Logical Query Languages

Motivation:

1.

Logical rules extend more naturally to
recursive queries than does relational algebra.

[1 Used in SQL recursion.

Logical rules form the basis for many
information-integration systems and
applications.

Datalog Example

Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Happy (d) <-
Frequents(d,bar) AND
Likes(d,beer) AND
Sells(bar,beer,p)

e Above is a rule.
o Left side = head.
e Right side = body = AND of subgoals.
e Head and subgoals are atoms.
[Atom = predicate and arguments.

[1 Predicate = relation name or arithmetic
predicate, e.g. <.

[Arguments are variables or constants.

e Subgoals (not head) may optionally be
negated by NOT.

Meaning of Rules

Head is true of its arguments if there exist values
for local variables (those in body, not in head) that
make all of the subgoals true.

e If no negation or arithmetic comparisons, just
natural join the subgoals and project onto the
head variables.

Example

Above rule equivalent to Happy(d) =
Tdrinker (Frequents > Likes < Sells)

Evaluation of Rules

Two, dual, approaches:

1. Variable-based: Consider all possible
assignments of values to variables. If all
subgoals are true, add the head to the result
relation.

2. Tuple-based: Consider all assignments of
tuples to subgoals that make each subgoal
true. If the variables are assigned consistent
values, add the head to the result.

Example: Variable-Based Assignment

S(x,y) <- R(x,z) AND R(z,y)
AND NOT R(x,y)

R =
A B
1 2
2 3

Only assignments that make first subgoal true:
1. z—=1,2z—2.
2. xx— 2, 2—3.

In case (1), y — 3 makes second subgoal true.
Since (1,3) is not in R, the third subgoal is
also true.

[0 Thus, add (z,y) = (1, 3) to relation S.

In case (2), no value of y makes the second
subgoal true. Thus, S =

A B
1 3

Example: Tuple-Based Assignment

Trick: start with the positive (not negated),
relational (not arithmetic) subgoals only.

S(x,y) <- R(x,z) AND R(z,y)
AND NOT R(x,y)

R =
A B
1 2
2 3

e Four assignments of tuples to subgoals:

(1,2) (1,2)
(1,2) (2,3)
(2,3) (1,2)
(2,3) (2,3)

e Only the second gives a consistent value to z.
e That assignment also makes NOT R(x,y) true.

e Thus, (1,3) is the only tuple for the head.

Safety

A rule can make no sense if variables appear in
funny ways.

Examples

e S(x) <-R(y)
e S(x) <- NOT R(x)
e S(x) <-R(y) ANDx<y

In each of these cases, the result is infinite, even if
the relation R is finite.

e To make sense as a database operation, we
need to require three things of a variable x (=
definition of safety). If x appears in either

1. The head,
2. A negated subgoal, or
3. An arithmetic comparison,

then x must also appear in a nonnegated,
“ordinary” (relational) subgoal of the body.

e We insist that rules be safe, henceforth.

Datalog Programs

e A collection of rules is a Datalog program.
e Predicates/relations divide into two classes:

[EDB = extensional database = relation
stored in DB.

[1 IDB = intensional database = relation
defined by one or more rules.

e A predicate must be IDB or EDB, not both.

[1 Thus, an IDB predicate can appear in the
body or head of a rule; EDB only in the
body.

Example

Convert the following SQL (Find the
manufacturers of the beers Joe sells):

Beers (name, manf)
Sells(bar, beer, price)

SELECT manf
FROM Beers
WHERE name IN(
SELECT beer
FROM Sells
WHERE bar = Joe’’s Bar’

) ;
to a Datalog program.

JoeSells(b) <-

Sells(’Joe’’s Bar’, b, p)
Answer (m) <-

JoeSells(b) AND Beers(b,m)

e Note: Beers, Sells = EDB; JoeSells,
Answer = IDB.

Expressive Power of Datalog

e Nonrecursive Datalog = (classical) relational
algebra.

[1 See discussion in text.

e Datalog simulates SQL select-from-where
without aggregation and grouping.

e Recursive Datalog expresses queries that
cannot be expressed in SQL.

e But none of these languages have full
expressive power (Turing completeness).

10

Recursion

e IDB predicate P depends on predicate () if
there is a rule with P in the head and () in a
subgoal.

e Draw a graph: nodes = IDB predicates, arc
P — () means P depends on ().

e Cycles iff recursive.

Recursive Example

Sib(x,y) <- Par(x,p) AND Par(y,p)
AND x <> y

Cousin(x,y) <- Sib(x,y)
Cousin(x,y) <- Par(x,xp)
AND Par(y,yp)
AND Cousin(xp,yp)

11

Iterative Fixed-Point Evaluates Recursive

Rules

Start
IDB = ()

'

Apply rules
to IDB, EDB

Change

done
to IDB? no

yes

12

Example

EDB Par =

/\/\
\ /\
/\/ \

e Note, because of symmetry, Sib and Cousin
facts appear in pairs, so we shall mention only
(z,y) when both (x,y) and (y,x) are meant.

13

Sib Cousin

Initial 0 0

Round 1 (b,¢), (c,e) 0

add: (g,h), (j, k)

Round 2 (b,¢c), (c,e)

add: (g,h), (4, k)

Round 3 (f,9), (f,h)

add: (9,%), (h,1)
(2, k)

Round 4 (k, k)

add: (4,7)

14

Stratified Negation

e Negation wrapped inside a recursion makes no
sense.

e [FEven when negation and recursion are
separated, there can be ambiguity about what
the rules mean, and some one meaning must
be selected.

o Stratified negation is an additional restraint on
recursive rules (like safety) that solves both
problems:

1. It rules out negation wrapped in
recursion.

2. When negation is separate from recursion,
it yields the intuitively correct meaning of
rules (the stratified model).

15

Problem with Recursive Negation

Consider:

P(x) <- Q(x) AND NOT P(x)

e () =EDB=/{1,2}.

e Compute IDB P iteratively?
[0 Initially, P = 0.
[0 Round 1: P ={1,2}.
0 Round 2: P =10, etc., etc.

16

Strata

Intuitively: stratum of an IDB predicate =
maximum number of negations you can pass
through on the way to an EDB predicate.

e Must not be oo in “stratified” rules.

e Define stratum graph:

[1 Nodes = IDB predicates.

[Arc P — @ if () appears in the body of a
rule with head P.

[1 Label that arc — if () is in a negated
subgoal.

Example

P(x) <- Q(x) AND NOT P(x)

17

Example

Which target nodes cannot be reached from any
source node?

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)

NoReach(x) <- Target (x)
AND NOT Reach(x)

NoReach

V-

Reach

18

Computing Strata

Stratum of an IDB predicate A = maximum
number of — arcs on any path from A in the
stratum graph.

Examples

e For first example, stratum of P is oo.

e For second example, stratum of Reach is 0;
stratum of NoReach is 1.

Stratified Negation

A Datalog program is stratified if every IDB
predicate has a finite stratum.

Stratified Model

If a Datalog program is stratified, we can compute
the relations for the IDB predicates lowest-
stratum-first.

19

Example

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)

NoReach(x) <- Target (x)
AND NOT Reach(x)

e EDB:
[0 Source = {1}.
0 Arc = {(1,2), (3,4), (4,3)}.
0 Target = {2,3}.

source target target

e First compute Reach = {1,2} (stratum 0).
e Next compute NoReach = {3}.

20

Is the Stratified Solution “Obvious”?

Not really.

There is another model that makes the rules
true no matter what values we substitute for
the variables.

[J Reach = {1,2,3,4}.
[1 NoReach = 0.

Remember: the only way to make a Datalog
rule false is to find values for the variables
that make the body true and the head false.

[1 For this model, the heads of the rules
for Reach are true for all values, and
in the rule for NoReach the subgoal
NOT Reach(x) assures that the body
cannot be true.

21

