CS145 Lecture Notes #5 Relational Database Design: FD's & BCNF

Motivation

- Automatic translation from E/R or ODL may not produce the best relational design possible
- Sometimes database designers like to start directly with a relational design, in which case the design could be really bad

Notation

- *R*, *S*, ... denote relations
- attrs(R) denotes the set of all attributes in R
- A, B, ... denote attributes
- *X*, *Y*, ... denote sets of attributes

Functional Dependencies

A *functional dependency* (FD) has the form $X \to Y$, where X and Y are sets of attributes in a relation R

• Formally, *X* → *Y* means that whenever two tuples in *R* agree on all the attributes of *X*, they must also agree on all the attributes of *Y*

Example: FD's in Student(SID, SS#, name, CID, grade)

Some FD's are more interesting than others:

- *Trivial* FD: *X* → *Y* where *Y* is a subset of *X* Example:
- Nontrivial FD: X → Y where Y is not a subset of X Example:
- Completely nontrivial FD: $X \to Y$ where Y and X do not overlap Example:

Once we declare that an FD holds for a relation R, this FD becomes a part of the relation schema

 \rightsquigarrow Every instance of R must satisfy this FD

 \rightsquigarrow This FD should better make sense in the real world!

A particular instance of R may coincidentally satisfy some FD

 $\rightsquigarrow\,$ But this FD may not hold for R in general

Example: name \rightarrow SID in Student?

FD's are closely related to:

- Multiplicity of relationships Example: Queens, Overlords, Zerglings
- Keys Example: { SID, CID } is a key of Student
- \rightsquigarrow Another definition of key: A set of attributes K is a key for R if
 - (1) $K \rightarrow attrs(R)$; i.e., K is a superkey
 - (2) No proper subset of K satisfies (1)

Closures of Attribute Sets

Given R, a set of FD's \mathcal{F} that holds in R, and a set of attributes Z in R:

• The closure of Z with respect to \mathcal{F} (denoted Z^+) is the set of all attributes that are functionally determined by Z

 \rightsquigarrow Yet another definition of key: A set of attributes K is a key for R if

- (1) $K^+ = attrs(R)$; i.e., K is a superkey
- (2) No proper subset of K satisfies (1)

Question: Given R and \mathcal{F} , what is the closure of Z?

- Start with Z
- If $X \to Y$ is a given FD and X is already inside the closure, then also add Y to the closure
- Repeat until the closure cannot be changed

Example: $\{SID, CID\}^+ = attrs(Student)$

Question: Given R and \mathcal{F} , what are the keys of R?

- Brute-force approach: for every subset of attrs(R), compute its closures and see if it covers attrs(R)
- \rightsquigarrow Trick: start with small subsets; if $X^+ = attrs(R)$, no need to try any superset of X
- \rightsquigarrow Trick: if A does not appear on the right-hand side of any FD, then every key must contain A

Example: what are the keys of Student?

Closures of FD Sets

Given R and a set of FD's \mathcal{F} that holds in R:

• The *closure of* \mathcal{F} in R (denoted \mathcal{F}^+) is the set of all FD's in R that are logically implied by \mathcal{F}

Question: Given R and \mathcal{F} , is $X \to Y$ implied by \mathcal{F} ?

(Or, given R and \mathcal{F} , is $X \to Y$ in \mathcal{F}^+ ?)

- Method 1: compute X^+ and check if it contains Y
- Method 2: try to prove $X \rightarrow Y$ using Armstrong's Axioms:
 - Reflexivity: if $Y \subseteq X$, then $X \to Y$
 - Augmentation: if $X \to Y$, then $XZ \to YZ$ for any set Z
 - Transitivity: if $X \to Y$ and $Y \to Z$, then $X \to Z$

or using other rules that follow from the axioms:

- Splitting: if $X \to YZ$, then $X \to Y$ and $X \to Z$
- Combining: if $X \to Y$ and $X \to Z$, then $X \to YZ$

Example: prove that $SS\#, CID \rightarrow name, grade$

Basis

When specifying FD's for a relation R:

- Obviously we do not want to list *all* FD's that hold in R
- Instead, it suffices to specify a set of FD's from which all other FD's will follow logically; this set of FD's is a *basis* for the FD's in R
- In fact, we should specify a *minimal* basis
 - Every FD in the minimal basis is necessary; it cannot be proven using other FD's in the minimal basis
 - Sounds tough, but in practice the minimality comes naturally
 - There might be multiple minimal bases

Example: what is a minimal basis for the FD's in Student?

BCNF (Boyce-Codd Normal Form)

A relation R is in *BCNF* if:

- For every nontrivial FD $X \rightarrow Y$ in R, X is a superkey In other words:
 - All FD's follow from the fact "key \rightarrow everything"

Intuition:

• When an FD is *not* of the form "superkey → other attributes", then there is typically an attempt to cram too much into one relation; this relation needs to be decomposed

Example: $SID \rightarrow SS\#$ is a BCNF violation \sim the SID/SS# association is repeated multiple times

BCNF Decomposition Algorithm

- Start with the relation in question
- Repeat until no BCNF violation can be found in any of your relations:
 - Find a BCNF violation $X \rightarrow Y$ in R
 - Decompose R into two relations:
 - One with $X \cup Y$ as its attributes (i.e., everything in the FD)
 - One with $X \cup (attrs(R) X Y)$ as its attributes (i.e., left side of the FD plus everything not in the FD)

Example:

```
Students(SID,SS#,name,CID,grade)
SID \rightarrow SS#
SS# \rightarrow name
SS# \rightarrow SID
SID,CID \rightarrow grade
```

- In general, you may need to decompose several times
- To check for BCNF violations in R, we need to know:
 - All keys of R
 - A basis for the FD's that hold in R
 - Do we need to check any FD that is not in the basis but follows from the basis?

 \rightsquigarrow No. If there is no BCNF violation in a basis, then there is no BCNF violation at all (*why*?)

• After the first iteration, the algorithm requires FD's to be "projected" onto smaller relations

 \sim Be careful when deriving an FD basis for a smaller relation: don't miss any FD that follows from the FD's in the original relation (see textbook for an exhaustive algorithm; can usually do it with common sense though)

 $Example: \, \texttt{SID} \to \texttt{name}$

• An optimization: instead of decomposing on any BCNF violation $X \to Y$, decompose on $X \to X^+$

 \rightsquigarrow This strategy avoids excessive fragmentation

Example: decompose on SID \rightarrow SS#, name instead of SID \rightarrow SS#

BCNF = Good Design?

- BCNF removes all redundancies caused by FD's
- BCNF can decompose relations "too much" and complicate queries and constraint enforcement Example: if we decompose Student on SID → SS#, it will be difficult to enforce SS# → name*
- BCNF does *not* remove all redundancies in general Example: Student(SID, club, CID) has no FD's, but still redundancy

^{*}Actually this example is not good: it turns out that we can enforce SS# \rightarrow name by enforcing SS# \rightarrow SID and SID \rightarrow name independently in two different relations. For an example that makes more sense, stay tuned for the next lecture on the theory of decomposition.