What is a Database Management System?

1. Manages very large amounts of data.
2. Supports efficient access to very large amounts of data.
3. Supports concurrent access to v.l.a.d.
4. Supports secure, atomic access to v.l.a.d.
Relational Model

- Based on tables, as:

<table>
<thead>
<tr>
<th>acct#</th>
<th>name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>Sally</td>
<td>1000.21</td>
</tr>
<tr>
<td>34567</td>
<td>Sue</td>
<td>285.48</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Today used in *most* DBMS’s.
Three Aspects to Studying DBMS’s

1. Modeling and design of databases.
 ✦ Allows exploration of issues before committing to an implementation.

 ✦ SQL = “intergalactic dataspeak.”

3. DBMS implementation.

CS145 = (1) + (2), while (3) is covered in CS245, CS346, CS347.
Entity/Relationship Model

Diagrams to represent designs.

- *Entity* like object, = “thing.”
- *Entity set* like class = set of “similar” entities/objects.
- *Attribute* = property of entities in an entity set, similar to fields of a struct.
- In diagrams, entity set \rightarrow rectangle; attribute \rightarrow oval.
Relationships

- Connect two or more entity sets.
- Represented by diamonds.

<table>
<thead>
<tr>
<th>Students</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sally</td>
<td>CS145</td>
</tr>
<tr>
<td>Sally</td>
<td>CS244</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Multiway Relationships

Usually *binary* relationships (connecting two E.S.) suffice.

- However, there are some cases where three or more E.S. must be connected by one relationship.

- Example: relationship among students, courses, TA’s. Possibly, this E/R diagram is OK:
- Works in CS145, because each TA is a TA of all students. Connection student-TA is only via the course.

- But what if students were divided into sections, each headed by a TA?
 - Then, a student in CS145 would be related to only one of the TA’s for CS145. Which one?

- Need a 3-way relationship to tell.
<table>
<thead>
<tr>
<th>Students</th>
<th>Courses</th>
<th>TAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>CS145</td>
<td>Don</td>
</tr>
<tr>
<td>Bob</td>
<td>CS145</td>
<td>Edy</td>
</tr>
<tr>
<td>Cal</td>
<td>CS145</td>
<td>Don</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Beers-Bars-Drinkers Example

- Our running example for the course.
Multiplicity of Relationships

Many-many Many-one One-one

Representation of Many-One

- E/R: arrow pointing to “one.”
 - Rounded arrow = “exactly one.”
Example: Drinkers Have Favorite Beers
One-One Relationships

Put arrows in both directions.

Design Issue:
Is the rounded arrow justified?

Design Issue:
Here, manufacturer is an E.S.; in earlier diagrams it is an attribute. Which is right?
Attributes on Relationships

- Shorthand for 3-way relationship:
• A true 3-way relationship.
 ✦ Price depends jointly on beer and bar.

• Notice arrow convention for multiway relationships: “all other E.S. determine one of these.”
 ✦ Not sufficiently general to express any possibility.
 ✦ However, if price, say, depended only on the beer, then we could use two 2-way relationships: price-beer and beer-bar.
 ✦ Or better: just make price an attribute of beer.
Converting Multiway to 2-Way

- Baroque in E/R, but necessary in certain “object-oriented” models.
- Create a new connecting E.S. to represent rows of a relationship set.
 - E.g., (Joe’s Bar, Bud, $2.50) for the Sells relationship.
- Many-one relationships from the connecting E.S. to the others.
Roles

Sometimes an E.S. participates more than once in a relationship.

- Label edges with roles to distinguish.

\[
\begin{array}{ccc}
\text{Married} & \text{Drinkers} \\
\text{husband} & \text{wife} \\
\hline
\end{array}
\]

<table>
<thead>
<tr>
<th>Husband</th>
<th>Wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>d_2</td>
</tr>
<tr>
<td>d_3</td>
<td>d_4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Design Question

Should we replace husband and wife by one relationship spouse?

- Notice *Buddies* is symmetric, *Married* not.
 - No way to say “symmetric” in E/R.

Buddy1		Buddy2
d_1		d_2
d_1		d_3
d_2		d_1
d_2		d_4
...		...
Subclasses

Subclass = special case = fewer entities = more properties.

Example

Ales are a kind of beer. In addition to the properties (= attributes and relationships) of beers, there is a “color” attribute for ales.
E/R Subclasses

- Assume subclasses form a tree (no multiple inheritance).
- *isa* triangles indicate the subclass relation.
Different Subclass Viewpoints

1. *E/R viewpoint*: An entity has a *component* in each entity set to which it logically belongs.
 ✦ Its properties are the union of the properties of these E.S.

2. Contrasts with *object-oriented viewpoint*: An object (entity) belongs to exactly one class.
 ✦ It *inherits* properties of its superclasses.

![Entity-Relationship Diagram](image-url)

- **Beers**
 - *name*
 - *manf*
 - *isa* (Is-A relationship to **Ales**)
- **Ales**
 - *color*
- **Pete’s Ale**
Keys

A key is a set of attributes such that no two entities agree on all these attributes.

- In E/R model, every E.S. must have a key.
 - It could have more than one key, but one set of attributes is the “designated” key.
- In E/R diagrams, you should underline all attributes of the designated key.
Example

Suppose \texttt{name} is key for \texttt{Beers}.

- Beer name is also key for ales.
 - In general, key at root is key for all.
Example: A Multiattribute Key

- Possibly, hours + room also forms a key, but we have not designated it as such.