELECT Drives.person FROM Saw, Drives WHERE Saw.car = Drives.car

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda) || (Cathy,Honda,Bill,Mazda) || (Cathy,Mazda,Jim,Mazda) || (Cathy,Mazda,Bill,Mazda)

SELECT Drives.person FROM Saw, Drives WHERE Saw.car = Drives.car

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda) (Cathy,Honda,Bill,Mazda) (Cathy,Mazda,Jim,Mazda) (Cathy,Mazda,Bill,Mazda)

(Cathy,Honda,Hank,Honda) || (Cathy,Mazda,Hank,Honda)

SELECT Drives.person FROM Saw, Drives WHERE Saw.car = Drives.car

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda) (Cathy,Honda,Bill,Mazda) (Cathy,Mazda,Jim,Mazda) (Cathy,Mazda,Bill,Mazda)

(Cathy,Honda,Hank,Honda) || (Cathy,Mazda,Hank,Honda)

SELECT Drives.person FROM Saw, Drives WHERE Saw.car = Drives.car

Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda) (Cathy,Honda,Bill,Mazda) (Cathy,Mazda,Jim,Mazda) (Cathy,Mazda,Bill,Mazda)

(Cathy,Honda,Hank,Honda) || (Cathy,Mazda,Hank,Honda)

SELECT Drives.person INTO Suspects FROM Saw, Drives WHERE Saw.car = Drives.car

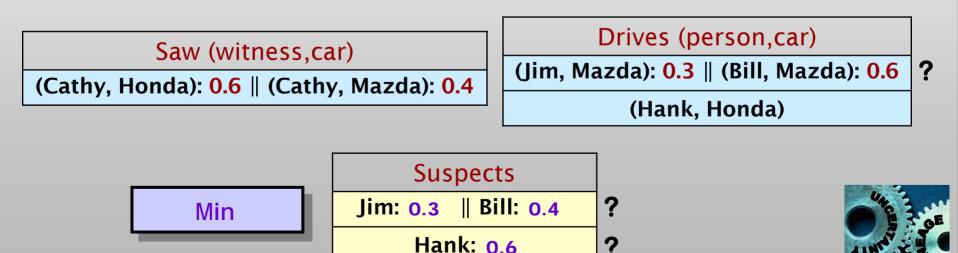
Saw (witness,car)

(Cathy, Honda) || (Cathy, Mazda)

Drives (person,car)

(Jim, Mazda) || (Bill, Mazda)

(Hank, Honda)



Confidences supplied with base data

Trio computes confidences on query results

- Default probabilistic interpretation
- Can choose to plug in different arithmetic

35

Additional Query Constructs

- "Horizontal subqueries" Refer to tuple alternatives as a relation
- Unmerged (horizontal duplicates)
- Flatten, GroupAlts
- NoLineage, NoConf, NoMaybe
- Query-computed confidences
- Data modification statements

Credibility

(1, Amy, Jimmy) || (1, Betty, Billy) || (1, Cathy, Hank)

(2, Cathy, Frank) || (2, Betty, Freddy)

person	score
Amy	10
Betty	15
Cathy	5

List suspects with conf values based on accuser credibility

Suspects

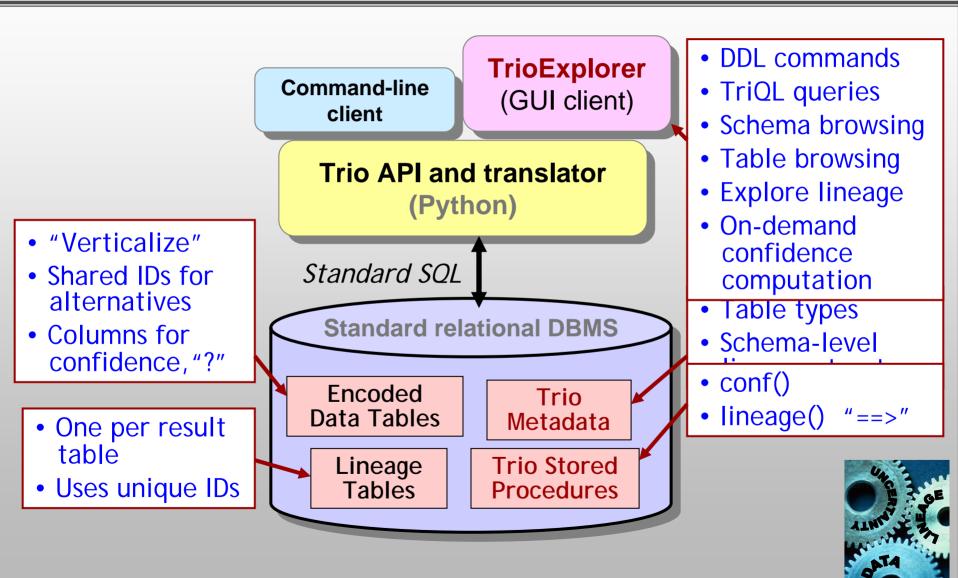
Jimmy: 0.33 || Billy: 0.5 || Hank: 0.166

Frank: 0.25 || Freddy: 0.75

Credibility

Credibility

Credibility


5

Trio System: Version 1

Future Features (sample)

Stanford Lab

Uncertainty

- Incomplete relations
- Continuous uncertainty
- Correlated uncertainty

Lineage

- External lineage
- Update lineage

Query processing

• "Top-K" by confidence

