Binary Trees

Every binary tree has two “slots” for children; it may have none, either one, or both.

- \textit{Empty} (0-node) binary tree is possible.
- Equivalently, a node has left and right subtrees. Either or both may be null.

Data Structure for Binary Trees

A node is a record structure; a binary tree is a pointer to a node.

- \texttt{NULL} pointer represents the empty tree; otherwise a tree is a pointer to its root node.
- Nodes have fields \texttt{leftchild, rightchild}.
 - These point to roots of left/right subtrees, (left/right children).
 - They are null if left/right subtree is \texttt{NULL} (left/right child does not exist).
- Other fields within nodes are possible, e.g., label, pointer to parent.

Structural Induction on Binary Trees

- One important difference: basis is the empty tree, not a tree of one node.

Example:

- \(S(T) \): In a binary tree \(T \) represented by left- and right-child pointers, there is one more \texttt{NULL} pointer than node.

\textbf{Basis:} If \(T \) is the empty tree, then there is a \texttt{NULL} pointer that represents the tree as a whole. There are no nodes, so \(S(T) \) holds for \(T = \text{empty tree} \).

\textbf{Induction:} Let \(T \) not be empty and have left and right subtrees \(L \) and \(R \).

- By the IH, \(L \) and \(R \) each have one more \texttt{NULL} than node. “Excess” = 2.
• However, T also has its root node, so the excess for T is 1, proving $S(T)$.

Binary Search Trees

• Labels at nodes, ordered by some $<$ comparison operator, e.g., ints, reals, strings.

• If a node has label x, then every label in the right subtree is $> x$, and every label in the left subtree is $< x$.

• Supports dictionary = set with operations lookup, insert, delete.

 □ Running time $= O(\log n)$ per operation on the average; n = size of set.

• Supports range queries = find values between upper and lower limits.

Example:

```
       How
       /   \
Brown /     \ Now
      /  \
    Cow
```

Lookup

• Key point: label at root tells us which half of the tree we must search, either left or right.

 □ Thus, on the average, we cut the size of the tree to search almost in half in $O(1)$ time. After average $O(\log n)$ steps, we are down to 1 element and are done.

• Searching for x at tree T:

 Basis:

 1. If T is empty, fail; x is not there.

 2. If T has label x at the root, then found.

 Induction: Let T have root label y. If $x < y$, lookup x on the left subtree of the root; if $x > y$ lookup x on the right subtree.
Insertion

Two approaches in C:

1. Insertion function gets tree (pointer to node) as argument and returns a revised tree including inserted element.

2. Insertion function gets pointer to tree (pointer to pointer to node) as argument and, when it needs to insert, creates a new node and makes the slot pointed to by its argument point to the new node.

- We'll sketch (1), typified by code in Fig. 5.35; (2) is typified by code of Fig. 5.38 for “delete.”

Basis:

1. If T is NULL create a new node with label z and return a pointer to that node.

2. If z at root, no action needed so return T.

Induction: Let root of T have label y. If $x < y$, insert z into left subtree. The left-subtree pointer at the root of T becomes whatever tree is returned by recursive call. If $x > y$, do analogously at right.

Deletion

To delete z from tree T:

Basis: If T is empty, just return T; if z at root, delete root, fix up T (explained next), and return the fixed-up T.

Induction: If T has label y at root, delete z from left/right subtree if $x < y/z > y$. Replace left/right pointer by returned tree, and return the resulting T.

Fixup (DeleteMin)

- If we need to delete the root of T, if it has one NULL subtree, just return the other subtree (even if it too is NULL).

- Otherwise, find the least element in the right subtree (by going down the leftmost path) and move it to the root of T.