CS109A Notes for Lecture 3/1/95

Representing Sets

1.

2.

List. Simple, O(n) dictionary operations.

Binary Search Tree. O(logn) average dictio-
nary operations. Supports other operations
like range queries, sorting.

Characteristic Vector. O(1) dictionary oper-
ations, but limited to sets that are subsets of
some small set.

Hash Table. O(1) average for dictionary op-
erations is possible.

Sorted List for Union, Etc.

The operations insert, delete, lookup on sets
represented by lists is identical to that for lists
themselves.

O Note that a list might allow duplicates,
while the set it represents is deemed to
have only one copy.

Union, intersection, difference on sets repre-
sented by lists profits greatly from having the
lists sorted.

Obvious O(n?) approach to take union (e.g.)
of two sets of size n:

1. Start with (a copy of) one set as the an-
swer list.

2. For each member of the second set, check
if it is in the first set, and if not, append
it to the list being formed for the answer.

To take union, etc., of sorted lists, we only
have to examine the heads, take the smaller
to the answer and recurse on the lists with
the selected element gone.

Example: Intersection of sorted lists:

fun inter(L, nil) nil
| inter(nil, L)
| inter(x::xs, y::ys) =
if x=y then
x::inter(xs, ys)
else if (x:int) < y then
inter(xs, y::ys)
else inter(x::xs, ys);

nil

e Key trick: whichever head is smaller cannot
appear on the other list and so can be ex-
cluded from consideration for the intersection.

e O(n) if initial lists are sorted and of length
< n.

O Even if lists must be sorted first, it’s only
O(nlogn).

Characteristic Vectors

Boolean strings whose positions correspond to the
members of some fixed “universal” set.

e 1 in a position means the element is in the
set, 0 means it’s not.

Example: There are 9 “privileges” that can be
associated with a UNIX file: Each of (user, group,
others) may have any of (read, write, execute).

° The usual order is rwz for each of user (=
owner), group, others.

o Thus, e.g., a “protection mode” 110100000
means that the owner may read and write
(but not execute), the group can read only,
and others may not even read.

O As aset: {ur,uw,gr}.

Advantages of Characteristic Vectors

If universal set is small, sets can be represented by
bits packed 32 (or more) to a word.

e Insert, delete, lookup are O(1) operations on
the proper bit.

Union, intersection, difference are imple-
mented by machine operations on a word-by-
word basis.

O Thus, the running time is O(m), where
m is the size of the universal set.

O But constant factor (1/327) is very low.

Hashing

A “magical” way to get from an element z to the
place where z can be found.

An array [0..B-1] of buckets.

O Bucket = list of set elements. Array
holds header (pointer to first cell).

O B = number of buckets.

A hash function that takes potential set el-
ements and produces a “random” integer in
the range [0..B-1].

Example: If set of integers, simplest/best hash
function is usually h(z) = ¢ mod B.

Suppose B = 6, and we wish to store the
integers 70, 53, 99, 94, 83, 76, 64, 30.

0 These were obtained by turning to a ran-
dom page of the Stanford phone book.

They belong in buckets 4, 5, 3, 4, 5, 4, ,4, and

0, respectively.

Pitfalls in Hash Function Selection

e Goal is uniform distribution of elements into
buckets.

e Beware of a physical phenomenon that causes
nonuniform distribution.

Example:

o If integers were all even, then B = 6 would
cause only buckets 0, 2, and 4 to fill.

e If we hash the words in /usr/dict/words

into 10 buckets by length mod 10, then 20%
go into bucket 7.

Implementing Dictionary Operations

Lookup z by

1. Go to the head of bucket h(z).

2. Search the bucket list. If z is anywhere it is
in this bucket.

e Insert similar: Go to bucket h(z) and search
for . If not there, append z.

e Deletion similar: Go to bucket h(z) and

delete z from the list if it is there.

Analysis of Dictionary Operations/Hashing

If we pick B to be approximately n, the num-
ber of elements in the set, then the average

list is O(1) long.

Thus, dictionary operations take average

O(1) time each.

However, in the worst case, all elements are
in one bucket, and we get O(n) per operation.

But How Do We Keep B Near n?

If n gets as high as 2B, create a new hash table
with 2B buckets.

Rehash every element into the new table.
O Takes O(n) time total.

But there were at least n inserts since the last
time we “rehashed.”

O These inserts took time O(n).

Thus, we may “amortize” the cost of rehash-
ing over the inserts since the last rehash, at
most multiplying the time for those inserts by
a constant factor.

O i.e., even with rehashing, hashing takes
O(1) time average per dictionary opera-
tion.

