CS109B Notes for Lecture 5/8/95

Expressive Power of Languages

There are several different schemes we have seen for describing languages:

- 1. DFA, NFA, RE, for defining "regular sets."
- 2. Grammars for context-free languages.

There is a rough tradeoff: Regular sets are a proper subset of the languages that grammars can define, but it is easier to build recognizers and processors for regular sets than for context-free languages.

- Practical consequence: compilers and similar text-processing software generally have two components:
 - 1. A lexical analyzer for aspects of the input that can be described by regular sets (e.g., form of identifiers).
 - 2. A parser for aspects that need the power of a grammar, e.g., nested statements, expressions.

Grammars Can Simulate RE's

Structural induction on the expression tree for a RE that there is a grammar one of whose SC's has the language of the subexpression dangling from a node.

Basis: Leaf: If labeled a, then

$$< S > \rightarrow a$$

works.

- For ϵ , the same with ϵ in place of a.
- For \emptyset , just $\langle S \rangle$ with no production.

Induction: Suppose we have grammars for subexpressions R_1 and R_2 .

• Assume these grammars have no SC's in common (rename if necessary). Let S_1 , S_2 be their "starting" SC's, respectively.

For $R_1 \mid R_2$ add production

$$< S >
ightarrow < S_1 > | < S_2 >$$

For R_1R_2 add

$$< S >
ightarrow < S_1 > < S_2 >$$

For ${R_1}^*$ add

$$< S >
ightarrow < S_1 > < S > \mid \epsilon$$

Class Problem

For the extended operators R_1 ? and R_1 ⁺ what productions would you use?

Fooling Arguments: Showing a Language has no RE

If a language has an RE it has a DFA.

- The DFA has n states for some n. We don't know n, but we know it exists.
- Consider some string longer than n in the language and argue that at two times, the DFA must be in the same state.
- Use this observation to show the existence of a path leading to acceptance, with a label that is not in the language.

Example: Palindromes (even-length only) with symbols a and b. Grammar:

$$< pal >
ightarrow a < pal > a < \\ > pal > b < pal > b < \\ > pal >
ightarrow \epsilon$$

- Suppose $L(\langle pal \rangle)$ had a DFA D. Let D have n states.
- Consider the behavior of D on input a^nbba^n .
 - \square Remember x^i is shorthand for the string of i x's.

- This string is a palindrome of even length, so D accepts.
- Let s_i be the state D is in after reading a^i .
 - Not all of $\{a_0, a_1, \ldots, a_n\}$ can be different (pidgeonhole principle!).
- Thus, there are integers j and k such that $0 \le j < k \le n$ for which $s_j = s_k$.
- As a result, $a^{n+k-j}bba^n$ also leads to acceptance.
 - ☐ Go around loop twice in diagram.

• But that string is not in the language. Thus, D does not accept $L(\langle pal \rangle)$ as claimed. Since we assumed nothing special about D, we have proved that no DFA accepts this language.

Class Problem

The language consisting of all strings of 0's whose length is a perfect square, i.e., $\{0,0^4,0^9,0^{16},\ldots\}$, is not a regular set.

• It isn't a context-free language either, but the proof is much harder.

Use a "fooling argument" to show that this language has no DFA.

Important trick: the squares are very sparse. After n^2 the next square is $(n+1)^2$, which is 2n+1 greater than n^2 . Given a hypothetical DFA D, we can see what it does on some very large (compared with the number of states of D) square.