
CS145 Lecture Notes #11

SQL Transactions

Transactions are motivated by two of the properties of a DBMS (discussed
way back in Lecture Notes #1):

Multiuser access: most database systems run as servers where multi-
ple clients can simultaneously operate on the same database
Safe from system crashes

Example schema:

CREATE TABLE Account (number INTEGER PRIMARY KEY,

name CHAR(30),
balance FLOAT);

Example: concurrent withdrawals

-- let user input account number

SELECT balance INTO myBalance

FROM Account WHERE number = myNumber;
-- display current balance

-- let user input amount of withdrawal
myBalance := myBalance - withdrawal;

IF (myBalance >= 0) THEN

UPDATE Account SET balance = myBalance
WHERE number = myNumber;

END IF;

Homer withdraws $100 from account #123
Marge withdraws $50 from account #123
Initial balance $400, final balance ???
Interleaving concurrent operations may cause problems
But interleaving operations on different accounts is okay

Example: balance transfer

UPDATE Account SET balance = balance - 100.00

WHERE number = 123;

UPDATE Account SET balance = balance + 100.00
WHERE number = 456;

DBMS crashes in the middle—what now?
DBMS buffers pages and updates them in memory for efficiency; be-
fore they are written back to disk, DBMS crashes—what now?

Solution: transactions!

Jun Yang 1 CS145 Spring 1999

A transaction is a sequence of one or more SQL operations (interactive or
embedded) treated as one unit:

Transaction begins automatically when the client issues its first SQL
command
Transaction ends (and new one begins) when the client issues the
command COMMIT
Transactions obey the “ACID properties”: Atomicity, Consistency,
Isolation, Durability

ACID Properties

Isolation

Transactions must behave as if they were executed in isolation from
each other
Isolation is obtained through serializability: operations within trans-
actions may be interleaved (for efficiency), but execution must be
equivalent to some serial order
Solves the problem of concurrent withdrawals
How is this guarantee achieved?

Take CS245!
Locking, multiversion concurrency control, etc.

Durability

If the DBMS crashes after a transaction commits, all effects of the
transaction must remain in the database

Sounds obvious, but every DBMS manipulates data in memory
Solves the problem of system crash after balance transfer
How is this guarantee achieved?

Take CS245!
Logging, and various other mechanisms

Atomicity

Each transaction’s operations are execute all-or-nothing, never left
“half-done”

If the DBMS crashes before a transaction commits, no effects of
this transaction should remain in the database—the transaction
may start over when the DBMS comes back up
If an error or exception occurs during a transaction, partial ef-
fects of the transaction must be undone

Jun Yang 2 CS145 Spring 1999

Transaction rollback (a.k.a. transaction abort):
Undoes partial effects of a transaction
May be system-initiated or client-initiated
Example of client-initiated rollback:

-- get user input and execute SQL commands

-- confirm results with user

IF (confirmed) THEN COMMIT;
ELSE ROLLBACK;

END IF;

Solves the problem of system crash during balance transfer
How is this guarantee achieved?

Take CS245!
Logging

Consistency

Assume all database constraints are true at the start of every transac-
tion, they should remain true at the end of every transaction
How is this guarantee achieved?

Guaranteed by the transactions themselves and/or constraints
and triggers declared in the DBMS

Isolation Levels

Serializable

Strongest isolation level—SQL default
Weaker isolation levels increase performance by eliminating overhead
and allowing higher degrees of concurrency

Read Uncommitted

A data item is dirty if it is written by an uncommitted transaction
Problem of reading dirty data written by another uncommitted trans-
action: what if that transaction eventually aborts?

Example: wrong average
T2 may only care about approximate average — dirty reads okay

-- T1.begin: -- T2.begin:

-- T1.step1: -- T2.step1:
UPDATE Account SELECT AVG(balance)

SET balance = balance - 200.00 FROM Account;

WHERE number = 123; -- T2.commit:
-- T1.abort: COMMIT;

ROLLBACK;

Jun Yang 3 CS145 Spring 1999

Read Committed

A read-committed transaction cannot read dirty data written by other
uncommitted transactions
But read-committed is still not necessarily serializable

Example: different averages

-- T1.begin: -- T2.begin:

-- T1.step1: -- T2.step1:
UPDATE Account SELECT AVG(balance)

SET balance = balance - 200.00 FROM Account;

WHERE number = 123; -- T2.step2:
-- T1.commit: SELECT AVG(balance)

COMMIT; FROM Account;
-- T2.commit:

COMMIT;

Repeatable Read

In a repeatable-read transaction, if a tuple is read once, then the same
tuple must be retrieved again if the query is repeated
Possible implementation: lock every tuple read by the transaction

Example: same average

-- T1.begin: -- T2.begin:
-- T1.step1: -- T2.step1:

UPDATE Account SELECT AVG(balance)

SET balance = balance - 200.00 FROM Account;
WHERE number = 123; -- T2.step2:

-- T1.commit: SELECT AVG(balance)
COMMIT; FROM Account;

-- T2.commit:
COMMIT;

But repeatable-read is still not necessarily serializable!
A repeatable-read transaction may see phantom tuples, which are in-
serted by other transactions while this transaction is executing

Example: different averages

-- T1.begin: -- T2.begin:

-- T1.step1: -- T2.step1:
INSERT INTO Account SELECT AVG(balance)

VALUES(456, ’Apu’, 5000); FROM Account;

-- T1.commit: -- T2.step2:
COMMIT; SELECT AVG(balance)

FROM Account;
-- T2.commit:

COMMIT;

Jun Yang 4 CS145 Spring 1999

Summary

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED |
READ COMMITTED |

REPEATABLE READ |
SERIALIZABLE };

From weakest to strongest:

Isolation Level Dirty Reads Nonrepeatable Reads Phantoms

Read Uncommitted
Read Committed
Repeatable Read

Serializable

It is also possible to tell DBMS that a transaction will not perform any
writes:

SET TRANSACTION READ ONLY;

Many, many transactions and applications fall into this category
DBMS will optimize concurrency control accordingly
Example: if there are ten read-only transactions and no other transac-
tions, what does the DBMS need to do to guarantee serializability?

Jun Yang 5 CS145 Spring 1999

