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20.4 On-Line Analytic Processing

We shall now take up an important class of applications for integrated informa-
tion systems, especially data warehouses. Companies and organizations create
a warehouse with a copy of large amounts of their available data and assign
analysts to query this warehouse for patterns or trends of importance to the or-
ganization. This activity, called OLAP (standing for On-Line Analytic Process-
ing and pronounced “oh-lap”), generally involves highly complex queries that
use one or more aggregations. These queries are often termed OLAP queries
or decision-support queries. Some examples will be given in Section 20.4.1; a
typical example is to search for products with increasing or decreasing overall
sales.

Decision-support queries used in OLAP applications typically examine very
large amounts of data, even if the query results are small. In contrast, common
database operations, such as bank deposits or airline reservations, each touch
only a tiny portion of the database; the latter type of operation is often referred
to as OLTP (On-Line Transaction Processing, spoken “oh-ell-tee-pee”).

Recently, new query-processing techniques have been developed that are
especially good at executing OLAP queries effectively. Furthermore, because of
the distinct nature of a certain class of OLAP queries, special forms of DBMS’s
have been developed and marketed to support OLAP applications. The same
technology is beginning to migrate to standard SQIL systems, as well. We shall
discuss the architecture of these systems in Section 20.5.

20.4.1 OLAP Applications

A common OLAP application uses a warehouse of sales data. Major store chains
will accumulate terabytes of information representing every sale of every item
at every store. Queries that aggregate sales into groups and identify significant
groups can be of great use to the company in predicting future problems and
opportunities.

Example 20.27: Suppose the Aardvark Automobile Co. builds a data ware-
house to analyze sales of its cars. The schema for the warehouse might be:

Sales(serialNo, date, dealer, price)
Autos(seriallNo, model, color)
Dealers(name, city, state, phone)

A typical decision-support query might examine sales on or after April 1, 2001
to see how the recent average price per vehicle varies by state. Such a query is
shown in Fig. 20.19.

Notice how the query of Fig. 20.19 touches much of the data of the database,
as 1t classifies every recent Sales fact by the state of the dealer that sold it.
In contrast, common OLTP queries, such as “find the price at which the auto
with serial number 123 was sold,” would touch only a single tuple of the data.
O
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Warehouses and OLAP

There are several reasons why data warehouses play an important role in
OLAP applications. First, the warehouse may be necessary to organize
and centralize corporate data in a way that supports OLAP queries; the
data may initially be scattered across many different databases. But often
more important is the fact that OLAP queries, being complex and touch-
ing much of the data, take too much time to be executed in a transaction-
processing system with high throughput requirements. OLAP queries of-
ten can be considered “long transactions” in the sense of Section 19.7.
Long transactions locking the entire database would shut down the
ordinary OLTP operations (e.g., recording new sales as they occur could
not be permitted if there were a concurrent OLAP query computing av-
erage sales). A common solution is to make a copy of the raw data in a
warehouse, run OLAP queries only at the warehouse, and run the OLTP
queries and data modifications at the data sources. In a common sce-
nario, the warehouse is only updated overnight, while the analysts work
on a frozen copy during the day. The warehouse data thus gets out of date
by as much as 24 hours, which limits the timeliness of its answers to OLAP
queries, but the delay is tolerable in many decision-support applications.

For another OLAP example, consider a credit-card company trying to decide
whether applicants for a card are likely to be credit-worthy. The company
creates a warechouse of all its current customers and their payment history.
OLAP queries search for factors, such as age, income, home-ownership, and
zip-code, that might help predict whether customers will pay their bills on time.
Similarly, hospitals may use a warehouse of patient data — their admissions,
tests administered, outcomes, diagnoses, treatments, and so on — to analyze
for risks and select the best modes of treatment.

SELECT state, AVG(price)

FROM Sales, Dealers

WHERE Sales.dealer = Dealers.name AND
date >= ’2001-01-04’

GROUP BY state;

Figure 20.19: Find average sales price by state
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20.4.2 A Multidimensional View of OLAP Data

In typical OLAP applications there is a central relation or collection of data,
called the fact table. A fact table represents events or objects of interest, such
as sales in Example 20.27. Often, it helps to think of the objects in the fact
table as arranged in a multidimensional space, or “cube.” Figure 20.20 suggests
three-dimensional data, represented by points within the cube; we have called
the dimensions car, dealer, and date, to correspond to our earlier example of
automobile sales. Thus, in Fig. 20.20 we could think of each point as a sale of
a single automobile, while the dimensions represent properties of that sale.
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Figure 20.20: Data organized in a multidimensional space

A data space such as Fig. 20.20 will be referred to informally as a “data
cube,” or more precisely as a raw-data cube when we want to distinguish it
from the more complex “data cube” of Section 20.5. The latter, which we shall
refer to as a formal data cube when a distinction from the raw-data cube 1s
needed, differs from the raw-data cube in two ways:

1. Tt includes aggregations of the data in all subsets of dimensions, as well
as the data itself.

2. Points in the formal data cube may represent an initial aggregation of
points in the raw-data cube. For instance, instead of the “car” dimension
representing each individual car (as we suggested for the raw-data cube),
that dimension might be aggregated by model only, and a point of a formal
data cube could represent the total sales of all cars of a given model by a
given dealer on a given day.

The distinctions between the raw-data cube and the formal data cube are
reflected in the two broad directions that have been taken by specialized systems
that support cube-structured data for OLAP:

1. ROLAP, or Relational OLAP. In this approach, data may be stored in
relations with a specialized structure called a “star schema,” described in
Section 20.4.3. One of these relations i1s the “fact table,” which contains
the rew, or unaggregated, data, and corresponds to what we called the
raw-data cube. Other relations give information about the values along
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each dimension. The query language and other capabilities of the system
may be tailored to the assumption that data is organized this way.

2. MOLAP, or Multidimensional OLAP. Here, a specialized structure, the
formal “data cube” mentioned above, is used to hold the data, includ-
ing its aggregates. Nonrelational operators may be implemented by the
system to support OLAP queries on data in this structure.

20.4.3 Star Schemas

A star schema consists of the schema for the fact table, which links to several
other relations, called “dimension tables.” The fact table is at the center of the
“star,” whose points are the dimension tables. A fact table normally has several
attributes that represent dimensions, and one or more dependent attributes
that represent properties of interest for the point as a whole. For instance,
dimensions for sales data might include the date of the sale, the place (store)
of the sale, the type of item sold, the method of payment (e.g., cash or a credit
card), and so on. The dependent attribute(s) might be the sales price, the cost
of the item, or the tax, for instance.

Example 20.28: The Sales relation from Example 20.27
Sales(serialNo, date, dealer, price)
1s a fact table. The dimensions are:

1. seriallNo, representing the automobile sold, i.e., the position of the point
in the space of possible automobiles.

2. date, representing the day of the sale, i.e., the position of the event in
the time dimension.

3. dealer, representing the position of the event in the space of possible
dealers.

The one dependent attribute is price, which is what OLAP queries to this
database will typically request in an aggregation. However, queries asking for
a count, rather than sum or average price would also make sense, e.g., “list the
total number of sales for each dealer in the month of May, 2001.” O

Supplementing the fact table are dimension tables describing the values
along each dimension. Typically, each dimension attribute of the fact table
is a foreign key, referencing the key of the corresponding dimension table, as
suggested by Fig. 20.21. The attributes of the dimension tables also describe
the possible groupings that would make sense in an SQL GROUP BY query. An
example should make the 1deas clearer.

Example 20.29: For the automobile data of Example 20.27, two of the three
dimension tables are obvious:
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Dimension Dimension
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Dimension Dependent
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Fact table
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Figure 20.21: The dimension attributes in the fact table reference the keys of
the dimension tables

Autos(seriallNo, model, color)
Dealers(name, city, state, phone)

Attribute seriallio in the fact table
Sales(serialNo, date, dealer, price)

is a foreign key, referencing seriallo of dimension table Autos.” The attributes
Autos.model and Autos.color give properties of a given auto. We could have
added many more attributes in this relation, such as boolean attributes indicat-
ing whether the auto has an automatic transmission. If we join the fact table
Sales with the dimension table Autos, then the attributes model and color
may be used for grouping sales in interesting ways. For instance, we can ask
for a breakdown of sales by color, or a breakdown of sales of the Gobi model
by month and dealer.

Similarly, attribute dealer of Sales is a foreign key, referencing name of
the dimension table Dealers. If Sales and Dealers are joined, then we have
additional options for grouping our data; e.g., we can ask for a breakdown of
sales by state or by city, as well as by dealer.

One might wonder where the dimension table for time (the date attribute of
Sales)is. Since time is a physical property, it does not make sense to store facts
about time in a database, since we cannot change the answer to questions such
as “in what year does the day July 5, 2000 appear?” However, since grouping
by various time units, such as weeks, months, quarters, and years, is frequently

71t happens that seriallo is also a key for the Sales relation, but there need not be an
attribute that is both a key for the fact table and a foreign key for some dimension table.
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desired by analysts, it helps to build into the database a notion of time, as if
there were a time dimension table such as

Days(day, week, month, year)
A typical tuple of this “relation” would be
(5, 27, 7, 2000)

representing July 5, 2000. The interpretation is that this day is the fifth day
of the seventh month of the year 2000; it also happens to fall in the 27th full
week of the year 2000. There is a certain amount of redundancy, since the week
is calculable from the other three attributes. However, weeks are not exactly
commensurate with months, so we cannot obtain a grouping by months from
a grouping by weeks, or vice versa. Thus, it makes sense to imagine that both
weeks and months are represented in this “dimension table.” O

20.4.4 Slicing and Dicing

We can think of the points of the raw-data cube as partitioned along each
dimension at some level of granularity. For example, in the time dimension, we
might partition (“group by” in SQL terms) according to days, weeks, months,
years, or not partition at all. For the cars dimension, we might partition by
model, by color, by both model and color, or not partition. For dealers, we can
partition by dealer, by city, by state, or not partition.

car _v

deder

date —=
Figure 20.22: Dicing the cube by partitioning along each dimension

A choice of partition for each dimension “dices” the cube, as suggested by
Fig. 20.22. The result is that the cube is divided into smaller cubes that repre-
sent groups of points whose statistics are aggregated by a query that performs
the partitioning in its GROUP BY clause. Through the WHERE clause, a query also
has the option of focusing on particular partitions along one or more dimensions
(i.e., on a particular “slice” of the cube).

Example 20.30: Figure 20.23 suggests a query in which we ask for a slice in
one dimension (the date), and dice in two other dimensions (car and dealer).
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The date is divided into four groups, perhaps the four years over which data
has been accumulated. The shading in the diagram suggests that we are only
interested in one of these years.

The cars are partitioned into three groups, perhaps sedans, SUV’s, and
convertibles, while the dealers are partitioned into two groups, perhaps the
eastern and western regions. The result of the query is a table giving the total
sales in six categories for the one year of interest. O

car_y
deder LA
date —>

Figure 20.23: Selecting a slice of a diced cube
The general form of a so-called “slicing and dicing” query is thus:

SELECT grouping attributes and aggregations

FROM fact table joined with zero or more dimension tables
WHERE certain attributes are constant

GROUP BY grouping attributes;

Example 20.31: Let us continue with our automobile example, but include
the conceptual Days dimension table for time discussed in Example 20.29. If
the Gobi isn’t selling as well as we thought it would, we might try to find out
which colors are not doing well. This query uses only the Autos dimension table
and can be written in SQL as:

SELECT color, SUM(price)

FROM Sales NATURAL JOIN Autos
WHERE model = ’Gobi’

GROUP BY color;

This query dices by color and then slices by model, focusing on a particular
model, the Gobi, and ignoring other data.

Suppose the query doesn’t tell us much; each color produces about the same
revenue. Since the query does not partition on time, we only see the total over
all time for each color. We might suppose that the recent trend is for one or
more colors to have weak sales. We may thus issue a revised query that also
partitions time by month. This query is:
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SELECT color, month, SUM(price)

FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day
WHERE model = ’Gobi’

GROUP BY color, month;

It is important to remember that the Days relation is not a conventional stored
relation, although we may treat it as if it had the schema

Days(day, week, month, year)

The ability to use such a “relation” is one way that a system specialized to
OLAP queries could differ from a conventional DBMS.

We might discover that red Gobis have not sold well recently. The next
question we might ask is whether this problem exists at all dealers, or whether
only some dealers have had low sales of red Gobis. Thus, we further focus the
query by looking at only red Gobis, and we partition along the dealer dimension
as well. This query is:

SELECT dealer, month, SUM(price)

FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day
WHERE model = ’Gobi’ AND color = ’red’

GROUP BY month, dealer;

At this point, we find that the sales per month for red Gobis are so small
that we cannot observe any trends easily. Thus, we decide that 1t was a mistake
to partition by month. A better idea would be to partition only by years, and
look at only the last two years (2001 and 2002, in this hypothetical example).
The final query is shown in Fig. 20.24. O

SELECT dealer, year, SUM(price)
FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day
WHERE model = ’Gobi’ AND
color = ’red’ AND
(year = 2001 OR year = 2002)
GROUP BY year, dealer;

Figure 20.24: Final slicing-and-dicing query about red Gobi sales

20.4.5 Exercises for Section 20.4

Exercise 20.4.1: An on-line seller of computers wishes to maintain data about
orders. Customers can order their PC with any of several processors, a selected
amount of main memory, any of several disk units, and any of several CD or
DVD readers. The fact table for such a database might be:
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Drill-Down and Roll-Up

Example 20.31 illustrates two common patterns in sequences of queries
that slice-and-dice the data cube.

1. Drill-down is the process of partitioning more finely and/or focusing
on specific values in certain dimensions. Each of the steps except
the last in Example 20.31 is an instance of drill-down.

2. Roll-up is the process of partitioning more coarsely. The last step,
where we grouped by years instead of months to eliminate the effect
of randomness in the data, is an example of roll-up.

Orders(cust, date, proc, memory, hd, rd, quant, price)

We should understand attribute cust to be an ID that is the foreign key for
a dimension table about customers, and understand attributes proc, hd (hard
disk), and rd (removable disk: CD or DVD, typically) similarly. For example,
an hd ID might be elaborated in a dimension table giving the manufacturer of
the disk and several disk characteristics. The memory attribute is simply an
integer: the number of megabytes of memory ordered. The quant attribute is
the number of machines of this type ordered by this customer, and the price
attribute is the total cost of each machine ordered.

a) Which are dimension attributes, and which are dependent attributes?

b) For some of the dimension attributes, a dimension table is likely to be
needed. Suggest appropriate schemas for these dimension tables.

Exercise 20.4.2: Suppose that we want to examine the data of Exercise 20.4.1
to find trends and thus predict which components the company should order
more of. Describe a series of drill-down and roll-up queries that could lead to
the conclusion that customers are beginning to prefer a DVD drive to a CD
drive.

20.5 Data Cubes

In this section, we shall consider the “formal” data cube and special operations
on data presented in this form. Recall from Section 20.4.2 that the formal data
cube (just “data cube” in this section) precomputes all possible aggregates in
a systematic way. Surprisingly, the amount of extra storage needed is often
tolerable, and as long as the warehoused data does not change, there is no
penalty incurred trying to keep all the aggregates up-to-date.
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In the data cube, it is normal for there to be some aggregation of the raw
data of the fact table before it is entered into the data-cube and its further
aggregates computed. For instance, in our cars example, the dimension we
thought of as a serial number in the star schema might be replaced by the
model of the car. Then, each point of the data cube becomes a description of a
model, a dealer and a date, together with the sum of the sales for that model,
on that date, by that dealer. We shall continue to call the points of the (formal)
data cube a “fact table,” even though the interpretation of the points may be
slightly different from fact tables in a star schema built from a raw-data cube.

20.5.1 The Cube Operator

Given a fact table F', we can define an augmented table CUBE(F') that adds
an additional value, denoted *, to each dimension. The * has the intuitive
meaning “any,” and it represents aggregation along the dimension in which
it appears. Figure 20.25 suggests the process of adding a border to the cube
in each dimension, to represent the * value and the aggregated values that
it implies. In this figure we see three dimensions, with the lightest shading
representing aggregates in one dimension, darker shading for aggregates over
two dimensions, and the darkest cube in the corner for aggregation over all
three dimensions. Notice that if the number of values along each dimension is
reasonably large, but not so large that most points in the cube are unoccupied,
then the “border” represents only a small addition to the volume of the cube
(i.e., the number of tuples in the fact table). In that case, the size of the stored
data CUBE(F) is not much greater than the size of F' itself.

Figure 20.25: The cube operator augments a data cube with a border of aggre-
gations in all combinations of dimensions

A tuple of the table CUBE(F') that has * in one or more dimensions will
have for each dependent attribute the sum (or another aggregate function) of
the values of that attribute in all the tuples that we can obtain by replacing
the *’s by real values. In effect, we build into the data the result of aggregating
along any set of dimensions. Notice, however, that the CUBE operator does
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not support aggregation at intermediate levels of granularity based on values in
the dimension tables. For instance, we may either leave data broken down by
day (or whatever the finest granularity for time is), or we may aggregate time
completely, but we cannot, with the CUBE operator alone, aggregate by weeks,
months, or years.

Example 20.32: Let us reconsider the Aardvark database from Example 20.27
in the light of what the CUBE operator can give us. Recall the fact table from
that example 1s

Sales(serialNo, date, dealer, price)

However, the dimension represented by seriallo is not well suited for the cube,
since the serial number is a key for Sales. Thus, summing the price over all
dates, or over all dealers, but keeping the serial number fixed has no effect; we
would still get the “sum” for the one auto with that serial number. A more
useful data cube would replace the serial number by the two attributes — model
and color — to which the serial number connects Sales via the dimension table
Autos. Notice that if we replace serialNo by model and color, then the cube
no longer has a key among its dimensions. Thus, an entry of the cube would
have the total sales price for all automobiles of a given model, with a given
color, by a given dealer, on a given date.

There i1s another change that is useful for the data-cube implementation
of the Sales fact table. Since the CUBE operator normally sums dependent
variables, and we might want to get average prices for sales in some category,
we need both the sum of the prices for each category of automobiles (a given
model of a given color sold on a given day by a given dealer) and the total
number of sales in that category. Thus, the relation Sales to which we apply
the CUBE operator 1s

Sales(model, color, date, dealer, val, cnt)

The attribute val is intended to be the total price of all automobiles for the
given model, color, date, and dealer, while cnt is the total number of automo-
biles in that category. Notice that in this data cube, individual cars are not
identified; they only affect the value and count for their category.

Now, let us consider the relation CUBE(Sales). A hypothetical tuple that
would be in both Sales and CUBE(Sales), is

(*Gobi’, ’red’, ’2001-05-21’, ’Friendly Fred’, 45000, 2)

The interpretation is that on May 21, 2001, dealer Friendly Fred sold two red
Gobis for a total of $45,000. The tuple

(’Gobi’, *, ’2001-05-21’, ’Friendly Fred’, 152000, 7)
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says that on May 21, 2001, Friendly Fred sold seven Gobis of all colors, for
a total price of $152,000. Note that this tuple is in CUBE(Sales) but not in
Sales.

Relation CUBE(Sales) also contains tuples that represent the aggregation
over more than one attribute. For instance,

(’Gobi’, *, ’2001-05-21’, *, 2348000, 100)

says that on May 21, 2001, there were 100 Gobis sold by all the dealers, and
the total price of those Gobis was $2,348,000.

(’Gobi’, *, *, *, 1339800000, 58000)

Says that over all time, dealers, and colors, 58,000 Gobis have been sold for a
total price of $1,339,800,000. Lastly, the tuple

(*, *, *, *x 3521727000, 198000)

tells us that total sales of all Aardvark models in all colors, over all time at all

dealers is 198,000 cars for a total price of $3,521,727,000. O

Consider how to answer a query in which we specify conditions on certain
attributes of the Sales relation and group by some other attributes, while
asking for the sum, count, or average price. In the relation CUBE(Sales), we
look for those tuples ¢t with the following properties:

1. If the query specifies a value v for attribute a, then tuple ¢ has v in its
component for a.

2. If the query groups by an attribute a, then ¢ has any non-* value in its
component for a.

3. If the query neither groups by attribute a nor specifies a value for a, then
t has * in its component for a.

Each tuple ¢ has the sum and count for one of the desired groups. If we want
the average price, a division is performed on the sum and count components of
each tuple ¢.

Example 20.33: The query

SELECT color, AVG(price)
FROM Sales

WHERE model = ’Gobi’
GROUP BY color;

is answered by looking for all tuples of CUBE(Sales) with the form

(?Gobi’, e, *, *, v, n)
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where ¢ is any specific color. In this tuple, v will be the sum of sales of Gobis
in that color, while n will be the number of sales of Gobis in that color. The
average price, although not an attribute of Sales or CUBE(Sales) directly, is
v/n. The answer to the query is the set of (¢,v/n) pairs obtained from all
(*Gobi’, ¢, *, * v, n) tuples. O



