CS109A Notes for Lecture 3/6/95

Cartesian Product

\[A \times B = \text{set of pairs of elements } (a, b) \text{ such that } a \in A \text{ and } b \in B. \]

Example: \(S = \text{set of my shirts} = \{\text{white, blue, green}\} \); \(P = \text{set of my pants} = \{\text{blue, brown}\} \).

- \(S \times P = \text{set of ensembles} = \{(\text{white, blue}), \ (\text{white, brown}), \ (\text{blue, blue}), \ (\text{blue, brown}), \ (\text{green, blue}), \ (\text{green, brown})\}. \)

Multiway Products

Two approaches:

1. Nest binary products, e.g., \(A \times (B \times C) \).
 - Produces nested pairs, e.g., \((a, (b, c))\).
2. Products of more than two, e.g. \(A \times B \times C \).
 - Produces \(k \)-tuples, e.g., \((a, b, c)\).

- Compare with tuple types in ML, e.g., \texttt{int*int*int} vs. \texttt{int*(int*int)}.
- Natural equivalence between values like \((a, b, c)\) and \((a, (b, c))\).

Relations

A \((k\text{-ary}) \) relation is a set of \(k \)-tuples for some \(k \).

- **Binary** relations, the important case \(k = 2 \).
- Common notation (infix) for binary relations: \(aRb \) means \((a, b) \in R\).

Why Relations?

- Model of sets of records — vital for holding information of all types.
 - e.g., course grades as sets of triples (StudentID, Course, Grade).
- Model of many operators, e.g., \(<, \subseteq\).
Domain and Range

Binary relation A is a subset of $D \times R$ for some subsets D (the domain) and R (the range).

- Must distinguish between:
 1. *Declared domain* = set of values such that at all times the first components of A are members of this set (essentially the "type" of the first component), and
 2. *Current domain* = set of values that currently appear in the first components of pairs in A.

- Similarly: declared/current range.

Example: Let A be a relation consisting of pairs of strings and integers. Let the current value of A be $\{("\text{foo}", 1), ("\text{bar}", 2)\}$.

 - Declared domain = `string`, the set of all character strings.
 - Declared range = `int`, the set of all integers.
 - Current domain = `\{"\text{foo}", "\text{bar}"\}`.
 - Current range = `\{1, 2\}`.

Functions

If for every a in the domain of binary relation R there is at most one b such that aRb, then we say R is a (partial) function.

- Common notation: $R(a) = b$.
- Compare with "functions" in C or ML.
 - Those functions pair arguments with results, and this set of pairs is a function in the set-theoretic sense.
 - But a set-theoretic function can be a set of arbitrary pairs, with the range value not computable from the domain value.

Example: Domain, range = integers. aRb if and only if $b = a^2$.

- Can say: $3R9$, $R(-6) = 36$, $(2, 4) \in R$.

2
Why Functions?

Important difference in representation when a relation is a function.

Example: Store relation (StudentID, Phone).

- If we store only one phone/student, a 10-byte array suffices for the phone field.
- If we wish to store any number of phones per student, phone must be a linked list or similar, requiring extra space and extra work to store/retrieve a single phone.

Special Kinds of Functions

- If for every a in the domain of function F there is a pair (a, b) in F for some b, then F is a total function.
- Let the inverse of a relation R be $R^{-1} = \{(b, a) \mid (a, b) \in R\}$.
- If both F and F^{-1} are total functions, then F is one-to-one (a bijection).

Implementing Functions and Binary Relations

Linked-list, BST, Characteristic-vector, and Hash-table methods exist.

- Dictionary-like operations for functions F:
 - $\text{lookup}(a)$ returns $F(a)$.
 - $\text{insert}(a, b)$ makes $F(a) = b$.
 - $\text{delete}(a)$ makes $F(a)$ undefined.
- Dictionary-like operations for relations R:
 - $\text{lookup}(a)$ returns $\{b \mid aRb\}$.
 - $\text{insert}(a, b)$ adds (a, b) to R.
 - $\text{delete}(a, b)$ removes (a, b) from R.

Linked List Implementations

- For a function, use cells with fields for domain and range elements.
- i.e., type of list is \((dtype * rtype)\) list.

- For a relation, use cells with a field for the domain and a field that is the header for a list of associated range elements.

- i.e., type is \((dtype * (rtype list))\) list.

BST Implementation

- For a function \(F\), use domain element as a key. \((a, b) < (c, d)\) iff \(a < c\).
 - Store both \(a\) and \(F(a)\) at the node for \(a\).

- For a relation \(R\), also use domain element as a key. However, stored at a node for key (domain element) \(a\) is a list of all the \(b\)'s such that \(aRb\).

Characteristic Vector Implementation

Suitable only if the domain is a “small” set that can serve as index of arrays.

- For a function \(F\), store in \(F[a]\) the value \(F(a)\).
 - If \(F\) is not total, we need an “undefined” value outside the range that may appear in \(F[a]\).

- For a relation \(R\), store in \(R[a]\) the header of a list of \(b\)'s such that \(aRb\).

Hash Table Implementation

We use only the domain element as a key (value to be hashed).

- Buckets are lists of related pairs \((a, b)\).

- For both functions and relations, store \((a, b)\) in the bucket \(h(a)\).

- Perform \(lookup(a)\) by searching the bucket \(h(a)\).

- Only difference between functions and relations: a relation of size \(n\) may not distribute nicely among \(n\) buckets, because the number of domain elements may be much less than \(n\).