Why Study Infinite Sets?

- Occasionally useful — sometimes in CS you reason about infinite sequences of events or other infinite things.
- Intellectually challenging.
- Fun and interesting.
- Something you’re expected to know.

Counting and Cardinality

- The cardinality of a set is the number of elements in that set.
- Two sets are equipotent if and only if they have the same cardinality.
- The existence of a one-to-one correspondence between two sets proves that they are equipotent.
- Counting is really just creating a one-to-one correspondence between a set and the set of integers from 1 to some number n.

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>2</td>
</tr>
<tr>
<td>◊</td>
<td>3</td>
</tr>
<tr>
<td>△</td>
<td>4</td>
</tr>
<tr>
<td>○</td>
<td>5</td>
</tr>
<tr>
<td>♥</td>
<td></td>
</tr>
</tbody>
</table>

Finite and Infinite Sets

- Can you create a one-to-one correspondence between a set and a proper subset of itself? If so, you have a solution to the equation $x = x + y$, where x is the cardinality of the set and $y \geq 1$ is the cardinality of the stuff you left out.
• No finite \(x \) can satisfy that equation, but an “infinite” value can.

• This gives the technical definition of an infinite set: it is a set where there exists a one-to-one correspondence between the set itself and a proper subset.

Example

Let \(\mathbb{N} \) be the set of integers greater than 0. Clearly, \(\mathbb{N} - \{1\} \) is a proper subset of \(\mathbb{N} \). We can create a one-to-one correspondence between these two sets by matching each element \(x \in \mathbb{N} \) with element \(x + 1 \in \mathbb{N} - \{1\} \). Therefore, \(\mathbb{N} \) is an infinite set.

Countable Infinity

• Once we have an infinite set, we can prove another set infinite by creating a one-to-one correspondence between the known-infinite set and a subset (possibly the whole set) of the other set.

• For example, the set of all integers \(\mathbb{Z} \) contains \(\mathbb{N} \), which is obviously in one-to-one correspondence with \(\mathbb{N} \) itself, so \(\mathbb{Z} \) is infinite, too.

• Surprisingly, \(\mathbb{Z} \) and \(\mathbb{N} \) are actually equipotent. For example, a one-to-one correspondence between \(\mathbb{N} \) and \(\mathbb{Z} \) matches any \(x \in \mathbb{N} \) to \((x \div 2)\) if \(x \) is odd and to \(- (x \div 2)\) if \(x \) is even.

• Similarly, the \(\mathbb{Z} \) is equipotent with the set of even integers.

• Even more surprising, the set \(\mathbb{N} \) is equipotent with the set of pairs of positive integers:

<table>
<thead>
<tr>
<th></th>
<th>(1,4)</th>
<th>(2,4)</th>
<th>(3,4)</th>
<th>(4,4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3)</td>
<td>(2,3)</td>
<td>(3,3)</td>
<td>(4,3)</td>
<td></td>
</tr>
<tr>
<td>(1,2)</td>
<td>(2,2)</td>
<td>(3,2)</td>
<td>(4,2)</td>
<td></td>
</tr>
<tr>
<td>(1,1)</td>
<td>(2,1)</td>
<td>(3,1)</td>
<td>(4,1)</td>
<td></td>
</tr>
</tbody>
</table>
• Therefore, the set of rational numbers \(\mathbb{Q} \) is also equipotent with \(\mathbb{Z} \) and \(\mathbb{N} \), since every rational number can be represented as a pair of integers.

• Many common infinite sets are equipotent with the set of integers. This cardinality is written \(\aleph_0 \) (pronounced “aleph zero”), and a set with this cardinality is said to be \textit{countably infinite} because we can put its elements in one-to-one correspondence with \(\mathbb{N} \).

\textbf{Uncountable Infinity}

• Clearly the set \(\mathbb{R} \) of real numbers is infinite, since it contains all the integers. Is it countably infinite?

• \(\mathbb{R} \) is equipotent with the set of real numbers between 0 and 1 (or any other interval) by the following construction:

Mathematically, the one-to-one correspondence maps any real number \(x \) to \(y = (\arctan(x) + (\pi/2))/\pi \), which is always between 0 and 1, and inversely, maps any real number \(y \in (0,1) \) to \(x = \tan(\pi y - (\pi/2)) \).

• Suppose there exists a one-to-one correspondence between the real numbers from 0 to 1 and \(\mathbb{N} \):
\begin{tabular}{|c|c|}
\hline
\textbf{n} & \textbf{Decimal Representation} \\
\hline
1 & 1 1 2 3 5 \ldots \\
2 & 1 4 1 5 9 \ldots \\
3 & 0 1 9 6 7 \ldots \\
4 & 9 9 9 9 9 \ldots \\
5 & 1 2 3 4 5 \ldots \\
\vdots & \vdots \\
\hline
\end{tabular}

- We can always generate another real number not on the list. Therefore, no one-to-one correspondence exists.

- Therefore, there are more real numbers than there are integers. Sets with cardinality greater than \(\aleph_0 \) are said to be \emph{uncountably infinite}.

Proving and Disproving Equipotency

- Two sets are equipotent if \textbf{there exists} a one-to-one correspondence. If you find a one-to-one correspondence between to sets, you have proven them equipotent. If you can’t find a one-to-one correspondence, you neither proven nor disproven anything.

- To disprove equipotence, you must prove that no one-to-one correspondence is possible. The diagonalization technique given above is one way to do this.

- Alternatively, if you can prove one set countably infinite and the other set uncountably infinite, you’ve also proven that the two sets are not equipotent.