Tautologies

Logical expressions that evaluate to TRUE for any truth-assignment.

- Embody reasoning principles.
- Compare with design of expressions, where interesting functions are true for only some truth-assignments.

Example: NOT \(p \bar{p} \) (a statement cannot be true and false at the same time).

Laws

Tautologies with \(\equiv \) as the outermost operator, i.e., \(E \equiv F \).

- Important for applying algebraic transformations to logical expressions; optimizing expressions is the goal.

Example: Commutative laws for AND and OR: \(pq \equiv qp; p + q \equiv q + p \).

Deriving Tautologies

- Building the truth table always works, but it is exponential in the number of variables.

- Substitution Principle: We may make any substitution of an expression for (all occurrences of) a variable in a tautology, and we still have a tautology.

Example: We know \(pq \equiv qp \) is a tautology.

- Make the substitution \(p \Rightarrow r + s \bar{t} \) and \(q \Rightarrow su \bar{v} \). That gives us the tautology \((r + s \bar{t})su \bar{v} \equiv su \bar{v}(r + s \bar{t}) \) without having to check a 32-row truth table.

- Make the substitution \(p \Rightarrow x, q \Rightarrow y \) to get \(xy \equiv yz \).

\[\square \] In general, tautologies stated with one set of variables may have their variables renamed uniformly.
Substitution of Equals for Equals

If we have law \(E \equiv F \) and another tautology \(G \), we may substitute \(F \) for any or all occurrences of \(E \) in \(G \), and the result remains a tautology.

Example: Let us derive an interesting law, the *law of the contrapositive*: \((p \rightarrow q) \equiv (\bar{q} \rightarrow \bar{p}) \).

- Abbreviate SEE = “substitution of equals for equals.”

1. Starting with the *law of commutativity* of OR: \((x + y) \equiv (y + x)\), substitute \(x \Rightarrow \bar{p} \) and \(y \Rightarrow q \) to get \((\bar{p} + q) \equiv (q + \bar{p})\).

2. Use another easily proved tautology, the *law of double negation*: \(q \equiv \bar{\bar{q}} \).

3. SEE in (1) to get: \((\bar{p} + q) \equiv (\bar{q} + \bar{p})\).

4. Use the law *definition of implies*: \((x + y) \equiv (x \rightarrow y)\).

5. Two different substitutions into this law give us \((\bar{p} + q) \equiv (p \rightarrow q)\) and \((\bar{q} + \bar{p}) \equiv (\bar{q} \rightarrow \bar{p})\).

6. SEE twice in (3) to get \((p \rightarrow q) \equiv (\bar{q} \rightarrow \bar{p})\).

Tautology Catalog

It’s in the book, Section 12.8.

- Please read these.

Notice:

- \(\text{AND} \) and \(\text{OR} \) behave like union and intersection.

- In fact, if there were a “universal set” \(U \) and “complement of a set \(S \)” were defined to be \(U - S \), then \(\text{AND} \), \(\text{OR} \), and \(\text{NOT} \) would behave exactly like union, intersection, and complement.

- \(\emptyset \) and \(U \) would be 0 and 1, respectively.

- Venn Diagrams would look exactly like graphical representations of truth tables; the \(2^n \) regions of an \(n \)-set diagram are the \(2^n \) rows of a truth table.
DeMorgan’s Laws

Used to push NOT below AND and OR.

- $\neg(pq) \equiv (\overline{p} + \overline{q})$
- $\neg(p + q) \equiv (\overline{p}\overline{q})$

Consequence: any logical expression can be written so NOT applies only to variables, not to higher-level expressions.

- Explains duality principle: any tautology involving AND, OR, NOT can have (AND and OR), (TRUE and FALSE) interchanged and remain a tautology.

□ Read pp. 678–9 for proof.

Example: Consider the tautology $p + \overline{p}$.

- By “double negation,” $\neg(\neg(p + \overline{p}))$ is also a tautology.
- By DeMorgan, and substitution of equals for equals, $\neg(\overline{p}\overline{p})$ is a tautology.
- Another use of double negation: $\neg(p\overline{p})$ is a tautology.

Tautologies as Reasoning Rules

Example: Contrapositive law: $(p \rightarrow q) \equiv (\overline{q} \rightarrow \overline{p})$.

- We saw in class how to prove $p \rightarrow q$ it was easier to prove $\overline{q} \rightarrow \overline{p}$, where

□ $p = “T$ is a MWST.”
□ $q = “T$ has no cycle.”

- Prove “if T has a cycle, then T is not a MWST”; conclude “if T is a MWST, then T has no cycle.”

Example: Case analysis: $(p \rightarrow q)(\overline{p} \rightarrow q) \rightarrow q$.

- Consider the following statements:

□ $p = “n$ is even.”
□ $q = “n^2 \mod 4 = 0$ or $1.”$
• Prove “if n is even then $n^2 \mod 4 = 0$ or 1 (0, in particular)” and “if n is odd, then $n \mod 4 = 0$ or 1 (1 in particular).

Example: Proof by contradiction: $(\neg p \rightarrow 0) \equiv p$.

• For instance, p might be “$L(D) \neq L$,” where D is a particular DFA and L is a particular language.

• A fooling argument works by starting with $\neg p$ (i.e., “$L(D) = L$”) and deriving **false**.

 □ More precisely, we show that $L(D)$ is not really L, so we have both $\neg p$ and p.

 □ From these, we may use $\neg pp = 0$ so we have started with $\neg p$ and proved 0, or **false**.

• We may conclude p is true; i.e., $L(D) \neq L$.