Substrings
In ML notation, x is a substring of y if $y = u^x^v$ for some strings u and v.
- Similar notion for lists, i.e., $y = u@x@v$.

Example: The substrings of aba are ϵ (the empty string), a, b, ab, ba, and aba.
- Note that a substring need not be proper (i.e., less than the whole string).
- Special case: prefix of y is any substring x that begins at the beginning of y.

Example: Prefixes of aba are ϵ, a, ab, and aba.
- Special case: suffix of y is a substring that ends at the end of y.

Example: Suffixes of aba are ϵ, a, ba, and aba.

Subsequences
A subsequence of a string y is what we can obtain by striking out 0 or more of the positions of y.

Example: Subsequences of aba are ϵ, a, b, ab, ba, aa, aba.
- A common subsequence of x and y is a string that is a subsequence of both.
- A longest common subsequence (LCS) of x and y is a common subsequence of x and y that is as long as any common subsequence of these strings.

Why LCS’s?
- Secret of the UNIX diff command (find the differences between two files).
 - diff finds a LCS of the two files and assumes the changes are “everything else.”
- Generalizations important in matching of DNA sequences.
An Exponential LCS Algorithm

The following assumes two lists (not strings) and computes their LCS:

```haskell
fun lcs(_,nil) = nil
| lcs(nil,_) = nil
| lcs(x::xs, y::ys) =
  if x=y then x::lcs(xs,ys)
  else let
    val l1 = lcs(xs, y::ys);
    val l2 = lcs(x::xs, ys);
  in
    if length(l1) > length(l2)
      then l1
    else l2
  end;
```

- Problem: If size \(n = \text{sum of the lengths of the lists} \), then there are two recursive calls to \(\text{lcs} \) on arguments of one smaller size.
 - Leads to recurrence relation \(T(n) = O(n) + 2T(n-1) \), with solution \(O(2^n) \).

Dynamic Programming Solution

Recursions like this waste time because they wind up solving the same problem repeatedly.

Example: If \(x = [1, 2, 3, 4] \) and \(y = [a, b, c, d] \), we call \(\text{lcs} \) twice on \(([2, 3, 4], [b, c, d]) \), four times on \(([3, 4], [c, d]) \), and so on.

- Dynamic programming solutions tabulate the answers to subproblems, so they are available for use many times.

Example: The most common example is computing \(\binom{n}{m} \) by the recursion \(\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m} \) vs. computing it by Pascal’s triangle (see p. 172, FCS).

- For LCS, build an array \(L \) such that \(L[i][j] \) is the length of the LCS for the first \(i \) positions of \(x \) and the first \(j \) positions of \(y \).
 - Given this array, filled in, one can easily recover an LCS — see p. 324 ff, FCS.
- Fill in order of $i + j$.

Basis: $i + j = 0$. Surely $L[0][0] = 0$.

Induction:
- If either i or j is 0, then $L[i][j] = 0$.
- If neither is 0, consider a_i and b_j, the ith and jth elements of strings x and y, respectively.
 - If $a_i = b_j$, $L[i][j] = 1 + L[i - 1][j - 1]$.
 - Otherwise, $L[i][j]$ is the larger of $L[i][j - 1]$ and $L[i - 1][j]$.
- Either way, the L entries needed have already been computed.

Running Time of LCS

If $n =$ sum of lengths of strings, time is $O(n^2)$.
- Fill $(n + 1)^2$ entries, each in $O(1)$ time.