Regular Expressions in UNIX

1. Character Class: \([a_1 a_2 \cdots a_n]\) is shorthand for \(a_1 | a_2 | \cdots | a_n\).
 - Also, \(\alpha - \beta\) stands for the set of characters with ASCII codes from the code for character \(\alpha\) to the code for \(\beta\).

Example: \([a-zA-Z]\) denotes any of the 52 upper or lower case letters. \([-+*/]\) denotes the four arithmetic operators.

 - Note that \(-\) must come first to avoid it having a special meaning. \([+-*/]\) denotes / and all the characters between + and *.

2. Additional operators:
 - \(R?\) stands for \(\epsilon | R\).
 - \(R^+\) stands for \(R | RR | RRR \cdots \) (one or more occurrences of \(R\)).

3. Special symbols:
 - Dot stands for “any ASCII character except the newline.”
 - \(^\) stands for the beginning of a line.
 - \(\$\) stands for the end of a line.

Example: The file /usr/dict/words contains common English words, one to a line. To find all 5-letter words beginning with a and with b as the fourth letter, issue the command

```
grep '^a..b.$' /usr/dict/words
```

The two words adobe and alibi are identified.

Example: Words with at least three t’s can be found by

```
grep 't.*t.*t' /usr/dict/words
```

- Note that grep scans for a pattern anywhere in the word. There is no need here to “anchor” the pattern at beginning or end.
Class Problem

How would you search for words that have three t’s separated by at most one letter between each consecutive pair?

- E.g., attitude, destitute, tattle.

- Hint: you need the * operator and the command *egrep (because grep doesn’t allow *).

Class Problem

How would you search for all words beginning with 4 or more consonants (excluding y)?

- Only examples: phthalate, schlieren, schnapps.

Operator Precedence

- The unary, postfix operators, *, +, and ? have highest precedence.

- Then comes concatenation.

- Union (|) is of lowest precedence.

Example: a | bc? is grouped a | (bc?) and de-notes the language \{a, b, bc\}.

Algebra of RE’s

Like the set operators \(\cup \) etc., there are many algebraic laws that apply to the regular expression operators.

- One approach: manipulate expressions to show equivalence:

 - Substitute RE’s for variables in known equivalences.

 - Substitute an equivalent RE for another.

 - Use transitivity and commutativity of equivalence.
Example: Suppose $R(S \mid T) \equiv RS \mid RT$ is known. Substitute $R \Rightarrow R$, $S \Rightarrow \emptyset$, $T \Rightarrow \epsilon$, yields $R(\emptyset \mid \epsilon) \equiv R\emptyset \mid R\epsilon$.

Substitute $R\emptyset \equiv \emptyset$; $R\epsilon \equiv R$, yields $R(\emptyset \mid \epsilon) \equiv \emptyset \mid R$.

Substitute $R \mid \emptyset \equiv R$, yields $R(\emptyset \mid \epsilon) \equiv R$.

- Another approach: show containment in both directions.

 - Remember that the “meaning” of an RE is a language, i.e., a set of strings, so containment of sets makes sense.

- Read catalog of laws, pp. 569ff, FCS.

Example: Let us use a containment of sets argument to prove the following distributive law: $R(S \mid T) \equiv RS \mid RT$.

\subseteq.

- Let w be in $L(R(S \mid T)) = L(R)L(S \mid T)$.

- Then $w = rz$; r is in $L(R)$ and z is in $L(S \mid T) = L(S) \cup L(T)$.

 - Case 1: x in $L(S)$. Then $rz = w$ is in $L(RS)$. Therefore, w is in $L(RS \mid RT)$.

 - Case 2: x in $L(T)$. Similarly, $rz = w$ is in $L(RT)$ and in $L(RS \mid RT)$.

\supseteq.

- Let w be in $L(RS \mid RT) = L(RS) \cup L(RT)$.

 - Case 1: w is in $L(RS) = L(R)L(S)$. Then $w = rs$, r is in $L(R)$ and s is in $L(S)$. Thus, s is in $L(S \mid T) = L(S) \cup L(T)$ and $rs = w$ is in $L(R(S \mid T))$.

 - Case 2: w is in $L(RT)$. Similar.