
SQL Recursion

WITH

stu� that looks like Datalog rules
an SQL query about EDB, IDB

� Rule =

[RECURSIVE] R(<arguments>) AS
SQL query

1



Example

Find Sally's cousins, using EDB Par(child,

parent).

WITH

Sib(x,y) AS

SELECT p1.child, p2,child

FROM Par p1, Par p2

WHERE p1.parent = p2.parent

AND p1.child <> p2.child,

RECURSIVE Cousin(x,y) AS

Sib

UNION

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin

WHERE p1.parent = Cousin.x

AND p2.parent = Cousin.y

)

SELECT y

FROM Cousin

WHERE x = 'Sally';

2



Plan for Describing Legal SQL recursion

1. De�ne \monotonicity," a property that
generalizes \strati�cation."

2. Generalize stratum graph to apply to SQL
queries instead of Datalog rules.

✦ (Non)monotonicity replaces NOT in
subgoals.

3. De�ne semantically correct SQL recursions in
terms of stratum graph.

Monotonicity

If relation P is a function of relation Q (and
perhaps other things), we say P is monotone in
Q if adding tuples to Q cannot cause any tuple of
P to be deleted.

3



Monotonicity Example

In addition to certain negations, an aggregation
can cause nonmonotonicity.

Sells(bar, beer, price)

SELECT AVG(price)

FROM Sells

WHERE bar = 'Joe''s Bar';

� Adding to Sells a tuple that gives a new beer
Joe sells will usually change the average price
of beer at Joe's.

� Thus, the former result, which might be a
single tuple like (2:78) becomes another single
tuple like (2:81), and the old tuple is lost.

4



Generalizing Stratum Graph to SQL

� Node for each relation de�ned by a \rule."

� Node for each subquery in the \body" of a
rule.

� Arc P ! Q if

a) P is \head" of a rule, and Q is a relation
appearing in the FROM list of the rule
(not in the FROM list of a subquery), as
argument of a UNION, etc.

b) P is head of a rule, and Q is a subquery
directly used in that rule (not nested
within some larger subquery).

c) P is a subquery, and Q is a relation
or subquery used directly within P
[analogous to (a) and (b) for rule heads].

� Label the arc � if P is not monotone in Q.

� Requirement for legal SQL recursion: �nite
strata only.

5



Example

For the Sib/Cousin example, there are three nodes:
Sib, Cousin, and SQ (the second term of the
union in the rule for Cousin).

Sib Cousin

SQ

� No nonmonotonicity, hence legal.

6



A Nonmonotonic Example

Change the UNION to EXCEPT in the rule for
Cousin.

RECURSIVE Cousin(x,y) AS

Sib

EXCEPT

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin

WHERE p1.parent = Cousin.x

AND p2.parent = Cousin.y

)

� Now, adding to the result of the subquery
can delete Cousin facts; i.e., Cousin is
nonmonotone in SQ.

Sib Cousin

SQ

�

� In�nite number of �'s in cycle, so illegal in
SQL.

7



Another Example: NOT Doesn't Mean

Nonmonotone

Leave Cousin as it was, but negate one of the
conditions in the where-clause.

RECURSIVE Cousin(x,y) AS

Sib

UNION

(SELECT p1.child, p2.child

FROM Par p1, Par p2, Cousin

WHERE p1.parent = Cousin.x

AND NOT (p2.parent = Cousin.y)

)

� You might think that SQ depends negatively
on Cousin, but it doesn't.

✦ If I add a new tuple to Cousin, all the old
tuples still exist and yield whatever tuples
in SQ they used to yield.

✦ In addition, the new Cousin tuple might
combine with old p1 and p2 tuples to
yield something new.

8



Object-Oriented DBMS's

� ODMG = Object Data Management Group:
an OO standard for databases.

� ODL = Object Description Language: design
in the OO style.

� OQL = Object Query Language: queries
an OO database with an ODL schema, in a
manner similar to SQL.

9



ODL Overview

Class declarations include:

1. Name for the class.

2. Key declaration(s), which are optional.

3. Extent declaration = name for the set of
currently existing objects of a class.

4. Element declarations. An element is an
attribute, a relationship, or a method.

10



ODL Class Declarations

class <name> {

elements = attributes, relationships,
methods

}

Element Declarations

attribute <type> <name>;
relationship <rangetype> <name>;

� Relationships involve objects; attributes
(usually) involve non-object values, e.g.,
integers.

Method Example

float gpa(in string) raises(noGrades)

� float = return type.

� in: indicates the argument (a student name,
presumably) is read-only.

✦ Other options: out, inout.

� noGrades is an exception that can be raised
by method gpa.

11



ODL Relationships

� Only binary relations supported.

✦ Multiway relationships require a
\connecting" class, as discussed for E/R
model.

� Relationships come in inverse pairs.

✦ Example: \Sells" between beers and bars
is represented by a relationship in bars,
giving the beers sold, and a relationship
in beers giving the bars that sell it.

� Many-many relationships have a set type
(called a collection type) in each direction.

� Many-one relationships have a set type for the
one, and a simple class name for the many.

� One-one relations have classes for both.

12



Beers-Bars-Drinkers Example

class Beers {

attribute string name;

attribute string manf;

relationship Set<Bars> servedAt

inverse Bars::serves;

relationship Set<Drinkers> fans

inverse Drinkers::likes;

}

� An element from another class is indicated by
<class>::

� Form a set type with Set<type>.

13



class Bars {

attribute string name;

attribute Struct Addr

{string street, string city, int zip}

address;

attribute Enum Lic {full, beer, none}

licenseType;

relationship Set<Drinkers> customers

inverse Drinkers::frequents;

relationship Set<Beers> serves

inverse Beers::servedAt;

}

� Structured types have names and bracketed
lists of �eld-type pairs.

� Enumerated types have names and bracketed
lists of values.

14



class Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

}

� Note reuse of Addr type.

15



ODL Type System

� Basic types: int, real/
oat, string, enumerated
types, and classes.

� Type constructors: Struct for structures and
�ve collection types: Set, Bag, List, Array,
and Dictionary.

� Relationship types many only be classes or a
collection of a class.

16



Many-One Relationships

Don't use a collection type for relationship in the
\many" class.

Example: Drinkers Have Favorite Beers

class Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Beers favoriteBeer

inverse Beers::realFans;

relationship Set<Bars> frequents

inverse Bars::customers;

}

� Also add to Beers:

relationship Set<Drinkers> realFans

inverse Drinkers::favoriteBeer;

17



Example: Multiway Relationship

Consider a 3-way relationship bars-beers-prices.
We have to create a connecting class BBP.

class Prices {

attribute real price;

relationship Set<BBP> toBBP

inverse BBP::thePrice;

}

class BBP {

relationship Bars theBar inverse ...

relationship Beers theBeer inverse ...

relationship Prices thePrice

inverse Prices::toBBP;

}

� Inverses for theBar, theBeer must be added
to Bars, Beers.

� Better in this special case: make no Prices

class; make price an attribute of BBP.

� Notice that keys are optional.

✦ BBP has no key, yet is not \weak." Object
identity su�ces to distinguish di�erent
BBP objects.

18



Roles in ODL

Names of relationships handle \roles."

Example: Spouses and Drinking Buddies

class Drinkers {

attribute string name;

attribute Struct Bars::Addr

address;

relationship Set<Beers> likes

inverse Beers::fans;

relationship Set<Bars> frequents

inverse Bars::customers;

relationship Drinkers husband

inverse wife;

relationship Drinkers wife

inverse husband;

relationship Set<Drinkers> buddies

inverse buddies;

}

� Notice that Drinkers:: is optional when the
inverse is a relationship of the same class.

19


