
CS145 Lecture Notes #5

Relational Database Design: FD’s & BCNF

Motivation

Automatic translation from E/R or ODL may not produce the best
relational design possible
Sometimes database designers like to start directly with a relational
design, in which case the design could be really bad

Notation

, , ... denote relations
denotes the set of all attributes in

, , ... denote attributes
, , ... denote sets of attributes

Functional Dependencies

A functional dependency (FD) has the form , where and are
sets of attributes in a relation

Formally, means that whenever two tuples in agree on all
the attributes of , they must also agree on all the attributes of

Example: FD’s in Student(SID, SS#, name, CID, grade)

Some FD’s are more interesting than others:
Trivial FD: where is a subset of
Example:
Nontrivial FD: where is not a subset of
Example:
Completely nontrivial FD: where and do not overlap
Example:

Jun Yang 1 CS145 Spring 1999



Once we declare that an FD holds for a relation , this FD becomes a part
of the relation schema

Every instance of must satisfy this FD
This FD should better make sense in the real world!

A particular instance of may coincidentally satisfy some FD
But this FD may not hold for in general

Example: name SID in Student?

FD’s are closely related to:
Multiplicity of relationships
Example: Queens, Overlords, Zerglings

Keys
Example: SID, CID is a key of Student

Another definition of key: A set of attributes is a key for if
(1) ; i.e., is a superkey
(2) No proper subset of satisfies (1)

Closures of Attribute Sets

Given , a set of FD’s that holds in , and a set of attributes in :
The closure of with respect to (denoted ) is the set of all
attributes that are functionally determined by

Yet another definition of key: A set of attributes is a key for if
(1) ; i.e., is a superkey
(2) No proper subset of satisfies (1)

Question: Given and , what is the closure of ?
Start with
If is a given FD and is already inside the closure, then also
add to the closure
Repeat until the closure cannot be changed

Example: SID CID Student

Jun Yang 2 CS145 Spring 1999



Question: Given and , what are the keys of ?
Brute-force approach: for every subset of , compute its clo-
sures and see if it covers
Trick: start with small subsets; if , no need to try any
superset of
Trick: if does not appear on the right-hand side of any FD, then
every key must contain

Example: what are the keys of Student?

Closures of FD Sets

Given and a set of FD’s that holds in :
The closure of in (denoted ) is the set of all FD’s in that are
logically implied by

Question: Given and , is implied by ?
(Or, given and , is in ?)

Method 1: compute and check if it contains
Method 2: try to prove using Armstrong’s Axioms:

Reflexivity: if , then
Augmentation: if , then for any set
Transitivity: if and , then

or using other rules that follow from the axioms:
Splitting: if , then and
Combining: if and , then

Example: prove that SS# CID name grade

Jun Yang 3 CS145 Spring 1999



Basis

When specifying FD’s for a relation :
Obviously we do not want to list all FD’s that hold in
Instead, it suffices to specify a set of FD’s from which all other FD’s
will follow logically; this set of FD’s is a basis for the FD’s in
In fact, we should specify a minimal basis

Every FD in the minimal basis is necessary; it cannot be proven
using other FD’s in the minimal basis
Sounds tough, but in practice the minimality comes naturally
There might be multiple minimal bases

Example: what is a minimal basis for the FD’s in Student?

BCNF (Boyce-Codd Normal Form)

A relation is in BCNF if:
For every nontrivial FD in , is a superkey

In other words:
All FD’s follow from the fact “key everything”

Intuition:
When an FD is not of the form “superkey other attributes”, then
there is typically an attempt to cram too much into one relation; this
relation needs to be decomposed

Example: SID SS# is a BCNF violation
the SID/SS# association is repeated multiple times

BCNF Decomposition Algorithm

Start with the relation in question
Repeat until no BCNF violation can be found in any of your relations:

Find a BCNF violation in
Decompose into two relations:
One with as its attributes
(i.e., everything in the FD)
One with as its attributes
(i.e., left side of the FD plus everything not in the FD)

Jun Yang 4 CS145 Spring 1999



Example:
Students(SID,SS#,name,CID,grade)

SID SS#

SS# name

SS# SID

SID CID grade

In general, you may need to decompose several times
To check for BCNF violations in , we need to know:

All keys of
A basis for the FD’s that hold in
Do we need to check any FD that is not in the basis but follows
from the basis?

No. If there is no BCNF violation in a basis, then there is no
BCNF violation at all (why?)

After the first iteration, the algorithm requires FD’s to be “projected”
onto smaller relations

Be careful when deriving an FD basis for a smaller relation: don’t
miss any FD that follows from the FD’s in the original relation (see
textbook for an exhaustive algorithm; can usually do it with common
sense though)
Example: SID name

An optimization: instead of decomposing on any BCNF violation
, decompose on

This strategy avoids excessive fragmentation
Example: decompose on SID SS# name instead of SID SS#

BCNF Good Design?

BCNF removes all redundancies caused by FD’s
BCNF can decompose relations “too much” and complicate queries
and constraint enforcement
Example: if we decompose Student on SID SS#, it will be
difficult to enforce SS# name

BCNF does not remove all redundancies in general
Example: Student(SID, club, CID) has no FD’s, but still re-
dundancy

Actually this example is not good: it turns out that we can enforce SS# name

by enforcing SS# SID and SID name independently in two different relations.
For an example that makes more sense, stay tuned for the next lecture on the theory of
decomposition.

Jun Yang 5 CS145 Spring 1999


