
CS145 Lecture Notes #15

Introduction to OQL

History

Object-oriented DBMS (OODBMS) vendors hoped to take market
share from traditional relational DBMS (RDBMS) vendors by offer-
ing object-based data management

Extend OO languages (C++, SmallTalk) with support for persis-
tent objects

RDBMS vendors responded by adding object support to relational
systems (i.e., ORDBMS) and largely kept their customers
OODBMS vendors have survived in another market niche: software
systems that need some of their data to be persistent (e.g., CAD)

Recall:
ODMG: Object Database Management Group
ODL: Object Definition Language
OQL: Object Query Language

Query-Related Features of ODL

Example: a student can take many courses but may TA at most one

interface Student (extent Students, key SID) {
attribute integer SID;

attribute string name;

attribute integer age;
attribute float GPA;

relationship Set<Course> takeCourses
inverse Course::students;

relationship Course assistCourse

inverse Course::TAs;
};

interface Course (extent Courses, key CID) {
attribute string CID;

attribute string title;

relationship Set<Student> students
inverse Student::takeCourses;

relationship Set<Student> TAs
inverse Student::assistCourse;

};

Jun Yang 1 CS145 Spring 1999

For every class we can declare an extent, which is used to refer to the
current collection of all objects of that class
We can also declare methods written in the host language

Basic SELECT Statement in OQL

Example: find CID and title of the course assisted by Lisa

SELECT s.assistCourse.CID, s.assistCourse.title
FROM Students s

WHERE s.name = "Lisa";

In the FROM clause, remember to refer to the extent Students, not
the class name Student,
“s” is a variable that ranges over the objects in Students
In path expressions, “.” is used to access any property (either an
attribute or a relationship) of an object

Example: find CID and title of the courses taken by Lisa

/* WRONG! */
SELECT s.takeCourses.CID, s.takeCourses.title

FROM Students s

WHERE s.name = "Lisa";

Problem: “.” must be applied to a single object, never to a collection
of objects
Solution: use correlated variables in the FROM clause

Example: find CID and title of courses taken by either Bart or Lisa; or-
der the result by CID and rename the result attributes to CourseID and
CourseTitle

Without DISTINCT, the query result has type:
Bag<Struct {integer CourseID, string CourseTitle}>

With DISTINCT, the query result has type:
Set<Struct {integer CourseID, string CourseTitle}>

ORDER BY works just like in SQL

Jun Yang 2 CS145 Spring 1999

Operational semantics of the above SELECT query:
For each c in Courses, for each s in c.students:

If s.name is Bart or Lisa, add to the output bag:
Struct(CourseID:c.CID,CourseTitle:c.title);

Sort the output bag according to CourseID;
Eliminate duplicates from the bag and output the result set

Subqueries in OQL

Subqueries in FROM Clause

Example: classmates of CS145 students

Subqueries in WHERE Clause

EXISTS IN :
Returns true if is true for at least one object in

Example: find courses that enroll some student with GPA higher than 4.0

FOR ALL IN :
Returns true if is true for all objects in

Example: find students with higher GPA than all their TA’s

Other Features of OQL

SQL-style EXISTS, IN subqueries
SQL-style quantifiers: ALL, ANY (SOME in OQL)
Aggregates, GROUP BY, and HAVING
Set/bag operations: UNION, EXCEPT, and INTERSECT
Set/bag inclusion tests: e.g., Set(1,2,3)<Set(3,4,2,1)

Jun Yang 3 CS145 Spring 1999

Interacting With an OODBMS

“Navigational access” directly through the host language
Database classes are also classes in the host language
Database objects are manipulated in the usual way (including
via methods) through the host language
Data and changes are persistent

“Declarative access” through OQL
Similar to embedded SQL only much less awkward
OQL does not have data modification statements, so all modifi-
cations must be navigational

Example:

// processing collection results:
Bag<Student> cs145Students =

SELECT s

FROM Students s
WHERE EXISTS c IN s.takeCourses:

c.CID = "CS145"
ORDER BY s.name;

cout << "CS145 Students:" << "\n";

for (int i=1; i<=COUNT(cs145Students); i++) {
cout << cs145Students[i].SID << " "

<< cs145Students[i].name << "\n";
}

// processing singleton results:
string student123Name =

ELEMENT(SELECT s.name
FROM Students s

WHERE s.SID = 123);

In reality, the syntax could be much more complicated

Jun Yang 4 CS145 Spring 1999

