CS145 Lecture Notes #5
Relational Database Design: FD’s & BCNF

Motivation

- Automatic translation from E/R or ODL may not produce the best relational design possible
- Sometimes database designers like to start directly with a relational design, in which case the design could be really bad

Notation

- \(R, S, \ldots \) denote relations
- \(\text{attrs}(R) \) denotes the set of all attributes in \(R \)
- \(A, B, \ldots \) denote attributes
- \(X, Y, \ldots \) denote sets of attributes

Functional Dependencies

A functional dependency (FD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \)

- Formally, \(X \rightarrow Y \) means that whenever two tuples in \(R \) agree on all the attributes of \(X \), they must also agree on all the attributes of \(Y \)

Example: FD’s in \(\text{Student} (\text{SID}, \ SS\# , \ name, \ CID, \ grade) \)

Some FD’s are more interesting than others:

- **Trivial** FD: \(X \rightarrow Y \) where \(Y \) is a subset of \(X \)

 Example:

- **Nontrivial** FD: \(X \rightarrow Y \) where \(Y \) is not a subset of \(X \)

 Example:

- **Completely nontrivial** FD: \(X \rightarrow Y \) where \(Y \) and \(X \) do not overlap

 Example:
Once we declare that an FD holds for a relation \(R \), this FD becomes a part of the relation schema

\(\rightsquigarrow \) Every instance of \(R \) must satisfy this FD

\(\rightsquigarrow \) This FD should better make sense in the real world!

A particular instance of \(R \) may coincidentally satisfy some FD

\(\rightsquigarrow \) But this FD may not hold for \(R \) in general

Example: name \(\rightarrow \) SID in Student?

FD's are closely related to:

- Multiplicity of relationships

 Example: Queens, Overlords, Zerglings

- Keys

 Example: \(\{ \text{SID}, \text{CID} \} \) is a key of Student

\(\rightsquigarrow \) Another definition of key: A set of attributes \(K \) is a key for \(R \) if

1. \(K \rightarrow \text{attrs}(R) \); i.e., \(K \) is a superkey
2. No proper subset of \(K \) satisfies (1)

Closures of Attribute Sets

Given \(R \), a set of FD's \(\mathcal{F} \) that holds in \(R \), and a set of attributes \(Z \) in \(R \):

- The closure of \(Z \) with respect to \(\mathcal{F} \) (denoted \(Z^+ \)) is the set of all attributes that are functionally determined by \(Z \)

\(\rightsquigarrow \) Yet another definition of key: A set of attributes \(K \) is a key for \(R \) if

1. \(K^+ = \text{attrs}(R) \); i.e., \(K \) is a superkey
2. No proper subset of \(K \) satisfies (1)

Question: Given \(R \) and \(\mathcal{F} \), what is the closure of \(Z \)?

- Start with \(Z \)
- If \(X \rightarrow Y \) is a given FD and \(X \) is already inside the closure, then also add \(Y \) to the closure
- Repeat until the closure cannot be changed

Example: \(\{ \text{SID}, \text{CID} \}^+ = \text{attrs(\text{Student})} \)
Question: Given \(R \) and \(\mathcal{F} \), what are the keys of \(R \)?

- Brute-force approach: for every subset of \(\text{attrs}(R) \), compute its closures and see if it covers \(\text{attrs}(R) \)
- \(\sim \) Trick: start with small subsets; if \(X^+ = \text{attrs}(R) \), no need to try any superset of \(X \)
- \(\sim \) Trick: if \(A \) does not appear on the right-hand side of any FD, then every key must contain \(A \)

Example: what are the keys of \text{Student}?

Closures of FD Sets

Given \(R \) and a set of FD’s \(\mathcal{F} \) that holds in \(R \):

- The closure of \(\mathcal{F} \) in \(R \) (denoted \(\mathcal{F}^+ \)) is the set of all FD’s in \(R \) that are logically implied by \(\mathcal{F} \)

Question: Given \(R \) and \(\mathcal{F} \), is \(X \rightarrow Y \) implied by \(\mathcal{F} \)?

(Or, given \(R \) and \(\mathcal{F} \), is \(X \rightarrow Y \) in \(\mathcal{F}^+ \)?)

- Method 1: compute \(X^+ \) and check if it contains \(Y \)
- Method 2: try to prove \(X \rightarrow Y \) using Armstrong’s Axioms:
 - Reflexivity: if \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: if \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any set \(Z \)
 - Transitivity: if \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

or using other rules that follow from the axioms:

- Splitting: if \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
- Combining: if \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

Example: prove that \(\text{SS#}, \text{CID} \rightarrow \text{name, grade} \)
Basis

When specifying FD’s for a relation R:

- Obviously we do not want to list all FD’s that hold in R
- Instead, it suffices to specify a set of FD’s from which all other FD’s will follow logically; this set of FD’s is a basis for the FD’s in R
- In fact, we should specify a minimal basis
 - Every FD in the minimal basis is necessary; it cannot be proven using other FD’s in the minimal basis
 - Sounds tough, but in practice the minimality comes naturally
 - There might be multiple minimal bases

Example: what is a minimal basis for the FD’s in Student?

BCNF (Boyce-Codd Normal Form)

A relation R is in BCNF if:

- For every nontrivial FD $X \rightarrow Y$ in R, X is a superkey

In other words:

- All FD’s follow from the fact “key \rightarrow everything”

Intuition:

- When an FD is not of the form “superkey \rightarrow other attributes”, then there is typically an attempt to cram too much into one relation; this relation needs to be decomposed

Example: $\text{SID} \rightarrow \text{SS#}$ is a BCNF violation

$\not\rightarrow$ the $\text{SID}/\text{SS#}$ association is repeated multiple times

BCNF Decomposition Algorithm

- Start with the relation in question
- Repeat until no BCNF violation can be found in any of your relations:
 - Find a BCNF violation $X \rightarrow Y$ in R
 - Decompose R into two relations:
 - One with $X \cup Y$ as its attributes (i.e., everything in the FD)
 - One with $X \cup (\text{atts}(R) \setminus X \setminus Y)$ as its attributes (i.e., left side of the FD plus everything not in the FD)
Example:
Students(SID, SS#, name, CID, grade)
SID → SS#
SS# → name
SS# → SID
SID, CID → grade

- In general, you may need to decompose several times
- To check for BCNF violations in R, we need to know:
 - *All* keys of R
 - A basis for the FD’s that hold in R
 - Do we need to check any FD that is not in the basis but follows from the basis?
 - \sim No. If there is no BCNF violation in a basis, then there is no BCNF violation at all (*why?*)
- After the first iteration, the algorithm requires FD’s to be “projected” onto smaller relations
 - \sim Be careful when deriving an FD basis for a smaller relation: don’t miss any FD that follows from the FD’s in the original relation (see textbook for an exhaustive algorithm; can usually do it with common sense though)
 - Example: SID → name
- An optimization: instead of decomposing on any BCNF violation $X \rightarrow Y$, decompose on $X \rightarrow X^+$
 - \sim This strategy avoids excessive fragmentation
 - Example: decompose on SID → SS#, name instead of SID → SS#

BCNF = Good Design?

- BCNF removes all redundancies caused by FD’s
- BCNF can decompose relations “too much” and complicate queries and constraint enforcement
 - Example: if we decompose Student on SID → SS#, it will be difficult to enforce SS# → name*
- BCNF does not remove all redundancies in general
 - Example: Student(SID, club, CID) has no FD’s, but still redundancy

*Actually this example is not good: it turns out that we can enforce SS# → name by enforcing SS# → SID and SID → name independently in two different relations. For an example that makes more sense, stay tuned for the next lecture on the theory of decomposition.