From RE's to Automata

1. NFA's with ε-transitions. (ε-NFA's).
2. RE's \rightarrow ε-NFA's.
3. ε-NFA's \rightarrow NFA's.

ε-NFA's

Allow transition on ε.

- ε is invisible as far as the string labeling the part from start state to accepting state is concerned.

Example: $a^*b \mid b^*a$ is accepted by the following ε-NFA.

RE to ε-NFA

Produce a special kind of ε-NFA:

- One start, one accepting state.
- At most 2 arcs out of any state.

Construction of ε-NFA from RE is a structural induction on the expression tree for the RE.

- See pp. 574–5, FCS for pictures.

Basis: Operand: \emptyset, ε, or a symbol a.
Induction: Cases for |, concatenation, *.

- Inductive hypothesis \(S(R) \): the \(\epsilon \)-NFA constructed for RE \(R \) has paths from start to accepting state labeled by all and only the strings in \(L(R) \).

\(\epsilon \)-NFA to NFA

First step is to determine for all states \(s \) and \(t \) whether there is a path labeled \(\epsilon \) from \(s \) to \(t \).

- Special case of all-pairs shortest path: give \(\epsilon \)-arc a weight 0 and other arcs or no arc a weight \(\infty \).

□ Ask: is the distance from \(s \) to \(t \) 0?

Example: Here is the above \(\epsilon \)-NFA with non-\(\epsilon \) arcs removed.

Here are the reaching pairs:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Important state** = start state or a state with a non-\(\epsilon \) transition in.

Example: For our running example, all but 6 are important.

- Eliminate \(\epsilon \)-transitions by:
If there is an ε-path from important state \(s \) to \(t \) and a transition on \(t \) to \(r \) on symbol \(a \) (therefore \(r \) is surely important), then add a transition from \(s \) to \(r \) on \(a \).

Important state \(s \) is accepting iff there is a (possibly empty) ε-path from \(s \) to an accepting state.

Example:

![Diagram](image_url)

FA to RE

Key idea: *pivot* on a state (like Floyd's algorithm).

- Picture, p. 583, FCS.
- Initially, label of a FA arc is treated as a RE.
- If we pivot on state \(u \), consider a predecessor state \(s \) and a successor state \(t \).
• New RE for going from \(s \) to \(t \) is \(R | S U^* T \).

Why?

Reducing the Automaton

If there is one accepting state, and it is not the start state, eliminate all other states.

• The result is a 2-state automaton with RE's on 4 arcs. Fig. 10.43, p. 586, FCS, gives the automaton and the resulting RE.

Some additional details:

• If start = accepting, you get a 1-state automaton as in Fig. 10.44.

• If there is more than 1 accepting state, repeat process for each and take the union of the resulting RE's.

Example:

Resulting RE: \((00)^* 01 \left(11 | 10(00)^*01\right)^* \).