Major Theme: Data Models

- Data model = A way of representing (some kinds of) information in a computer.
 - Static part: represents the information.
 - Dynamic part: operations on the information.

- Section 1.3 discusses examples: lists, trees, logic, use of logic to design switching circuits.

Example: The set is another common, important data model.

- Static part: Sets are characterized by a membership concept. Sets have members. $S = \{a, b, c\}$ says that the members of set S are the elements a, b, and c.

- Dynamic part: Many operations are used. Examples:
 - $insert(x, S)$ adds element x to the members of set S.
 - $union(S, T)$ produces the union of sets S and T.

Example: Programming languages like C have a data model. The C model is discussed in Section 1.4.

- The static part of the C model is the language's type system. Key elements include:
 - Basis = atomic types, e.g. char, int, enumerations.
 - Inductive part = type constructors = ways to build new types and their values, e.g. array-formation, struct formation, pointers.

- The dynamic part consists of ways to operate on values:
Operations, e.g., arithmetic such as +, logical such as &&, comparison such as <, assignment (=).

Structure-access operations, e.g., ->.

Creation/destruction operations such as malloc and free.

Major Theme: Recursion

Express a concept, algorithm, proof, etc. in terms of smaller instances of the same thing.

Example: To add two n-digit numbers, start by assuming there is a carry into the low-order position.

- **Basis case:** If \(n = 0 \), just produce the carry.
- **Inductive case:** Add the low-order digits plus the carry-in, generating a carry into the next place (which may be 0). Then recursively add the high-order \(n-1 \) digits with the new carry.

Propositional Logic

- **Constants:** TRUE and FALSE (often written 1 and 0, respectively).
- **Propositional variable** = symbol that represents the truth or falsehood of a “proposition,” i.e., a statement about something.
- Examples are propositional variable \(p \) standing for “it is raining” or variable \(q \) standing for “\(X < Y + Z \).”

Propositional Logic Expressions

Built from operands (constants and variables) and logical operators, which are functions with Boolean arguments and result.

Most common operators:

a) **AND, OR, NOT:** the usual stuff as in if(...).

b) **Implies.** \(p \rightarrow q \) has value TRUE unless \(p \) is TRUE and \(q \) is FALSE.
When \(p \) is false, we say that \(p \rightarrow q \) is
\textit{trivially true}.

e.g.: “if \(2 + 2 = 5 \) then the moon is made
of cheese.”

c) \textit{Equivalence} or “if and only if.” \(p \equiv q \) is true
if \(p \) and \(q \) are both true or both false. It is
false if exactly one of \(p \) and \(q \) is true.

\textbf{Predicates and Atomic Formulas}

\textit{Atomic formula} = propositional variable (called a
\textit{predicate}) with arguments, e.g., \(p(X, Y) \).

- True or false depending on what \(X \) and \(Y \) are.

\textbf{Example:} Suppose arguments of \(p \) were integers,
and \(p(X, Y) \) is assumed to mean \(X^2 > Y \). Then
\(p(2, 3) \) is true, but \(p(-2, 5) \) is false.

- Expressions can be built from atomic formu-
las instead of propositional variables.

\textbf{Example:} \(p(X) \rightarrow q(X) = \) “if \(p \) is true about
some object \(X \), then \(q \) is also true about \(X \).”

- If there is no \(X \) for which \(p(X) \) is true, then
\(p(X) \rightarrow q(X) \) is said to be true \textit{vacuously}.

- e.g.: “every green elephant wears boxer
shorts.”

\textbf{Quantifiers}

The symbol \((\forall X)\) stands for “for all \(X \),” while
\((\exists X)\) stands for “there exists at least one \(X \).”

- Quantifiers are expressed variously in English.

- And a global \((\forall X)\) is often expressed without
any equivalent to “for all.” \(X \) just appears in
the statement.

\textbf{Example:} Here are some ways that “for all \(P \), if
\(P \) is a prime and \(P > 2 \) then \(P \) is odd” could be
expressed:

1. Use “every”: “every prime \(P > 2 \) is odd.”

2. Use “each”: “each \(P \) bigger than 2 that is a
prime is odd.”
3. Use nothing: "if P is a prime and $P > 2$ then P is odd."

Class Problem for Next Time

Teaching CS145 on database systems last quarter, I made the following definition; never mind if the terms sound mysterious:

"If relation R is in Boyce-Codd Normal Form, then for every nontrivial functional dependency $X \rightarrow Y$, X is a superkey."†

Later on that day, I used what I thought was the above definition in the following way:

"If $X \rightarrow Y$ is a nontrivial functional dependency but X is not a superkey, then R is not in Boyce-Codd Normal Form."

Question: Did my second statement follow from the first? Why or why not?

• Hint: We might be tempted to see this problem as one of predicate logic, with R, X, and Y as variables. However, to make things simpler, let's focus on a particular R, X, and Y. Then we can think of three propositional variables:

1. p: "R is in Boyce-Codd Normal Form."
2. q: "$X \rightarrow Y$ is a functional dependency."
3. r: "X is a superkey."

• If you solve this problem for propositions as above, try formulating the same question in predicate logic and solving it.

† Note that the \rightarrow symbol for functional dependencies has nothing at all to do with the same logical symbol meaning "implies."