Single-Source Shortest Paths

Given a directed or undirected graph with non-negative “lengths” of edges/ arcs (= numeric labels), and given a source node \(s \), find for each node \(v \) the shortest “distance” (= least sum of labels) of any path from \(s \) to \(v \).

Dijkstra’s Algorithm

Grows a region of settled nodes whose shortest distance from \(s \) is known.

- Inductive computation: For each node \(v \), \(\text{dist}(v) \) is the length of the shortest path to \(v \) that goes only through settled nodes (called a special path).
 - If \(v \) is settled, then \(\text{dist}(v) \) is the correct shortest distance to \(v \).

Basis: Initially, only \(s \) is settled.

- \(\text{dist}(s) = 0 \), and \(\text{dist}(v) \) for other nodes \(v \) is either the length of an arc \(s \to v \) or \(\infty \) if there is no such arc.

Induction: Find the least \(\text{dist}(v) \) for any \(v \) that is not settled.

1. Make \(v \) settled.

2. For every unsettled node \(u \), see if there is now a shorter special path that goes through \(v \), the newly settled node.
 - Compare \(\text{dist}(u) \) with \(\text{dist}(v) + \) the length of arc \(v \to u \).
 - Replace \(\text{dist}(u) \) with the latter, if the latter is smaller.

Why Does It Work? (FCS, pp. 504ff)

Intuition: if there were a shorter path from \(s \) to \(v \), then it would first leave the settled region to some other node \(w \).
Thus, $\text{dist}(w) < \text{dist}(v)$.

Note needed assumption that lengths are ≥ 0.

$O(n^2)$ Implementation

There are $n-1$ “rounds” in which a node is settled. In each round:

- $O(n)$ time to pick the smallest dist among unsettled nodes.
- $O(n)$ time to consider if other dist values need to be lowered.

$O(m \log n)$ Implementation (FCS, pp, 506ff)

Better if $m < n^2$ (i.e., the graph is sparse) and adjacency lists are used. Key ideas:

1. Keep dist in a priority queue, so we can find and delete the least distance of an unsettled node in $O(\log n)$ time.
 - Actually, “priority” is lowest-first here, not greatest-first.
 - When we lower $\text{dist}(u)$, the position of u in the PQ may change, so it will take $O(\log n)$ time to “bubbleup.”

2. Count the work of updating successors u of the settled node v more carefully.
 - If v has m_v successors, then work is $O(m_v \log n)$ ($\log n$ for bubbling up for each of m_v nodes).
 - Thus, total update work $= \sum_v m_v \log n = O(m \log n)$.
 - That is also the dominant term of the whole algorithm.

Class Problem

Suppose we have already computed $\text{dist}(v)$ for all nodes v. Now, we add another arc $y \to z$ with some length. Do we have to recompute all the distances, or can we take advantage of the old distances?