
CS109A Notes for Lecture 3/1/95Representing Sets1. List. Simple, O(n) dictionary operations.2. Binary Search Tree. O(log n) average dictio-nary operations. Supports other operationslike range queries, sorting.3. Characteristic Vector. O(1) dictionary oper-ations, but limited to sets that are subsets ofsome small set.4. Hash Table. O(1) average for dictionary op-erations is possible.Sorted List for Union, Etc.� The operations insert, delete, lookup on setsrepresented by lists is identical to that for liststhemselves.Note that a list might allow duplicates,while the set it represents is deemed tohave only one copy.� Union, intersection, di�erence on sets repre-sented by lists pro�ts greatly from having thelists sorted.� Obvious O(n2) approach to take union (e.g.)of two sets of size n:1. Start with (a copy of) one set as the an-swer list.2. For each member of the second set, checkif it is in the �rst set, and if not, appendit to the list being formed for the answer.� To take union, etc., of sorted lists, we onlyhave to examine the heads, take the smallerto the answer and recurse on the lists withthe selected element gone.Example: Intersection of sorted lists:1

fun inter(L, nil) = nil| inter(nil, L) = nil| inter(x::xs, y::ys) =if x=y thenx::inter(xs, ys)else if (x:int) < y theninter(xs, y::ys)else inter(x::xs, ys);� Key trick: whichever head is smaller cannotappear on the other list and so can be ex-cluded from consideration for the intersection.� O(n) if initial lists are sorted and of length� n.Even if lists must be sorted �rst, it's onlyO(n log n).Characteristic VectorsBoolean strings whose positions correspond to themembers of some �xed \universal" set.� 1 in a position means the element is in theset, 0 means it's not.Example: There are 9 \privileges" that can beassociated with a UNIX �le: Each of (user, group,others) may have any of (read, write, execute).� The usual order is rwx for each of user (=owner), group, others.� Thus, e.g., a \protection mode" 110100000means that the owner may read and write(but not execute), the group can read only,and others may not even read.As a set: fur; uw; grg.Advantages of Characteristic VectorsIf universal set is small, sets can be represented bybits packed 32 (or more) to a word.� Insert, delete, lookup are O(1) operations onthe proper bit. 2

� Union, intersection, di�erence are imple-mented by machine operations on a word-by-word basis.Thus, the running time is O(m), wherem is the size of the universal set.But constant factor (1/32?) is very low.HashingA \magical" way to get from an element x to theplace where x can be found.� An array [0..B-1] of buckets.Bucket = list of set elements. Arrayholds header (pointer to �rst cell).B = number of buckets.� A hash function that takes potential set el-ements and produces a \random" integer inthe range [0..B-1].Example: If set of integers, simplest/best hashfunction is usually h(x) = x mod B.� Suppose B = 6, and we wish to store theintegers 70, 53, 99, 94, 83, 76, 64, 30.These were obtained by turning to a ran-dom page of the Stanford phone book.� They belong in buckets 4, 5, 3, 4, 5, 4, ,4, and0, respectively.Pitfalls in Hash Function Selection� Goal is uniform distribution of elements intobuckets.� Beware of a physical phenomenon that causesnonuniform distribution.Example:� If integers were all even, then B = 6 wouldcause only buckets 0, 2, and 4 to �ll.� If we hash the words in /usr/dict/wordsinto 10 buckets by length mod 10, then 20%go into bucket 7. 3

Implementing Dictionary OperationsLookup x by1. Go to the head of bucket h(x).2. Search the bucket list. If x is anywhere it isin this bucket.� Insert similar: Go to bucket h(x) and searchfor x. If not there, append x.� Deletion similar: Go to bucket h(x) anddelete x from the list if it is there.Analysis of Dictionary Operations/Hashing� If we pick B to be approximately n, the num-ber of elements in the set, then the averagelist is O(1) long.� Thus, dictionary operations take averageO(1) time each.� However, in the worst case, all elements arein one bucket, and we get O(n) per operation.But How Do We Keep B Near n?If n gets as high as 2B, create a new hash tablewith 2B buckets.� Rehash every element into the new table.Takes O(n) time total.� But there were at least n inserts since the lasttime we \rehashed."These inserts took time O(n).� Thus, we may \amortize" the cost of rehash-ing over the inserts since the last rehash, atmost multiplying the time for those inserts bya constant factor.i.e., even with rehashing, hashing takesO(1) time average per dictionary opera-tion. 4

