Depth-First Search

- A method of exploring a directed graph and numbering the nodes.
- Many useful properties — stay tuned.

The DFS Algorithm

1. “unmark” all nodes.
2. Pick a start node v_0 and execute the recursive function $dfs(v_0)$.
3. $dfs(u) =$ for each successor v of u that is unmarked:
 a) Mark v.
 b) Call $dfs(v)$.
 (Do nothing if v was already marked.)

Depth-First Search Tree

If $dfs(v)$ is called by $dfs(u)$, then make $u \rightarrow v$ a tree edge with u the parent.

- Add children of a node in order, from the left.

Example:

[Diagram of a directed graph]

Other Arcs

The other arcs of the graph fall into 3 groups:

1. Forward arcs: ancestor-to-proper-descendant
3. Cross arcs: right-to-left only.
left-to-right impossible — see FCS, pp. 488–489.

DFS Forest

If some nodes not included in first tree, start again from some unmarked node.

- Result is a sequence of trees, ordered left-to-right in order of creation = depth-first search forest.
- Note arcs between trees must go right-to-left.

These are considered cross arcs.

Example:

Postorder Numbering

We may number nodes in the order that dfs finishes on the node.
Example: Figure above shows postorder numbers for this DFS.

Postorder Numbers and Arcs Types

If \(u \rightarrow v \) is an arc, then the postorder number of \(u \) is the postorder number of \(v \) unless \(u \rightarrow v \) is a backward arc.

- FCS, pp. 493–4 explains why.

Running Time

DFS takes time at each node \(u \) proportional to the number of successors of \(u \), plus \(O(1) \) in case there are no successors.

- Thus, total time is \(O(n) \) for reaching each node, plus \(O(m) \) for examining successors of all nodes.

\[\boxtimes \text{ Important trick: efforts at different nodes varies, but total is proportional to number of arcs. (Details: FCS, p. 491.)} \]

\[\boxtimes \text{ Since } n \leq m, \text{ total is } O(m), \text{ i.e., proportional to size of data.} \]

Why Depth-First Search?

A number of important algorithms are based on depth-first search.

- Acyclicity and topological sorting (in class).
- Finding connected components (FCS, p. 499).
- More advanced, very efficient algorithms for:

 \[\boxtimes \text{ Planarity testing: can a graph be drawn in the plane with no crossing edges? (important for integrated circuit layout, e.g.)} \]

 \[\boxtimes \text{ Strong components: equivalence classes in directed graph defined by } uE v \text{ iff there are paths from } u \text{ to } v \text{ and back.} \]

 \[\boxtimes \text{ Biconnected components: equivalence classes in an undirected graph defined by } uE v \text{ iff } u = v \text{ or } u \text{ and } v \text{ are on a common simple cycle. (important for “survivable”} \]
networks = loss of an edge cannot disconnect nodes)

Testing For Cycles

A graph is acyclic if it has no cycles.

1. Create a DFS.

2. Look at all arcs to see if they are backward.
 Easy: just see if the head ≥ tail.

 - If a backward arc, surely a cycle.
 - If no backward arc, then surely no cycle.

 Proof: consider the postorder numbers of nodes on such a cycle. All arcs decrease the number, but the sum of changes around the cycle would have to be 0.

Topological Sorting

Given an acyclic graph, find a topological ordering of the nodes so that all arcs have their tail preceding their head.

- The reverse of postorder serves.

- The relation \(u \sim v \) iff there is a path from \(u \) to \(v \) is a partial order if the graph is acyclic. The topological sorting is a total order containing this partial order.

Class Problem

Given an acyclic graph and a source node \(s \), find the length of the shortest path from \(s \) to each node it can reach.

- Start with a topological order of the nodes, and visit them in this order. Consider the successors \(v \) of each node \(u \) visited and deduce something about the shortest path to \(v \) from the already-known shortest path to \(u \).

- Also: invent a similar algorithm to find the longest path from \(s \) to each node.