CS145 Lecture Notes #11
SQL Transactions

Transactions are motivated by two of the properties of a DBMS (discussed
way back in Lecture Notes #1):
e Multiuser access. most database systems run as servers where multi-
ple clients can simultaneously operate on the same database
e Safe from system crashes

Example schema:

CREATE TABLE Account (nunber | NTEGER PRI MARY KEY,
nane CHAR(30),
bal ance FLOAT);

Example: concurrent withdrawals

-- let user input account nunber

SELECT bal ance | NTO nyBal ance

FROM Account WHERE numrber = myNumber ;

-- display current bal ance

-- let user input anmount of w thdrawa

nyBal ance : = nyBal ance - withdrawal ;

| F (nmyBal ance >= 0) THEN
UPDATE Account SET bal ance = nyBal ance
WHERE nunber = myNumber;

END | F;

e Homer withdraws $100 from account #123

¢ Marge withdraws $50 from account #123

e Initial balance — $400, final balance — ?7??
~» Interleaving concurrent operations may cause problems
~» But interleaving operations on different accounts is okay

Example: balance transfer

UPDATE Account SET bal ance = bal ance - 100. 00

WHERE nunber = 123;

UPDATE Account SET bal ance = bal ance + 100. 00

WHERE nunber = 456;

e DBMS crashes in the middle—what now?

e DBMS huffers pages and updates them in memory for efficiency; be-
fore they are written back to disk, DBMS crashes—what now?

Solution: transactions!

Jun Yang 1 CS145 Spring 1999

A transaction is a sequence of one or more SQL operations (interactive or
embedded) treated as one unit:
e Transaction begins automatically when the client issues its first SQL
command
e Transaction ends (and new one begins) when the client issues the
command COMWM T
e Transactions obey the “ACID properties’: Atomicity, Consistency,
| solation, Durability

ACID Properties
| solation

e Transactions must behave as if they were executed in isolation from
each other
e |solation is obtained through serializability: operations within trans-
actions may be interleaved (for efficiency), but execution must be
equivalent to some serial order
~+» Solves the problem of concurrent withdrawals
How is this guarantee achieved?
— Take CS245!
— Locking, multiversion concurrency control, etc.

Dur ability

e If the DBMS crashes after a transaction commits, all effects of the
transaction must remain in the database
— Sounds obvious, but every DBM S manipulates datain memory
~» Solvesthe problem of system crash after balance transfer
e How isthis guarantee achieved?
— Take CS245!
— Logging, and various other mechanisms

Atomicity

e Each transaction’s operations are execute all-or-nothing, never left
“half-done’

— If the DBMS crashes before a transaction commits, no effects of
this transaction should remain in the database—the transaction
may start over when the DBM S comes back up

— If an error or exception occurs during a transaction, partial ef-
fects of the transaction must be undone

Jun Yang 2 CS145 Spring 1999

e Transaction rollback (a.k.a. transaction abort):
— Undoes partia effects of atransaction
— May be system-initiated or client-initiated
Example of client-initiated rollback:

-- get user input and execute SQL commands
-- confirmresults with user

I F (confirmed) THEN COW T;

ELSE ROLLBACK;

END | F;

~» Solves the problem of system crash during balance transfer
e How isthis guarantee achieved?
— Take CS245!

— Logging

Consistency

e Assume al database constraints are true at the start of every transac-
tion, they should remain true at the end of every transaction
e How isthis guarantee achieved?
— Guaranteed by the transactions themselves and/or constraints
and triggers declared in the DBM S

| solation Levels
Serializable

e Strongest isolation level—SQL default
~» Weaker isolation levelsincrease performance by eliminating overhead
and allowing higher degrees of concurrency

Read Uncommitted

e A dataitemisdirty if it iswritten by an uncommitted transaction
e Problem of reading dirty data written by another uncommitted trans-
action: what if that transaction eventually aborts?
Example: wrong average
~» T2 may only care about approximate average — dirty reads okay

- T1. begin: -- T2. begin:
- Tl.stepl: -- T2.stepl:
UPDATE Account SELECT AV(bal ance)
SET bal ance = bal ance - 200. 00 FROM Account ;
VWHERE nunber = 123; -- T2.comm t:
- T1. abort: COW T;
ROLLBACK,;

Jun Yang 3 CS145 Spring 1999

Read Committed

e A read-committed transaction cannot read dirty data written by other
uncommitted transactions
e But read-committed is still not necessarily serializable
Example: different averages

-- T1. begin: -- T2. begin:
-- T1.stepl: -- T2.stepl:
UPDATE Account SELECT AV(bal ance)

SET bal ance = bal ance - 200. 00 FROM Account ;

WHERE number = 123; -- T2.step2:
-- Tl.commt: SELECT AV bal ance)
COW T, FROM Account ;
-- T2.commit:
COW T;
Repeatable Read

e Inarepeatable-read transaction, if atuple is read once, then the same
tuple must be retrieved again if the query is repeated
~» Possible implementation: lock every tuple read by the transaction
Example: same average

-- T1. begin: -- T2. begin:
-- T1.stepl: -- T2.stepl:
UPDATE Account SELECT AV(bal ance)

SET bal ance = bal ance - 200. 00 FROM Account ;

WHERE nunber = 123; -- T2.step2:
-- Tl.commt: SELECT AV bal ance)
COW T,; FROM Account ;
-- T2.comm t:
COW T;

e But repeatable-read is still not necessarily serializable!
e A repeatable-read transaction may see phantom tuples, which are in-
serted by other transactions while this transaction is executing
Example: different averages

-- T1. begin: -- T2.begin:
-- T1.stepl: -- T2.stepl:
| NSERT | NTO Account SELECT AV{ bal ance)
VALUES(456, ' Apu’, 5000); FROM Account ;
-- Tl.commt: -- T2.step2:
COW T; SELECT AV(bal ance)
FROM Account ;
-- T2.commit:
COW T,

Jun Yang 4 CS145 Spring 1999

Summary

SET TRANSACTI ON | SOLATI ON LEVEL { READ UNCOWM TTED |
READ COWM TTED |
REPEATABLE READ |
SERI ALI ZABLE };

From weakest to strongest:

Isolation Level | Dirty Reads | Nonrepeatable Reads | Phantoms
Read Uncommitted
Read Committed
Repeatable Read
Serializable

It is also possible to tell DBMS that a transaction will not perform any
writes:

e SET TRANSACTI ON READ ONLY;

e Many, many transactions and applications fall into this category

e DBMS will optimize concurrency control accordingly
Example: if there are ten read-only transactions and no other transac-
tions, what does the DBM S need to do to guarantee serializability?

Jun Yang 5 CS145 Spring 1999

