
CHAPTER 3

✦
✦ ✦

✦ The Running Time

of Programs

In Chapter 2, we saw two radically different algorithms for sorting: selection sort
and merge sort. There are, in fact, scores of algorithms for sorting. This situation
is typical: every problem that can be solved at all can be solved by more than one
algorithm.

How, then, should we choose an algorithm to solve a given problem? As a
general rule, we should always pick an algorithm that is easy to understand, im-
plement, and document. When performance is important, as it often is, we also
need to choose an algorithm that runs quickly and uses the available computing
resources efficiently. We are thus led to consider the often subtle matter of how we
can measure the running time of a program or an algorithm, and what steps we can
take to make a program run faster.

✦
✦ ✦

✦
3.1 What This Chapter Is About

In this chapter we shall cover the following topics:

✦ The important performance measures for programs

✦ Methods for evaluating program performance

✦ “Big-oh” notation

✦ Estimating the running time of programs using the big-oh notation

✦ Using recurrence relations to evaluate the running time of recursive programs

The big-oh notation introduced in Sections 3.4 and 3.5 simplifies the process of esti-
mating the running time of programs by allowing us to avoid dealing with constants
that are almost impossible to determine, such as the number of machine instructions
that will be generated by a typical C compiler for a given source program.

We introduce the techniques needed to estimate the running time of programs
in stages. In Sections 3.6 and 3.7 we present the methods used to analyze programs
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90 THE RUNNING TIME OF PROGRAMS

with no function calls. Section 3.8 extends our capability to programs with calls to
nonrecursive functions. Then in Sections 3.9 and 3.10 we show how to deal with
recursive functions. Finally, Section 3.11 discusses solutions to recurrence relations,
which are inductive definitions of functions that arise when we analyze the running
time of recursive functions.

✦
✦ ✦

✦
3.2 Choosing an Algorithm

If you need to write a program that will be used once on small amounts of data
and then discarded, then you should select the easiest-to-implement algorithm you
know, get the program written and debugged, and move on to something else. How-
ever, when you need to write a program that is to be used and maintained by many
people over a long period of time, other issues arise. One is the understandability, or
simplicity, of the underlying algorithm. Simple algorithms are desirable for severalSimplicity

reasons. Perhaps most important, a simple algorithm is easier to implement cor-
rectly than a complex one. The resulting program is also less likely to have subtle
bugs that get exposed when the program encounters an unexpected input after it
has been in use for a substantial period of time.

Programs should be written clearly and documented carefully so that they canClarity

be maintained by others. If an algorithm is simple and understandable, it is easier
to describe. With good documentation, modifications to the original program can
readily be done by someone other than the original writer (who frequently will not
be available to do them), or even by the original writer if the program was done some
time earlier. There are numerous stories of programmers who wrote efficient and
clever algorithms, then left the company, only to have their algorithms ripped out
and replaced by something slower but more understandable by subsequent main-
tainers of the code.

When a program is to be run repeatedly, its efficiency and that of its underlyingEfficiency

algorithm become important. Generally, we associate efficiency with the time it
takes a program to run, although there are other resources that a program sometimes
must conserve, such as

1. The amount of storage space taken by its variables.

2. The amount of traffic it generates on a network of computers.

3. The amount of data that must be moved to and from disks.

For large problems, however, it is the running time that determines whether a given
program can be used, and running time is the main topic of this chapter. We
shall, in fact, take the efficiency of a program to mean the amount of time it takes,
measured as a function of the size of its input.

Often, understandability and efficiency are conflicting aims. For example, the
reader who compares the selection sort program of Fig. 2.3 with the merge sort
program of Fig. 2.32 will surely agree that the latter is not only longer, but quite
a bit harder to understand. That would still be true even if we summarized the
explanation given in Sections 2.2 and 2.8 by placing well-thought-out comments in
the programs. As we shall learn, however, merge sort is much more efficient than
selection sort, as long as the number of elements to be sorted is a hundred or more.
Unfortunately, this situation is quite typical: algorithms that are efficient for large
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amounts of data tend to be more complex to write and understand than are the
relatively inefficient algorithms.

The understandability, or simplicity, of an algorithm is somewhat subjective.
We can overcome lack of simplicity in an algorithm, to a certain extent, by explain-
ing the algorithm well in comments and program documentation. The documentor
should always consider the person who reads the code and its comments: Is a rea-
sonably intelligent person likely to understand what is being said, or are further
explanation, details, definitions, and examples needed?

On the other hand, program efficiency is an objective matter: a program takes
what time it takes, and there is no room for dispute. Unfortunately, we cannot run
the program on all possible inputs — which are typically infinite in number. Thus,
we are forced to make measures of the running time of a program that summarize
the program’s performance on all inputs, usually as a single expression such as “n2.”
How we can do so is the subject matter of the balance of this chapter.

✦
✦ ✦

✦
3.3 Measuring Running Time

Once we have agreed that we can evaluate a program by measuring its running
time, we face the problem of determining what the running time actually is. The
two principal approaches to summarizing the running time are

1. Benchmarking

2. Analysis

We shall consider each in turn, but the primary emphasis of this chapter is on the
techniques for analyzing a program or an algorithm.

Benchmarking

When comparing two or more programs designed to do the same set of tasks, it is
customary to develop a small collection of typical inputs that can serve as bench-

marks. That is, we agree to accept the benchmark inputs as representative of the
job mix; a program that performs well on the benchmark inputs is assumed to
perform well on all inputs.

For example, a benchmark to evaluate sorting programs might contain one
small set of numbers, such as the first 20 digits of π; one medium set, such as the
set of zip codes in Texas; and one large set, such as the set of phone numbers in the
Brooklyn telephone directory. We might also want to check that a program works
efficiently (and correctly) when given an empty set of elements to sort, a singleton
set, and a list that is already in sorted order. Interestingly, some sorting algorithms
perform poorly when given a list of elements that is already sorted.1

1 Neither selection sort nor merge sort is among these; they take approximately the same time
on a sorted list as they would on any other list of the same length.
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The 90-10 Rule

In conjunction with benchmarking, it is often useful to determine where the program
under consideration is spending its time. This method of evaluating program per-
formance is called profiling and most programming environments have tools calledProfiling

profilers that associate with each statement of a program a number that represents
the fraction of the total time taken executing that particular statement. A related
utility, called a statement counter, is a tool that determines for each statement of
a source program the number of times that statement is executed on a given set of
inputs.

Many programs exhibit the property that most of their running time is spent in
a small fraction of the source code. There is an informal rule that states 90% of the
running time is spent in 10% of the code. While the exact percentage varies from
program to program, the “90-10 rule” says that most programs exhibit significant
locality in where the running time is spent. One of the easiest ways to speed up aLocality and

hot spots program is to profile it and then apply code improvements to its “hot spots,” which
are the portions of the program in which most of the time is spent. For example, we
mentioned in Chapter 2 that one might speed up a program by replacing a recursive
function with an equivalent iterative one. However, it makes sense to do so only if
the recursive function occurs in those parts of the program where most of the time
is being spent.

As an extreme case, even if we reduce to zero the time taken by the 90% of
the code in which only 10% of the time is spent, we will have reduced the overall
running time of the program by only 10%. On the other hand, cutting in half the
running time of the 10% of the program where 90% of the time is spent reduces the
overall running time by 45%.

Analysis of a Program

To analyze a program, we begin by grouping inputs according to size. What we
choose to call the size of an input can vary from program to program, as we discussed
in Section 2.9 in connection with proving properties of recursive programs. For a
sorting program, a good measure of the size is the number of elements to be sorted.
For a program that solves n linear equations in n unknowns, it is normal to take n to
be the size of the problem. Other programs might use the value of some particular
input, or the length of a list that is an input to the program, or the size of an array
that is an input, or some combination of quantities such as these.

Running Time

It is convenient to use a function T (n) to represent the number of units of time
taken by a program or an algorithm on any input of size n. We shall call T (n) the
running time of the program. For example, a program may have a running time
T (n) = cn, where c is some constant. Put another way, the running time of this
program is linearly proportional to the size of the input on which it is run. Such a
program or algorithm is said to be linear time, or just linear.Linear-time

algorithm We can think of the running time T (n) as the number of C statements executed
by the program or as the length of time taken to run the program on some standard
computer. Most of the time we shall leave the units of T (n) unspecified. In fact,
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as we shall see in the next section, it makes sense to talk of the running time of a
program only as some (unknown) constant factor times T (n).

Quite often, the running time of a program depends on a particular input, not
just on the size of the input. In these cases, we define T (n) to be the worst-case

running time, that is, the maximum running time on any input among all inputs of
size n.Worst and

average-case

running time
Another common performance measure is Tavg(n), the average running time of

the program over all inputs of size n. The average running time is sometimes a more
realistic measure of what performance one will see in practice, but it is often much
harder to compute than the worst-case running time. The notion of an “average”
running time also implies that all inputs of size n are equally likely, which may or
may not be true in a given situation.

✦ Example 3.1. Let us estimate the running time of the SelectionSort fragment
shown in Fig. 3.1. The statements have the original line numbers from Fig. 2.2. The
purpose of the code is to set small to the index of the smallest of the elements found
in the portion of the array A from A[i] through A[n-1].

(2) small = i;

(3) for(j = i+1; j < n; j++)

(4) if (A[j] < A[small])

(5) small = j;

Fig. 3.1. Inner loop of selection sort.

To begin, we need to develop a simple notion of time units. We shall examine
the issue in detail later, but for the moment, the following simple scheme is sufficient.
We shall count one time unit each time we execute an assignment statement. At
line (3), we count one unit for initializing j at the beginning of the for-loop, one unit
for testing whether j < n, and one unit for incrementing j, each time we go around
the loop. Finally, we charge one unit each time we perform the test of line (4).

First, let us consider the body of the inner loop, lines (4) and (5). The test of
line (4) is always executed, but the assignment at line (5) is executed only if the
test succeeds. Thus, the body takes either 1 or 2 time units, depending on the data
in array A. If we want to take the worst case, then we can assume that the body
takes 2 units. We go around the for-loop n− i− 1 times, and each time around we
execute the body (2 units), then increment j and test whether j < n (another 2
units). Thus, the number of time units spent going around the loop is 4(n− i− 1).
To this number, we must add 1 for initializing small at line (2), 1 for initializing j

at line (3), and 1 for the first test j < n at line (3), which is not associated with
the end of any iteration of the loop. Hence, the total time taken by the program
fragment in Fig. 3.1 is 4(n − i) − 1.

It is natural to regard the “size” m of the data on which Fig. 3.1 operates as
m = n − i, since that is the length of the array A[i..n-1] on which it operates.
Then the running time, which is 4(n − i) − 1, equals 4m − 1. Thus, the running
time T (m) for Fig. 3.1 is 4m − 1. ✦
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Comparing Different Running Times

Suppose that for some problem we have the choice of using a linear-time program
A whose running time is TA(n) = 100n and a quadratic-time program B whose
running time is TB(n) = 2n2. Let us suppose that both these running times are the
number of milliseconds taken on a particular computer on an input of size n.2 The
graphs of the running times are shown in Fig. 3.2.
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Fig. 3.2. Running times of a linear and a quadratic program.

From Fig. 3.2 we see that for inputs of size less than 50, program B is faster
than program A. When the input becomes larger than 50, program A becomes
faster, and from that point on, the larger the input, the bigger the advantage A has
over B. For inputs of size 100, A is twice as fast as B, and for inputs of size 1000,
A is 20 times as fast.

The functional form of a program’s running time ultimately determines how big
a problem we can solve with that program. As the speed of computers increases, we
get bigger improvements in the sizes of problems that we can solve with programs
whose running times grow slowly than with programs whose running times rise
rapidly.

Again, assuming that the running times of the programs shown in Fig. 3.2 are
in milliseconds, the table in Fig. 3.3 indicates how large a problem we can solve with
each program on the same computer in various amounts of time given in seconds.
For example, suppose we can afford 100 seconds of computer time. If computers
become 10 times as fast, then in 100 seconds we can handle problems of the size
that used to require 1000 seconds. With algorithm A, we can now solve problems 10
times as large, but with algorithm B we can only solve problems about 3 times as
large. Thus, as computers continue to get faster, we gain an even more significant
advantage by using algorithms and programs with lower growth rates.

2 This situation is not too dissimilar to the situation where algorithm A is merge sort and
algorithm B is selection sort. However, the running time of merge sort grows as n log n, as
we shall see in Section 3.10.
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Never Mind Algorithm Efficiency; Just Wait a Few Years

Frequently, one hears the argument that there is no need to improve the running
time of algorithms or to select efficient algorithms, because computer speeds are
doubling every few years and it will not be long before any algorithm, however
inefficient, will take so little time that one will not care. People have made this claim
for many decades, yet there is no limit in sight to the demand for computational
resources. Thus, we generally reject the view that hardware improvements will
make the study of efficient algorithms superfluous.

There are situations, however, when we need not be overly concerned with
efficiency. For example, a school may, at the end of each term, transcribe grades
reported on electronically readable grade sheets to student transcripts, all of which
are stored in a computer. The time this operation takes is probably linear in the
number of grades reported, like the hypothetical algorithm A. If the school replaces
its computer by one 10 times as fast, it can do the job in one-tenth the time. It
is very unlikely, however, that the school will therefore enroll 10 times as many
students, or require each student to take 10 times as many classes. The computer
speedup will not affect the size of the input to the transcript program, because that
size is limited by other factors.

On the other hand, there are some problems that we are beginning to find
approachable with emerging computing resources, but whose “size” is too great to
handle with existing technology. Some of these problems are natural language un-
derstanding, computer vision (understanding of digitized pictures), and “intelligent”
interaction between computers and humans in all sorts of endeavors. Speedups, ei-
ther through improved algorithms or from machine improvements, will enhance our
ability to deal with these problems in the coming years. Moreover, when they be-
come “simple” problems, a new generation of challenges, which we can now only
barely imagine, will take their place on the frontier of what it is possible to do with
computers.

TIME MAXIMUM PROBLEM SIZE MAXIMUM PROBLEM SIZE

sec. SOLVABLE WITH PROGRAM A SOLVABLE WITH PROGRAM B

1 10 22
10 100 70

100 1000 223
1000 10000 707

Fig. 3.3. Problem size as a function of available time.

EXERCISES

3.3.1: Consider the factorial program fragment in Fig. 2.13, and let the input size
be the value of n that is read. Counting one time unit for each assignment, read,
and write statement, and one unit each time the condition of the while-statement
is tested, compute the running time of the program.
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3.3.2: For the program fragments of (a) Exercise 2.5.1 and (b) Fig. 2.14, give an
appropriate size for the input. Using the counting rules of Exercise 3.3.1, determine
the running times of the programs.

3.3.3: Suppose program A takes 2n/1000 units of time and program B takes 1000n2

units. For what values of n does program A take less time than program B?

3.3.4: For each of the programs of Exercise 3.3.3, how large a problem can be solved
in (a) 106 time units, (b) 109 time units, and (c) 1012 time units?

3.3.5: Repeat Exercises 3.3.3 and 3.3.4 if program A takes 1000n4 time units and
program B takes n10 time units.

✦
✦ ✦

✦
3.4 Big-Oh and Approximate Running Time

Suppose we have written a C program and have selected the particular input on
which we would like it to run. The running time of the program on this input still
depends on two factors:

1. The computer on which the program is run. Some computers execute instruc-
tions more rapidly than others; the ratio between the speeds of the fastest
supercomputers and the slowest personal computers is well over 1000 to 1.

2. The particular C compiler used to generate a program for the computer to
execute. Different programs can take different amounts of time to execute on
the same machine, even though the programs have the same effect.

As a result, we cannot look at a C program and its input and say, “This task
will take 3.21 seconds,” unless we know which machine and which compiler will
be used. Moreover, even if we know the program, the input, the machine, and
the compiler, it is usually far too complex a task to predict exactly the number of
machine instructions that will be executed.

For these reasons, we usually express the running time of a program using
“big-oh” notation, which is designed to let us hide constant factors such as

1. The average number of machine instructions a particular compiler generates.

2. The average number of machine instructions a particular machine executes per
second.

For example, instead of saying, as we did in Example 3.1, that the SelectionSort

fragment we studied takes time 4m − 1 on an array of length m, we would say
that it takes O(m) time, which is read “big-oh of m” or just “oh of m,” and which
informally means “some constant times m.”

The notion of “some constant times m” not only allows us to ignore unknown
constants associated with the compiler and the machine, but also allows us to make
some simplifying assumptions. In Example 3.1, for instance, we assumed that all
assignment statements take the same amount of time, and that this amount of time
was also taken by the test for termination in the for-loop, the incrementation of j
around the loop, the initialization, and so on. Since none of these assumptions is
valid in practice, the constants 4 and −1 in the running-time formula T (m) = 4m−1
are at best approximations to the truth. It would be more appropriate to describe
T (m) as “some constant times m, plus or minus another constant” or even as “at
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most proportional to m.” The notation O(m) enables us to make these statements
without getting involved in unknowable or meaningless constants.

On the other hand, representing the running time of the fragment as O(m) does
tell us something very important. It says that the time to execute the fragment
on progressively larger arrays grows linearly, like the hypothetical Program A of
Figs. 3.2 and 3.3 discussed at the end of Section 3.3. Thus, the algorithm embodied
by this fragment will be superior to competing algorithms whose running time grows
faster, such as the hypothetical Program B of that discussion.

Definition of Big-Oh

We shall now give a formal definition of the notion of one function being “big-oh”
of another. Let T (n) be a function, which typically is the running time of some
program, measured as a function of the input size n. As befits a function that
measures the running time of a program, we shall assume that

1. The argument n is restricted to be a nonnegative integer, and

2. The value T (n) is nonnegative for all arguments n.

Let f(n) be some function defined on the nonnegative integers n. We say that

“T (n) is O
(

f(n)
)

”

if T (n) is at most a constant times f(n), except possibly for some small values of n.
Formally, we say that T (n) is O

(

f(n)
)

if there exists an integer n0 and a constant
c > 0 such that for all integers n ≥ n0, we have T (n) ≤ cf(n).

We call the pair n0 and c witnesses to the fact that T (n) is O
(

f(n)
)

. TheWitnesses

witnesses “testify” to the big-oh relationship of T (n) and f(n) in a form of proof
that we shall next demonstrate.

Proving Big-Oh Relationships

We can apply the definition of “big-oh” to prove that T (n) is O
(

f(n)
)

for particular
functions T and f . We do so by exhibiting a particular choice of witnesses n0 and
c and then proving that T (n) ≤ cf(n). The proof must assume only that n is a
nonnegative integer and that n is at least as large as our chosen n0. Usually, the
proof involves algebra and manipulation of inequalities.

✦ Example 3.2. Suppose we have a program whose running time is T (0) = 1,
T (1) = 4, T (2) = 9, and in general T (n) = (n+1)2. We can say that T (n) is O(n2),
or that T (n) is quadratic, because we can choose witnesses n0 = 1 and c = 4. WeQuadratic

running time then need to prove that (n + 1)2 ≤ 4n2, provided n ≥ 1. In proof, expand (n + 1)2

as n2 + 2n + 1. As long as n ≥ 1, we know that n ≤ n2 and 1 ≤ n2. Thus

n2 + 2n + 1 ≤ n2 + 2n2 + n2 = 4n2
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Template for Big-Oh Proofs

Remember: all big-oh proofs follow essentially the same form. Only the algebraic
manipulation varies. We need to do only two things to have a proof that T (n) is
O

(

f(n)
)

.

1. State the witnesses n0 and c. These witnesses must be specific constants, e.g.,
n0 = 47 and c = 12.5. Also, n0 must be a nonnegative integer, and c must be
a positive real number.

2. By appropriate algebraic manipulation, show that if n ≥ n0 then T (n) ≤ cf(n),
for the particular witnesses n0 and c chosen.

Alternatively, we could pick witnesses n0 = 3 and c = 2, because, as the reader may
check, (n + 1)2 ≤ 2n2, for all n ≥ 3.

However, we cannot pick n0 = 0 with any c, because with n = 0, we would
have to show that (0 + 1)2 ≤ c02, that is, that 1 is less than or equal to c times 0.
Since c × 0 = 0 no matter what c we pick, and 1 ≤ 0 is false, we are doomed if we
pick n0 = 0. That doesn’t matter, however, because in order to show that (n + 1)2

is O(n2), we had only to find one choice of witnesses n0 and c that works. ✦

It may seem odd that although (n + 1)2 is larger than n2, we can still say that
(n + 1)2 is O(n2). In fact, we can also say that (n + 1)2 is big-oh of any fraction
of n2, for example, O(n2/100). To see why, choose witnesses n0 = 1 and c = 400.
Then if n ≥ 1, we know that

(n + 1)2 ≤ 400(n2/100) = 4n2

by the same reasoning as was used in Example 3.2. The general principles underlying
these observations are that

1. Constant factors don’t matter. For any positive constant d and any function
T (n), T (n) is O

(

dT (n)
)

, regardless of whether d is a large number or a very
small fraction, as long as d > 0. To see why, choose witnesses n0 = 0 and
c = 1/d.3 Then T (n) ≤ c

(

dT (n)
)

, since cd = 1. Likewise, if we know that

T (n) is O
(

f(n)
)

, then we also know that T (n) is O
(

df(n)
)

for any d > 0, even a
very small d. The reason is that we know that T (n) ≤ c1f(n) for some constant
c1 and all n ≥ n0. If we choose c = c1/d, we can see that T (n) ≤ c

(

df(n)
)

for
n ≥ n0.

2. Low-order terms don’t matter. Suppose T (n) is a polynomial of the form

aknk + ak−1n
k−1 + · · · + a2n

2 + a1n + a0

where the leading coefficient, ak, is positive. Then we can throw away all terms
but the first (the term with the highest exponent, k) and, by rule (1), ignore
the constant ak, replacing it by 1. That is, we can conclude T (n) is O(nk). In
proof, let n0 = 1, and let c be the sum of all the positive coefficients among
the ai’s, 0 ≤ i ≤ k. If a coefficient aj is 0 or negative, then surely ajn

j ≤ 0. If

3 Note that although we are required to choose constants as witnesses, not functions, there is
nothing wrong with choosing c = 1/d, because d itself is some constant.
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Fallacious Arguments About Big-Oh

The definition of “big-oh” is tricky, in that it requires us, after examining T (n) and
f(n), to pick witnesses n0 and c once and for all, and then to show that T (n) ≤ cf(n)
for all n ≥ n0. It is not permitted to pick c and/or n0 anew for each value of n.
For example, one occasionally sees the following fallacious “proof” that n2 is O(n).
“Pick n0 = 0, and for each n, pick c = n. Then n2 ≤ cn.” This argument is invalid,
because we are required to pick c once and for all, without knowing n.

aj is positive, then ajn
j ≤ ajn

k, for all j < k, as long as n ≥ 1. Thus, T (n) is
no greater than nk times the sum of the positive coefficients, or cnk.

✦ Example 3.3. As an example of rule (1) (“constants don’t matter”), we can
see that 2n3 is O(.001n3). Let n0 = 0 and c = 2/.001 = 2000. Then clearly
2n3 ≤ 2000(.001n3) = 2n3, for all n ≥ 0.

As an example of rule (2) (“low order terms don’t matter”), consider the poly-
nomial

T (n) = 3n5 + 10n4 − 4n3 + n + 1

The highest-order term is n5, and we claim that T (n) is O(n5). To check the
claim, let n0 = 1 and let c be the sum of the positive coefficients. The terms with
positive coefficients are those with exponents 5, 4, 1, and 0, whose coefficients are,
respectively, 3, 10, 1, and 1. Thus, we let c = 15. We claim that for n ≥ 1,

3n5 + 10n4 − 4n3 + n + 1 ≤ 3n5 + 10n5 + n5 + n5 = 15n5 (3.1)

We can check that inequality (3.1) holds by matching the positive terms; that is,
3n5 ≤ 3n5, 10n4 ≤ 10n5, n ≤ n5, and 1 ≤ n5. Also, the negative term on the left
side of (3.1) can be ignored, since −4n3 ≤ 0. Thus, the left side of (3.1), which is
T (n), is less than or equal to the right side, which is 15n5, or cn5. We can conclude
that T (n) is O(n5).

In fact, the principle that low-order terms can be deleted applies not only
to polynomials, but to any sum of expressions. That is, if the ratio h(n)/g(n)
approaches 0 as n approaches infinity, then h(n) “grows more slowly” than g(n), or
“has a lower growth rate” than g(n), and we may neglect h(n). That is, g(n)+h(n)Growth rate

is O
(

g(n)
)

.
For example, let T (n) = 2n + n3. It is known that every polynomial, such as

n3, grows more slowly than every exponential, such as 2n. Since n3/2n approaches
0 as n increases, we can throw away the lower-order term and conclude that T (n)
is O(2n).

To prove formally that 2n + n3 is O(2n), let n0 = 10 and c = 2. We must show
that for n ≥ 10, we have

2n + n3 ≤ 2 × 2n

If we subtract 2n from both sides, we see it is sufficient to show that for n ≥ 10, it
is the case that n3 ≤ 2n.

For n = 10 we have 210 = 1024 and 103 = 1000, and so n3 ≤ 2n for n = 10.
Each time we add 1 to n, 2n doubles, while n3 is multiplied by a quantity (n+1)3/n3
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that is less than 2 when n ≥ 10. Thus, as n increases beyond 10, n3 becomes
progressively less than 2n. We conclude that n3 ≤ 2n for n ≥ 10, and thus that
2n + n3 is O(2n). ✦

Proofs That a Big-Oh Relationship Does Not Hold

If a big-oh relationship holds between two functions, then we can prove it by finding
witnesses. However, what if some function T (n) is not big-oh of some other function
f(n)? Can we ever hope to be sure that there is not such a big-oh relationship?
The answer is that quite frequently we can prove a particular function T (n) is not
O

(

f(n)
)

. The method of proof is to assume that witnesses n0 and c exist, and
derive a contradiction. The following is an example of such a proof.

✦ Example 3.4. In the box on “Fallacious Arguments About Big-Oh,” we claimed
that n2 is not O(n). We can show this claim as follows. Suppose it were. Then
there would be witnesses n0 and c such that n2 ≤ cn for all n ≥ n0. But if we pick
n1 equal to the larger of 2c and n0, then the inequality

(n1)
2 ≤ cn1 (3.2)

must hold (because n1 ≥ n0 and n2 ≤ cn allegedly holds for all n ≥ n0).
If we divide both sides of (3.2) by n1, we have n1 ≤ c. However, we also chose

n1 to be at least 2c. Since witness c must be positive, n1 cannot be both less than
c and greater than 2c. Thus, witnesses n0 and c that would show n2 to be O(n) do
not exist, and we conclude that n2 is not O(n). ✦

EXERCISES

3.4.1: Consider the four functions

f1: n2

f2: n3

f3: n2 if n is odd, and n3 if n is even
f4: n2 if n is prime, and n3 if n is composite

For each i and j equal to 1, 2, 3, 4, determine whether fi(n) is O
(

fj(n)
)

. Either
give values n0 and c that prove the big-oh relationship, or assume that there are
such values n0 and c, and then derive a contradiction to prove that fi(n) is not
O

(

fj(n)
)

. Hint : Remember that all primes except 2 are odd. Also remember that
there are an infinite number of primes and an infinite number of composite numbers
(nonprimes).

3.4.2: Following are some big-oh relationships. For each, give witnesses n0 and c
that can be used to prove the relationship. Choose your witnesses to be minimal,
in the sense that n0 − 1 and c are not witnesses, and if d < c, then n0 and d are
not witnesses.

a) n2 is O(.001n3)
b) 25n4 − 19n3 + 13n2 − 106n + 77 is O(n4)
c) 2n+10 is O(2n)
d) n10 is O(3n)
e)* log2 n is O(

√
n)
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Template for Proofs That a Big-Oh Relationship Is False

The following is an outline of typical proofs that a function T (n) is not O
(

f(n)
)

.
Example 3.4 illustrates such a proof.

1. Start by supposing that there were witnesses n0 and c such that for all n ≥ n0,
we have f(n) ≤ cg(n). Here, n0 and c are symbols standing for unknown
witnesses.

2. Define a particular integer n1, expressed in terms of n0 and c (for example,
n1 = max(n0, 2c) was chosen in Example 3.4). This n1 will be the value of n
for which we show T (n1) ≤ cf(n1) is false.

3. Show that for the chosen n1 we have n1 ≥ n0. This part can be very easy, since
we may choose n1 to be at least n0 in step (2).

4. Claim that because n1 ≥ n0, we must have T (n1) ≤ cf(n1).

5. Derive a contradiction by showing that for the chosen n1 we have T (n1) >
cf(n1). Choosing n1 in terms of c can make this part easy, as it was in Exam-
ple 3.4.

3.4.3*: Prove that if f(n) ≤ g(n) for all n, then f(n) + g(n) is O
(

g(n)
)

.

3.4.4**: Suppose that f(n) is O
(

g(n)
)

and g(n) is O
(

f(n)
)

. What can you say
about f(n) and g(n)? Is it necessarily true that f(n) = g(n)? Does the limit
f(n)/g(n) as n goes to infinity necessarily exist?

✦
✦ ✦

✦
3.5 Simplifying Big-Oh Expressions

As we saw in the previous section, it is possible to simplify big-oh expressions by
dropping constant factors and low-order terms. We shall see how important it is to
make such simplifications when we analyze programs. It is common for the running
time of a program to be attributable to many different statements or program
fragments, but it is also normal for a few of these pieces to account for the bulk
of the running time (by the “90-10” rule). By dropping low-order terms, and by
combining equal or approximately equal terms, we can often greatly simplify the
expressions for running time.

The Transitive Law for Big-Oh Expressions

To begin, we shall take up a useful rule for thinking about big-oh expressions. A
relationship like ≤ is said to be transitive, because it obeys the law “if A ≤ B and
B ≤ C, then A ≤ C.” For example, since 3 ≤ 5 and 5 ≤ 10, we can be sure that
3 ≤ 10.

The relationship “is big-oh of” is another example of a transitive relationship.
That is, if f(n) is O

(

g(n)
)

and g(n) is O
(

h(n)
)

, it follows that f(n) is O
(

h(n)
)

.

To see why, first suppose that f(n) is O
(

g(n)
)

. Then there are witnesses n1 and c1

such that f(n) ≤ c1g(n) for all n ≥ n1. Similarly, if g(n) is O
(

h(n)
)

, then there are
witnesses n2 and c2 such that g(n) ≤ c2h(n) for all n ≥ n2.
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Polynomial and Exponential Big-Oh Expressions

The degree of a polynomial is the highest exponent found among its terms. For
example, the degree of the polynomial T (n) mentioned in Examples 3.3 and 3.5 is
5, because 3n5 is its highest-order term. From the two principles we have enunci-
ated (constant factors don’t matter, and low-order terms don’t matter), plus the
transitive law for big-oh expressions, we know the following:

1. If p(n) and q(n) are polynomials and the degree of q(n) is as high as or higher
than the degree of p(n), then p(n) is O

(

q(n)
)

.

2. If the degree of q(n) is lower than the degree of p(n), then p(n) is not O
(

q(n)
)

.

3. Exponentials are expressions of the form an for a > 1. Every exponential growsExponential

faster than every polynomial. That is, we can show for any polynomial p(n)
that p(n) is O(an). For example, n5 is O

(

(1.01)n
)

.

4. Conversely, no exponential an, for a > 1, is O
(

p(n)
)

for any polynomial p(n).

Let n0 be the larger of n1 and n2, and let c = c1c2. We claim that n0 and
c are witnesses to the fact that f(n) is O

(

h(n)
)

. For suppose n ≥ n0. Since
n0 = max(n1, n2), we know that n ≥ n1 and n ≥ n2. Therefore, f(n) ≤ c1g(n) and
g(n) ≤ c2h(n).

Now substitute c2h(n) for g(n) in the inequality f(n) ≤ c1g(n), to prove
f(n) ≤ c1c2h(n). This inequality shows f(n) is O

(

h(n)
)

.

✦ Example 3.5. We know from Example 3.3 that

T (n) = 3n5 + 10n4 − 4n3 + n + 1

is O(n5). We also know from the rule that “constant factors don’t matter” that n5

is O(.01n5). By the transitive law for big-oh, we know that T (n) is O(.01n5). ✦

Describing the Running Time of a Program

We defined the running time T (n) of a program to be the maximum number of time
units taken on any input of size n. We also said that determining a precise formula
for T (n) is a difficult, if not impossible, task. Frequently, we can simplify matters
considerably by using a big-oh expression O(f(n)) as an upper bound on T (n).

For example, an upper bound on the running time T (n) of SelectionSort is
an2, for some constant a and any n ≥ 1; we shall demonstrate this fact in Section 3.6.
Then we can say the running time of SelectionSort is O(n2). That statement is
intuitively the most useful one to make, because n2 is a very simple function, and
stronger statements about other simple functions, like “T (n) is O(n),” are false.

However, because of the nature of big-oh notation, we can also state that the
running time T (n) is O(.01n2), or O(7n2−4n+26), or in fact big-oh of any quadratic
polynomial. The reason is that n2 is big-oh of any quadratic, and so the transitive
law plus the fact that T (n) is O(n2) tells us T (n) is big-oh of any quadratic.

Worse, n2 is big-oh of any polynomial of degree 3 or higher, or of any exponen-
tial. Thus, by transitivity again, T (n) is O(n3), O(2n + n4), and so on. However,
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we shall explain why O(n2) is the preferred way to express the running time of
SelectionSort.

Tightness

First, we generally want the “tightest” big-oh upper bound we can prove. That is, if
T (n) is O(n2), we want to say so, rather than make the technically true but weaker
statement that T (n) is O(n3). On the other hand, this way lies madness, because
if we like O(n2) as an expression of running time, we should like O(0.5n2) even
better, because it is “tighter,” and we should like O(.01n2) still more, and so on.
However, since constant factors don’t matter in big-oh expressions, there is really
no point in trying to make the estimate of running time “tighter” by shrinking the
constant factor. Thus, whenever possible, we try to use a big-oh expression that
has a constant factor 1.

Figure 3.4 lists some of the more common running times for programs and their
informal names. Note in particular that O(1) is an idiomatic shorthand for “some
constant,” and we shall use O(1) repeatedly for this purpose.

BIG-OH INFORMAL NAME

O(1) constant

O(log n) logarithmic

O(n) linear

O(n log n) n log n

O(n2) quadratic

O(n3) cubic

O(2n) exponential

Fig. 3.4. Informal names for some common big-oh running times.

More precisely, we shall say that f(n) is a tight big-oh bound on T (n) ifTight bound

1. T (n) is O
(

f(n)
)

, and

2. If T (n) is O
(

g(n)
)

, then it is also true that f(n) is O
(

g(n)
)

. Informally, we
cannot find a function g(n) that grows at least as fast as T (n) but grows slower
than f(n).

✦ Example 3.6. Let T (n) = 2n2 + 3n and f(n) = n2. We claim that f(n) is
a tight bound on T (n). To see why, suppose T (n) is O

(

g(n)
)

. Then there are
constants c and n0 such that for all n ≥ n0, we have T (n) = 2n2 + 3n ≤ cg(n).
Then g(n) ≥ (2/c)n2 for n ≥ n0. Since f(n) is n2, we have f(n) ≤ (c/2)g(n) for
n ≥ n0. Thus, f(n) is O

(

g(n)
)

.
On the other hand, f(n) = n3 is not a tight big-oh bound on T (n). Now we

can pick g(n) = n2. We have seen that T (n) is O
(

g(n)
)

, but we cannot show that

f(n) is O
(

g(n)
)

, since n3 is not O(n2). Thus, n3 is not a tight big-oh bound on
T (n). ✦
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Simplicity

The other goal in our choice of a big-oh bound is simplicity in the expression of the
function. Unlike tightness, simplicity can sometimes be a matter of taste. However,
we shall generally regard a function f(n) as simple ifSimple function

1. It is a single term and

2. The coefficient of that term is 1.

✦ Example 3.7. The function n2 is simple; 2n2 is not simple because the coeffi-
cient is not 1, and n2 + n is not simple because there are two terms. ✦

There are some situations, however, where the tightness of a big-oh upperTightness and

simplicity may

conflict

bound and simplicity of the bound are conflicting goals. The following is an example
where the simple bound doesn’t tell the whole story. Fortunately, such cases are
rare in practice.

int PowersOfTwo(int n)

{

int i;

(1) i = 0;

(2) while (n%2 == 0) {

(3) n = n/2;

(4) i++;

}

(5) return i;

}

Fig. 3.5. Counting factors of 2 in a positive integer n.

✦ Example 3.8. Consider the function PowersOfTwo in Fig. 3.5, which takes a
positive argument n and counts the number times 2 divides n. That is, the test of
line (2) asks whether n is even and, if so, removes a factor of 2 at line (3) of the
loop body. Also in the loop, we increment i, which counts the number of factors
we have removed from the original value of n.

Let the size of the input be the value of n itself. The body of the while-loop
consists of two C assignment statements, lines (3) and (4), and so we can say that
the time to execute the body once is O(1), that is, some constant amount of time,
independent of n. If the loop is executed m times, then the total time spent going
around the loop will be O(m), or some amount of time that is proportional to m.
To this quantity we must add O(1), or some constant, for the single executions of
lines (1) and (5), plus the first test of the while-condition, which is technically not
part of any loop iteration. Thus, the time spent by the program is O(m) + O(1).
Following our rule that low-order terms can be neglected, the time is O(m), unless
m = 0, in which case it is O(1). Put another way, the time spent on input n is
proportional to 1 plus the number of times 2 divides n.
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Using Big-Oh Notation in Mathematical Expressions

Strictly speaking, the only mathematically correct way to use a big-oh expression
is after the word “is,” as in “2n2 is O(n3).” However, in Example 3.8, and for
the remainder of the chapter, we shall take a liberty and use big-oh expressions
as operands of addition and other arithmetic operators, as in O(n) + O(n2). We
should interpret a big-oh expression used this way as meaning “some function that
is big-oh of.” For example, O(n) + O(n2) means “the sum of some linear function
and some quadratic function.” Also, O(n) +T (n) should be interpreted as the sum
of some linear function and the particular function T (n).

How many times does 2 divide n? For every odd n, the answer is 0, so the
function PowersOfTwo takes time O(1) on every odd n. However, when n is a power
of 2 — that is, when n = 2k for some k — 2 divides n exactly k times. When n = 2k,
we may take logarithms to base 2 of both sides and conclude that log2 n = k. That
is, m is at most logarithmic in n, or m = O(log n).4

1

2

3

4

f(n)

1 2 3 4 5 6 7 8 9 10

Fig. 3.6. The function f(n) = m(n) + 1, where m(n) is the number of times 2 divides n.

We may thus say that the running time of PowersOfTwo is O(log n). This
bound meets our definition of simplicity. However, there is another, more precise
way of stating an upper bound on the running time of PowersOfTwo, which is to
say that it is big-oh of the function f(n) = m(n) + 1, where m(n) is the number
of times 2 divides n. This function is hardly simple, as Fig. 3.6 shows. It oscillates
wildly but never goes above 1 + log2 n.

Since the running time of PowersOfTwo is O
(

f(n)
)

, but log n is not O
(

f(n)
)

,
we claim that log n is not a tight bound on the running time. On the other hand,
f(n) is a tight bound, but it is not simple. ✦

The Summation Rule

Suppose a program consists of two parts, one of which takes O(n2) time and the
other of which takes O(n3) time. We can “add” these two big-oh bounds to get the
running time of the entire program. In many cases, such as this one, it is possible
to “add” big-oh expressions by making use of the following summation rule:

4 Note that when we speak of logarithms within a big-oh expression, there is no need to specify
the base. The reason is that if a and b are bases, then loga n = (logb n)(loga b). Since loga b is
a constant, we see that loga n and logb n differ by only a constant factor. Thus, the functions
logx n to different bases x are big-oh of each other, and we can, by the transitive law, replace

within a big-oh expression any loga n by logb n where b is a base different from a.
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Logarithms in Running Times

If you think of logarithms as something having to do with integral calculus (loge a =
∫ a

1
1
xdx), you may be surprised to find them appearing in analyses of algorithms.

Computer scientists generally think of “logn” as meaning log2 n, rather than loge n
or log10 n. Notice that log2 n is the number of times we have to divide n by 2 to get
down to 1, or alternatively, the number of 2’s we must multiply together to reach
n. You may easily check that n = 2k is the same as saying log2 n = k; just take
logarithms to the base 2 of both sides.

The function PowersOfTwo divides n by 2 as many times as it can, And when n
is a power of 2, then the number of times n can be divided by 2 is log2 n. Logarithms
arise quite frequently in the analysis of divide-and-conquer algorithms (e.g., merge
sort) that divide their input into two equal, or nearly equal, parts at each stage. If
we start with an input of size n, then the number of stages at which we can divide
the input in half until pieces are of size 1 is log2 n, or, if n is not a power of 2, then
the smallest integer greater than log2 n.

Suppose T1(n) is known to be O
(

f1(n)
)

, while T2(n) is known to be O
(

f2(n)
)

.

Further, suppose that f2 grows no faster than f1; that is, f2(n) is O
(

f1(n)
)

.

Then we can conclude that T1(n) + T2(n) is O
(

f1(n)
)

.

In proof, we know that there are constants n1, n2, n3, c1, c2, and c3 such that

1. If n ≥ n1, then T1(n) ≤ c1f1(n).

2. If n ≥ n2, then T2(n) ≤ c2f2(n).

3. If n ≥ n3, then f2(n) ≤ c3f1(n).

Let n0 be the largest of n1, n2, and n3, so that (1), (2), and (3) hold when n ≥ n0.
Thus, for n ≥ n0, we have

T1(n) + T2(n) ≤ c1f1(n) + c2f2(n)

If we use (3) to provide an upper bound on f2(n), we can get rid of f2(n) altogether
and conclude that

T1(n) + T2(n) ≤ c1f1(n) + c2c3f1(n)

Therefore, for all n ≥ n0 we have

T1(n) + T2(n) ≤ cf1(n)

if we define c to be c1 + c2c3. This statement is exactly what we need to conclude
that T1(n) + T2(n) is O

(

f1(n)
)

.

✦ Example 3.9. Consider the program fragment in Fig. 3.7. This program makes
A an n× n identity matrix. Lines (2) through (4) place 0 in every cell of the n × n
array, and then lines (5) and (6) place 1’s in all the diagonal positions from A[0][0]

to A[n-1][n-1]. The result is an identity matrix A with the property that

A× M = M× A = M
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(1) scanf("%d",&n);

(2) for (i = 0; i < n; i++)

(3) for (j = 0; j < n; j++)

(4) A[i][j] = 0;

(5) for (i = 0; i < n; i++)

(6) A[i][i] = 1;

Fig. 3.7. Program fragment to make A an identity matrix.

for any n × n matrix M.

Line (1), which reads n, takes O(1) time, that is, some constant amount of
time, independent of the value n. The assignment statement in line (6) also takes
O(1) time, and we go around the loop of lines (5) and (6) exactly n times, for a
total of O(n) time spent in that loop. Similarly, the assignment of line (4) takes
O(1) time. We go around the loop of lines (3) and (4) n times, for a total of O(n)
time. We go around the outer loop, lines (2) to (4), n times, taking O(n) time per
iteration, for a total of O(n2) time.

Thus, the time taken by the program in Fig. 3.7 is O(1) + O(n2) + O(n), for
the statement (1), the loop of lines (2) to (4), and the loop of lines (5) and (6),
respectively. More formally, if

T1(n) is the time taken by line (1),
T2(n) is the time taken by lines (2) to (4), and
T3(n) is the time taken by lines (5) and (6),

then

T1(n) is O(1),
T2(n) is O(n2), and
T3(n) is O(n).

We thus need an upper bound on T1(n) + T2(n) + T3(n) to derive the running time
of the entire program.

Since the constant 1 is certainly O(n2), we can apply the rule for sums to
conclude that T1(n) + T2(n) is O(n2). Then, since n is O(n2), we can apply the
rule of sums to (T1(n) + T2(n)) and T3(n), to conclude that T1(n) + T2(n) + T3(n)
is O(n2). That is, the entire program fragment of Fig. 3.7 has running time O(n2).
Informally, it spends almost all its time in the loop of lines (2) through (4), as we
might expect, simply from the fact that, for large n, the area of the matrix, n2, is
much larger than its diagonal, which consists of n cells. ✦

Example 3.9 is just an application of the rule that low order terms don’t matter,
since we threw away the terms 1 and n, which are lower-degree polynomials than
n2. However, the rule of sums allows us to do more than just throw away low-order
terms. If we have any constant number of terms that are, to within big-oh, the
same, such as a sequence of 10 assignment statements, each of which takes O(1)
time, then we can “add” ten O(1)’s to get O(1). Less formally, the sum of 10
constants is still a constant. To see why, note that 1 is O(1), so that any of the ten
O(1)’s, can be “added” to any other to get O(1) as a result. We keep combining
terms until only one O(1) is left.
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However, we must be careful not to confuse “a constant number” of some term
like O(1) with a number of these terms that varies with the input size. For example,
we might be tempted to observe that it takes O(1) time to go once around the loop
of lines (5) and (6) of Fig. 3.7. The number of times we go around the loop is n,
so that the running time for lines (5) and (6) together is O(1) + O(1) + O(1) + · · ·
(n times). The rule for sums tells us that the sum of two O(1)’s is O(1), and by
induction we can show that the sum of any constant number of O(1)’s is O(1).
However, in this program, n is not a constant; it varies with the input size. Thus,
no one sequence of applications of the sum rule tells us that n O(1)’s has any value
in particular. Of course, if we think about the matter, we know that the sum of n
c’s, where c is some constant, is cn, a function that is O(n), and that is the true
running time of lines (5) and (6).

Incommensurate Functions

It would be nice if any two functions f(n) and g(n) could be compared by big-oh;
that is, either f(n) is O

(

g(n)
)

, or g(n) is O
(

f(n)
)

(or both, since as we observed,
there are functions such as 2n2 and n2 + 3n that are each big-oh of the other).
Unfortunately, there are pairs of incommensurate functions, neither of which is
big-oh of the other.

✦ Example 3.10. Consider the function f(n) that is n for odd n and n2 for even
n. That is, f(1) = 1, f(2) = 4, f(3) = 3, f(4) = 16, f(5) = 5, and so on. Similarly,
let g(n) be n2 for odd n and let g(n) be n for even n. Then f(n) cannot be O

(

g(n)
)

,
because of the even n’s. For as we observed in Section 3.4, n2 is definitely not O(n).
Similarly, g(n) cannot be O

(

f(n)
)

, because of the odd n’s, where the values of g
outrace the corresponding values of f . ✦

EXERCISES

3.5.1: Prove the following:

a) na is O(nb) if a ≤ b.
b) na is not O(nb) if a > b.
c) an is O(bn) if 1 < a ≤ b.
d) an is not O(bn) if 1 < b < a.
e) na is O(bn) for any a, and for any b > 1.
f) an is not O(nb) for any b, and for any a > 1.
g) (log n)a is O(nb) for any a, and for any b > 0.
h) na is not O

(

(log n)b
)

for any b, and for any a > 0.

3.5.2: Show that f(n) + g(n) is O
(

max
(

f(n), g(n)
)

)

.

3.5.3: Suppose that T (n) is O
(

f(n)
)

and g(n) is a function whose value is never

negative. Prove that g(n)T (n) is O
(

g(n)f(n)
)

.

3.5.4: Suppose that S(n) is O
(

f(n)
)

and T (n) is O
(

g(n)
)

. Assume that none of

these functions is negative for any n. Prove that S(n)T (n) is O
(

f(n)g(n)
)

.

3.5.5: Suppose that f(n) is O
(

g(n)
)

. Show that max
(

f(n), g(n)
)

is O
(

g(n)
)

.
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3.5.6*: Show that if f1(n) and f2(n) are both tight bounds on some function T (n),
then f1(n) and f2(n) are each big-oh of the other.

3.5.7*: Show that log2 n is not O
(

f(n)
)

, where f(n) is the function from Fig. 3.6.

3.5.8: In the program of Fig. 3.7, we created an identity matrix by first putting
0’s everywhere and then putting 1’s along the diagonal. It might seem that a faster
way to do the job is to replace line (4) by a test that asks if i = j, putting 1 in
A[i][j] if so and 0 if not. We can then eliminate lines (5) and (6).

a) Write this program.

b)* Consider the programs of Fig. 3.7 and your answer to (a). Making simplifying
assumptions like those of Example 3.1, compute the number of time units taken
by each of the programs. Which is faster? Run the two programs on various-
sized arrays and plot their running times.

✦
✦ ✦

✦
3.6 Analyzing the Running Time of a Program

Armed with the concept of big-oh and the rules from Sections 3.4 and 3.5 for
manipulating big-oh expressions, we shall now learn how to derive big-oh upper
bounds on the running times of typical programs. Whenever possible, we shall look
for simple and tight big-oh bounds. In this section and the next, we shall consider
only programs without function calls (other than library functions such as printf),
leaving the matter of function calls to Sections 3.8 and beyond.

We do not expect to be able to analyze arbitrary programs, since questions
about running time are as hard as any in mathematics. On the other hand, we can
discover the running time of most programs encountered in practice, once we learn
some simple rules.

The Running Time of Simple Statements

We ask the reader to accept the principle that certain simple operations on data
can be done in O(1) time, that is, in time that is independent of the size of the
input. These primitive operations in C consist of

1. Arithmetic operations (e.g. + or %).

2. Logical operations (e.g., &&).

3. Comparison operations (e.g., <=).

4. Structure accessing operations (e.g. array-indexing like A[i], or pointer fol-
lowing with the -> operator).

5. Simple assignment such as copying a value into a variable.

6. Calls to library functions (e.g., scanf, printf).
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The justification for this principle requires a detailed study of the machine
instructions (primitive steps) of a typical computer. Let us simply observe that
each of the described operations can be done with some small number of machine
instructions; often only one or two instructions are needed.

As a consequence, several kinds of statements in C can be executed in O(1)
time, that is, in some constant amount of time independent of input. These simple

statements includeSimple

statement

1. Assignment statements that do not involve function calls in their expressions.

2. Read statements.

3. Write statements that do not require function calls to evaluate arguments.

4. The jump statements break, continue, goto, and return expression, where
expression does not contain a function call.

In (1) through (3), the statements each consist of some finite number of primi-
tive operations, each of which we take on faith to require O(1) time. The summation
rule then tells us that the entire statements take O(1) time. Of course, the constants
hidden in the big-oh are larger for statements than for single primitive operations,
but as we already know, we cannot associate concrete constants with running time
of C statements anyway.

✦ Example 3.11. We observed in Example 3.9 that the read statement of line
(1) of Fig. 3.7 and the assignments of lines (4) and (6) each take O(1) time. For
another illustration, consider the fragment of the selection-sort program shown in
Fig. 3.8. The assignments of lines (2), (5), (6), (7), and (8) each take O(1) time. ✦

(1) for (i = 0; i < n-1; i++) {

(2) small = i;

(3) for (j = i+1; j < n; j++)

(4) if (A[j] < A[small])

(5) small = j;

(6) temp = A[small];

(7) A[small] = A[i];

(8) A[i] = temp;

}

Fig. 3.8. Selection-sort fragment.

Frequently, we find a block of simple statements that are executed consecu-Blocks of simple

statements tively. If the running time of each of these statements is O(1), then the entire block
takes O(1) time, by the summation rule. That is, any constant number of O(1)’s
sums to O(1).
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✦ Example 3.12. Lines (6) through (8) of Fig. 3.8 form a block, since they are
always executed consecutively. Since each takes O(1) time, the block of lines (6) to
(8) takes O(1) time.

Note that we should not include line (5) in the block, since it is part of the
if-statement on line (4). That is, sometimes lines (6) to (8) are executed without
executing line (5). ✦

The Running Time of Simple For-Loops

In C, many for-loops are formed by initializing an index variable to some value and
incrementing that variable by 1 each time around the loop. The for-loop ends when
the index reaches some limit. For instance, the for-loop of line (1) of Fig. 3.8 uses
index variable i. It increments i by 1 each time around the loop, and the iterations
stop when i reaches n − 1.

There are more complex for-loops in C that behave more like while-statements;
these loops iterate an unpredictable number of times. We shall take up this sort
of loop later in the section. However, for the moment, focus on the simple form of
for-loop, where the difference between the final and initial values, divided by the
amount by which the index variable is incremented tells us how many times we go
around the loop. That count is exact, unless there are ways to exit the loop via a
jump statement; it is an upper bound on the number of iterations in any case. For
instance, the for-loop of line (1) of Fig. 3.8 iterates

(

(n − 1) − 0
)

/1 = n − 1 times,
since 0 is the initial value of i, n − 1 is the highest value reached by i (i.e., when i
reaches n−1, the loop stops and no iteration occurs with i = n−1), and 1 is added
to i at each iteration of the loop.

To bound the running time of the for-loop, we must obtain an upper bound
on the amount of time spent in one iteration of the loop body. Note that the time
for an iteration includes the time to increment the loop index (e.g., the increment
statement i++ in line (1) of Fig. 3.8), which is O(1), and the time to compare the
loop index with the upper limit (e.g., the test statement i<n-1 in line (1) of Fig.
3.8), which is also O(1). In all but the exceptional case where the loop body is
empty, these O(1)’s can be dropped by the summation rule.

In the simplest case, where the time spent in the loop body is the same for each
iteration, we can multiply the big-oh upper bound for the body by the number of
times around the loop. Strictly speaking, we must then add O(1) time to initialize
the loop index and O(1) time for the first comparison of the loop index with the
limit, because we test one more time than we go around the loop. However, unless
it is possible to execute the loop zero times, the time to initialize the loop and test
the limit once is a low-order term that can be dropped by the summation rule.

✦ Example 3.13. Consider the for-loop of lines (3) and (4) in Fig. 3.7, which is

(3) for (j = 0; j < n; j++)

(4) A[i][j] = 0;

We know that line (4) takes O(1) time. Clearly, we go around the loop n times, as
we can determine by subtracting the lower limit from the upper limit found on line
(3) and then adding 1. Since the body, line (4), takes O(1) time, we can neglect the
time to increment j and the time to compare j with n, both of which are also O(1).
Thus, the running time of lines (3) and (4) is the product of n and O(1), which is
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O(n).

Similarly, we can bound the running time of the outer loop consisting of lines
(2) through (4), which is

(2) for (i = 0; i < n; i++)

(3) for (j = 0; j < n; j++)

(4) A[i][j] = 0;

We have already established that the loop of lines (3) and (4) takes O(n) time.
Thus, we can neglect the O(1) time to increment i and to test whether i < n in
each iteration, concluding that each iteration of the outer loop takes O(n) time.
The initialization i = 0 of the outer loop and the (n + 1)st test of the condition
i < n likewise take O(1) time and can be neglected. Finally, we observe that we go
around the outer loop n times, taking O(n) time for each iteration, giving a total
O(n2) running time. ✦

✦ Example 3.14. Now, let us consider the for-loop of lines (3) to (5) of Fig. 3.8.
Here, the body is an if-statement, a construct we shall learn how to analyze next.
It is not hard to deduce that line (4) takes O(1) time to perform the test and line
(5), if we execute it, takes O(1) time because it is an assignment with no function
calls. Thus, we take O(1) time to execute the body of the for-loop, regardless of
whether line (5) is executed. The incrementation and test in the loop add O(1)
time, so that the total time for one iteration of the loop is just O(1).

Now we must calculate the number of times we go around the loop. The number
of iterations is not related to n, the size of the input. Rather, the formula “last value
minus initial value divided by the increment” gives us

(

n− (i + 1)
)

/1, or n− i− 1,
as the number of times around the loop. Strictly speaking, that formula holds only
if i < n. Fortunately, we can observe from line (1) of Fig. 3.8 that we do not enter
the loop body of lines (2) through (8) unless i ≤ n−2. Thus, not only is n−i−1 the
number of iterations, but we also know that this number cannot be 0. We conclude
that the time spent in the loop is (n − i − 1) × O(1), or O(n − i − 1).5 We do not
have to add in O(1) for initializing j, since we have established that n− i−1 cannot
be 0. If we had not observed that n − i − 1 was positive, then we would have to
write the upper bound on the running time as O

(

max(1, n − i − 1)
)

. ✦

The Running Time of Selection Statements

An if-else selection statement has the form

if (<condition>)
<if-part>

else

<else-part>

where

1. The condition is an expression to be evaluated,

5 Technically, we have not discussed a big-oh operator applied to a function of more than one
variable. In this case, we can regard O(n − i − 1) as saying “at most some constant times
n− i− 1.” That is, we can consider n− i− 1 as a surrogate for a single variable.
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2. The if-part is a statement that is executed only if the condition is true (the
value of the expression is not zero), and

3. The else-part is a statement that is executed if the condition is false (evaluates
to 0). The else followed by the <else-part> is optional.

A condition, no matter how complex, requires the computer to perform only a
constant number of primitive operations, as long as there are no function calls
within the condition. Thus, the evaluation of the condition will take O(1) time.

Suppose that there are no function calls in the condition, and that the if- and
else-parts have big-oh upper bounds f(n) and g(n), respectively. Let us also suppose
that f(n) and g(n) are not both 0; that is, while the else-part may be missing, the
if-part is something other than an empty block. We leave as an exercise the question
of determining what happens if both parts are missing or are empty blocks.

If f(n) is O
(

g(n)
)

, then we can take O
(

g(n)
)

to be an upper bound on the
running time of the selection statement. The reason is that

1. We can neglect the O(1) for the condition,

2. If the else-part is executed, g(n) is known to be a bound on the running time,
and

3. If the if-part is executed instead of the else-part, the running time will be
O

(

g(n)
)

because f(n) is O
(

g(n)
)

.

Similarly, if g(n) is O
(

f(n)
)

, we can bound the running time of the selection state-

ment by O
(

f(n)
)

. Note that when the else-part is missing, as it often is, g(n) is 0,

which is surely O
(

f(n)
)

.
The problem case is when neither f nor g is big-oh of the other. We know

that either the if-part or the else-part, but not both, will be executed, and so a safe
upper bound on the running time is the larger of f(n) and g(n). Which is larger
can depend on n, as we saw in Example 3.10. Thus, we must write the running

time of the selection statement as O
(

max
(

f(n), g(n)
)

)

.

✦ Example 3.15. As we observed in Example 3.12, the selection statement of
lines (4) and (5) of Fig. 3.8 has an if-part, line (5), which takes O(1) time, and a
missing else-part, which takes 0 time. Thus, f(n) is 1 and g(n) is 0. As g(n) is
O

(

f(n)
)

, we get O(1) as an upper bound on running time for lines (4) and (5).
Note that the O(1) time to perform the test A[j] < A[small] at line (4) can be
neglected. ✦

✦ Example 3.16. For a more complicated example, consider the fragment of
code in Fig. 3.9, which performs the (relatively pointless) task of either zeroing the
matrix A or setting its diagonal to 1’s. As we learned in Example 3.13, the running
time of lines (2) through (4) is O(n2), while the running time of lines (5) and (6)
is O(n). Thus, f(n) is n2 here, and g(n) is n. Since n is O(n2), we can neglect the
time of the else-part and take O(n2) as a bound on the running time of the entire
fragment of Fig. 3.9. That is to say, we have no idea if or when the condition of line
(1) will be true, but the only safe upper bound results from assuming the worst:
that the condition is true and the if-part is executed. ✦



114 THE RUNNING TIME OF PROGRAMS

(1) if (A[1][1] == 0)

(2) for (i = 0; i < n; i++)

(3) for (j = 0; j < n; j++)

(4) A[i][j] = 0;

else

(5) for (i = 0; i < n; i++)

(6) A[i][i] = 1;

Fig. 3.9. Example of an if-else selection statement.

The Running Time of Blocks

We already mentioned that a sequence of assignments, reads, and writes, each of
which takes O(1) time, together takes O(1) time. More generally, we must be able to
combine sequences of statements, some of which are compound statements, that is,Compound

statement selection statements or loops. Such a sequence of simple and compound statements
is called a block. The running time of a block is calculated by taking the sum of the
big-oh upper bounds for each of the (possibly compound) statements in the block.
With luck, we can use the summation rule to eliminate all but one of the terms in
the sum.

✦ Example 3.17. In the selection sort fragment of Fig. 3.8, we can view the body
of the outer loop, that is, lines (2) through (8), as a block. This block consists of
five statements:

1. The assignment of line (2)

2. The loop of lines (3), (4), and (5)

3. The assignment of line (6)

4. The assignment of line (7)

5. The assignment of line (8)

Note that the selection statement of lines (4) and (5), and the assignment of line (5),
are not visible at the level of this block; they are hidden within a larger statement,
the for-loop of lines (3) to (5).

We know that the four assignment statements take O(1) time each. In Example
3.14 we learned that the running time of the second statement of the block — that
is, lines (3) through (5) — is O(n − i − 1). Thus, the running time of the block is

O(1) + O(n − i − 1) + O(1) + O(1) + O(1)

Since 1 is O(n− i− 1) (recall we also deduced that i never gets higher than n− 2),
we can eliminate all the O(1)’s by the summation rule. Thus, the entire block takes
O(n − i − 1) time.

For another example, consider the program fragment of Fig. 3.7 again. It can
be considered a single block consisting of three statements:

1. The read statement of line (1)

2. The loop of lines (2) through (4)

3. The loop of lines (5) and (6)
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We know that line (1) takes O(1) time. From Example 3.13, lines (2) through (4)
take O(n2) time; lines (5) and (6) take O(n) time. The block itself takes

O(1) + O(n2) + O(n)

time. By the summation rule, we can eliminate O(1) and O(n) in favor of O(n2).
We conclude that the fragment of Fig. 3.7 takes O(n2) time. ✦

The Running Time of Complex Loops

In C, there are while-, do-while-, and some for-loops that do not offer an explicit
count of the number of times we go around the loop. For these loops, part of the
analysis is an argument that provides an upper bound on the number of iterations
of the loop. These proofs typically follow the pattern we learned in Section 2.5.
That is, we prove some statement by induction on the number of times around the
loop, and the statement implies that the loop condition must become false after the
number of iterations reaches a certain limit.

We must also establish a bound on the time to perform one iteration of the
loop. Thus, we examine the body and obtain a bound on its execution. To that, we
must add O(1) time to test the condition after the execution of the loop body, but
unless the loop body is missing, we can neglect this O(1) term. We get a bound
on the running time of the loop by multiplying an upper bound on the number of
iterations by our upper bound on the time for one iteration. Technically, if the loop
is a for- or while-loop rather than a do-while-loop, we must include the time needed
to test the condition the first time, before entering the body. However, that O(1)
term can normally be neglected.

✦ Example 3.18. Consider the program fragment shown in Fig. 3.10. The pro-
gram searches an array A[0..n-1] for the location of an element x that is believed
to be in the array.

(1) i = 0;

(2) while(x != A[i])

(3) i++;

Fig. 3.10. Program fragment for linear search.

The two assignment statements (1) and (3) in Fig. 3.10 have a running time of
O(1). The while-loop of lines (2) and (3) may be executed as many as n times, but
no more, because we assume one of the array elements is x. Since the loop body,
line (3), requires time O(1), the running time of the while-loop is O(n). From the
summation rule, the running time of the entire program fragment is O(n), because
that is the maximum of the time for the assignment of line (1) and the time for the
while-loop. In Chapter 6, we shall see how this O(n) program can be replaced by
an O(log n) program using binary search. ✦

EXERCISES

3.6.1: In a for-loop headed
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for (i = a; i <= b; i++)

how many times do we go around the loop, as a function of a and b? What about
a for-loop headed

for (i = a; i <= b; i--)

What about A for-loop headed

for(i = a; i <= b; i = i+c)

3.6.2: Give a big-oh upper bound on the running time of the trivial selection
statement

if ( C ) { }

where C is a condition that does not involve any function calls.

3.6.3: Repeat Exercise 3.6.2 for the trivial while-loop

while ( C ) { }

3.6.4*: Give a rule for the running time of a C switch-statement.

3.6.5: Give a rule for the running time of a selection statement in which we can
tell which branch is taken, such as

if (1==2)

something O
(

f(n)
)

;

else

something O
(

g(n)
)

;

3.6.6: Give a rule for the running time of a degenerate while-loop, in which the
condition is known to be false right from the start, such as

while (1 != 1)

something O
(

f(n)
)

;

✦
✦ ✦

✦
3.7 A Recursive Rule for Bounding Running Time

In the previous section, we informally described a number of rules for defining the
running time of certain program constructs in terms of the running times of their
parts. For instance, we said that the time of a for-loop is essentially the time
taken by the body multiplied by the number of iterations. Hidden among these
rules was the notion that programs are built using inductive rules by which com-
pound statements (loops, selections, and other statements that have substatements
as constituent parts) are constructed from a basis consisting of simple statements
such as assignment, read, write, and jump statements. The inductive rules covered
loop formation, selection statements, and blocks, which are sequences of compound
statements.

We shall state some syntactic rules for building statements of C as a recursive
definition. These rules correspond to the grammatical rules for defining C that
often appear in a text on C. We shall see in Chapter 11 that grammars can serve as
a succinct recursive notation for specifying the syntax of programming languages.
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More Defensive Programming

If you think that the array A in Example 3.18 will always have the element x just
because we believe it does, there’s a bridge we’d like to sell you. Notice that if x
fails to appear in the array, the loop of Fig. 3.10 will eventually err by trying to
access an element of the array that is beyond the array’s upper limit.

Fortunately, there is a simple way to avoid this error without spending a lot
of extra time in each iteration of the loop. We allow an extra (n + 1)st cell at the
end of the array, and before starting the loop, we place x there. Then we really can
be sure that x will appear somewhere in the array. When the loop ends, we test to
see whether i = n. If so, then x wasn’t really in the array, and we fell through the
array to the copy of x we had placed as a sentinel. If i < n, then i does indicateSentinel

a position where x appears. An example program with this protection feature is

A[n] = x;

i = 0;

while (x != A[i])

i++;

if (i == n) /* do something appropriate to the case

that x is not in the array */

else /* do something appropriate to the case

that x is found at position i */

BASIS. The following are simple statements in C:

1. Expressions, including assignment statements and read and write statements;
the latter are calls to functions such as printf and scanf.

2. Jump statements, including goto’s, break’s, continue’s, and return’s.

3. The null statement.

Note that in C, simple statements end in a semicolon, which we take to be part of
the statement.

INDUCTION. The following rules let us construct statements from smaller state-
ments:

1. While-statement. If S is a statement and C is a condition (an expression with
an arithmetic value), then

while ( C ) S

is a statement. The body S is executed as long as C is true (has a nonzero
value).

2. Do-while-statement. If S is a statement and C is a condition, then

do S while ( C ) ;

is a statement. The do-while is similar to the while-statement except that the
body S is executed at least once.
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3. For-statement. If S is a statement and E1, E2, and E3 are expressions, then

for ( E1 ; E2 ; E3 ) S

is a statement. The first expression E1 is evaluated once and specifies the ini-
tialization for the loop body S. The second expression E2 is the test for loop
termination, which is evaluated before each iteration. If its value is nonzero,
the body is executed; otherwise, the for-loop is terminated. The third ex-
pression E3 is evaluated after each iteration and specifies the reinitialization
(incrementation) for the next iteration of the loop. For instance, a common
for-loop is

for (i = 0; i < n; i++) S

where S is iterated n times with i having the values 0, 1, . . . , n−1. Here, i = 0

is the initialization, i < n is the termination test, and i++ is the reinitialization.

4. Selection statement. If S1 and S2 are statements and C is a condition, then

if ( C ) S1 else S2

is a statement, and

if ( C ) S1

is also a statement. In the first case, if C is true (nonzero), then S1 is executed;
otherwise, S2 is executed. In the second case, S1 is executed only if C is true.

5. Block. If S1, S2, . . . , Sn are statements, then

{S1 S2 · · ·Sn}

is a statement.

We have omitted from this list the switch-statement, which has a complex form but
can be thought of as nested selection statements for analysis of running time.

Using this recursive definition of statements, it is possible to parse a program
by identifying its constituent parts. That is, we begin with the simple statements
and group them into progressively larger compound statements.

✦ Example 3.19. Consider the selection-sort program fragment shown in Fig.
3.11. For the basis, each of the assignments, lines (2), (5), (6), (7), and (8), is
a statement by itself. Then lines (4) and (5) are grouped into a selection state-
ment. Next lines (3) through (5) are grouped into a for-statement. Then lines (2)
through (8) are grouped into a block. Finally, the entire program fragment is a
for-statement. ✦

A Tree Representation of a Program’s Structure

We can represent the structure of programs by a tree such as that shown in Fig.
3.12. Leaves (the circles) are simple statements and other nodes represent compound
statements.6 Nodes are labeled by the kind of construct they represent and by the

6 Trees are discussed in detail in Chapter 5.



SEC. 3.7 A RECURSIVE RULE FOR BOUNDING RUNNING TIME 119

(1) for (i = 0; i < n-1; i++) {

(2) small = i;

(3) for (j = i+1; j < n; j++)

(4) if (A[j] < A[small])

(5) small = j;

(6) temp = A[small];

(7) A[small] = A[i];

(8) A[i] = temp;

}

Fig. 3.11. Selection sort fragment.

line or lines of the program that form the simple or compound statement represented
by the node. From each node N that represents a compound statement we find
lines downward to its “children” nodes. The children of node N represent theStructure tree

substatements forming the compound statement that N represents. Such a tree is
called the structure tree for a program.

for

(1)–(8)

block
(2)–(8)

(2)
for

(3)–(5)
(6) (7) (8)

if

(4)–(5)

(5)

Fig. 3.12. Tree showing grouping of statements.

✦ Example 3.20. Figure 3.12 is the structure tree for the program fragment
of Fig. 3.11. Each of the circles is a leaf representing one of the five assignment
statements of Fig. 3.11. We have omitted from Fig. 3.12 an indication that these
five statements are assignment statements.

At the top (the “root”) of the tree is a node representing the entire fragment
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of lines (1) through (8); it is a for-statement. The body of the for-loop is a block
consisting of lines (2) through (8).7 This block is represented by a node just below
the root. That block node has five children, representing the five statements of the
block. Four of them are assignment statements, lines (2), (6), (7), and (8). The
fifth is the for-loop of lines (3) through (5).

The node for this for-loop has a child representing its body, the if-statement of
lines (4) and (5). The latter node has a child representing its constituent statement,
the assignment of line (5). ✦

Climbing the Structure Tree to Determine Running Time

Just as program structures are built recursively, we can define big-oh upper bounds
on the running time of programs, using an analogous recursive method. As in
Section 3.6, we presume that there are no function calls within the expressions that
form assignment statements, print statements, conditions in selections, conditions
in while-, for-, or do-while- loops, or the initialization or reinitialization of a for-loop.
The only exception is a call to a read- or write-function such as printf.

BASIS. The bound for a simple statement — that is, for an assignment, a read, a
write, or a jump — is O(1).

INDUCTION. For the five compound constructs we have discussed, the rules for
computing their running time are as follows.

1. While-statement. Let O
(

f(n)
)

be the upper bound on the running time of the
body of the while-statement; f(n) was discovered by the recursive application
of these rules. Let g(n) be an upper bound on the number of times we may

go around the loop. Then O
(

1 +
(

f(n) + 1
)

g(n)
)

is an upper bound on the

running time of the while-loop. That is, O
(

f(n)+1
)

is an upper bound on the
running time of the body plus the test after the body. The additional 1 at the
beginning of the formula accounts for the first test, before entering the loop.
In the common case where f(n) and g(n) are at least 1 (or we can define them
to be 1 if their value would otherwise be 0), we can write the running time
of the while-loop as O

(

f(n)g(n)
)

. This common formula for running time is
suggested by Fig. 3.13(a).

2. Do-while-statement. If O
(

f(n)
)

is an upper bound on the body of the loop and
g(n) is an upper bound on the number of times we can go around the loop, then

O
(

(

f(n)+1
)

g(n)
)

is an upper bound on the running time of the do-while-loop.

The “+1” represents the time to compute and test the condition at the end
of each iteration of the loop. Note that for a do-while-loop, g(n) is always at
least 1. In the common case that f(n) ≥ 1 for all n, the running time of the
do-while-loop is O

(

f(n)g(n)
)

. Figure 3.13(b) suggests the way that running
time is computed for the common case of a do-while-loop.

7 A more detailed structure tree would have children representing the expressions for the
initialization, termination test, and reinitialization of the for-loop.
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Test

Body

O(1)

O
(

f(n)
)

O
(

g(n)f(n)
)

g(n) times
around

At most

(a) While-statement.

g(n) times
around

At most

Body O
(

f(n)
)

Test O(1)

O
(

g(n)f(n)
)

(b) Do-while-statement.

Test

Body

O(1)

O(1)

O
(

f(n)
)

Initialize

O
(

g(n)f(n)
)

g(n) times
around

O(1)Reinitialize

(c) For-statement.

Fig. 3.13. Computing the running time of loop statements without function calls.
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3. For-statement. If O
(

f(n)
)

is an upper bound on the running time of the body,
and g(n) is an upper bound on the number of times around the loop, then an

upper bound on the time of a for-statement is O
(

1 +
(

f(n) + 1
)

g(n)
)

. The

factor f(n) + 1 represents the cost of going around once, including the body,
the test, and the reinitialization. The “1+” at the beginning represents the
first initialization and the possibility that the first test is negative, resulting in
zero iterations of the loop. In the common case that f(n) and g(n) are both
at least 1, or can be redefined to be at least 1, then the running time of the
for-statement is O

(

f(n)g(n)
)

, as is illustrated by Fig. 3.13(c).

4. Selection statement. If O
(

f1(n)
)

and O
(

f2(n)
)

are upper bounds on the run-
ning time of the if-part and the else-part, respectively (f2(n) is 0 if the else-part
is missing), then an upper bound on the running time of the selection statement

is O
(

1 + max
(

f1(n), f2(n)
)

)

. The “1+” represents the test; in the common

case, where at least one of f1(n) and f2(n) are positive for all n, the “1+”
can be omitted. Further, if one of f1(n) and f2(n) is big-oh of the other,
this expression may be simplified to whichever is the larger, as was stated in
Exercise 3.5.5. Figure 3.14 suggests the computation of running time for an
if-statement.

Test

If
Part

Else
Part

O(1)

O
(

f1(n)
)

O
(

f2(n)
)

O
(

larger of f1(n) and f2(n)
)

O
(

max(f1(n), f2(n)
)

or

Fig. 3.14. Computing the running time of an if-statement without function calls.

5. Block. If O
(

f1(n)
)

, O
(

f2(n)
)

, . . . , O
(

fk(n)
)

are our upper bounds on the state-

ments within the block, then O
(

f1(n)+ f2(n)+ · · ·+ fk(n)
)

is an upper bound
on the running time of the block. If possible, use the summation rule to simplify
this expression. The rule is illustrated in Fig. 3.15.

We apply these rules traveling up the structure tree that represents the con-
struction of compound statements from smaller statements. Alternatively, we can
see the application of these rules as beginning with the simple statements covered
by the basis and then proceeding to progressively larger compound statements, ap-
plying whichever of the five inductive rules is appropriate at each step. However
we view the process of computing the upper bound on running time, we analyze
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O
(

f1(n)
)

O
(

f2(n)
)

O
(

fk(n)
)

O
(

f1(n) + f2(n) + · · · + fk(n)
)

or

O
(

largest fi(n)
)

Fig. 3.15. Computing the running time of a block without function calls.

a compound statement only after we have analyzed all the statements that are its
constituent parts.

✦ Example 3.21. Let us revisit our selection sort program of Fig. 3.11, whose
structure tree is in Fig. 3.12. To begin, we know that each of the assignment
statements at the leaves in Fig. 3.12 takes O(1) time. Proceeding up the tree, we
next come to the if-statement of lines (4) and (5). We recall from Example 3.15
that this compound statement takes O(1) time.

Next as we travel up the tree (or proceed from smaller statements to their
surrounding larger statements), we must analyze the for-loop of lines (3) to (5). We
did so in Example 3.14, where we discovered that the time was O(n− i− 1). Here,
we have chosen to express the running time as a function of the two variables n and
i. That choice presents us with some computational difficulties, and as we shall see,
we could have chosen the looser upper bound of O(n). Working with O(n − i − 1)
as our bound, we must now observe from line (1) of Fig. 3.11 that i can never get
as large as n − 1. Thus, n − i − 1 is strictly greater than 0 and dominates O(1).
Consequently, we need not add to O(n − i − 1) an O(1) term for initializing the
index j of the for-loop.

Now we come to the block of lines (2) through (8). As discussed in Example
3.17, the running time of this block is the sum of four O(1)’s corresponding to the
four assignment statements, plus the term O(n− i−1) for the compound statement
of lines (3) to (5). By the rule for sums, plus our observation that i < n, we drop
the O(1)’s, leaving O(n − i − 1) as the running time of the block.

Finally, we must consider the for-loop of lines (1) through (8). This loop was
not analyzed in Section 3.6, but we can apply inductive rule (3). That rule needs
an upper bound on the running time of the body, which is the block of lines (2)
through (8). We just determined the bound O(n − i − 1) for this block, presenting
us with a situation we have not previously seen. While i is constant within the
block, i is the index of the outer for-loop, and therefore varies within the loop.
Thus, the bound O(n − i − 1) makes no sense if we think of it as the running time
of all iterations of the loop. Fortunately, we can see from line (1) that i is never
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below 0, and so O(n− 1) is an upper bound on O(n− i− 1). Moreover, by our rule
that low-order terms don’t matter, we can simplify O(n − 1) to O(n).

Next, we need to determine the number of times we go around the loop. Since
i ranges from 0 to n − 2, evidently we go around n − 1 times. When we multiply
n − 1 by O(n), we get O(n2 − n). Throwing away low-order terms again, we see
that O(n2) is an upper bound on the running time of the whole selection sort
program. That is to say, selection sort has a quadratic upper bound on its running
time. The quadratic upper bound is the tightest possible, since we can show that if
the elements are initially in reverse of sorted order, then selection sort does make
n(n − 1)/2 comparison steps. ✦

As we shall see, we can derive n log n upper and lower bounds for the running
time of merge sort. In practice, merge sort is more efficient than selection sort for
all but some small values of n. The reason merge sort is sometimes slower than
selection sort is because the O(n log n) upper bound hides a larger constant than
the O(n2) bound for selection sort. The true situation is a pair of crossing curves,
as shown in Fig. 3.2 of Section 3.3.

More Precise Upper Bounds for Loop Running Times

We have suggested that to evaluate the running time of a loop we need to find a
uniform bound that applies to each of the iterations of the loop. However, a more
careful analysis of a loop would treat each iteration separately. We could instead
sum the upper bounds for each iteration. Technically, we must include the time to
increment the index (if the loop is a for-loop) and to test the loop condition in the
rare situation when the time for these operations makes a difference. Generally, the
more careful analysis doesn’t change the answer, although there are some unusual
loops in which most iterations take very little time, but one or a few take a lot
of time. Then the sum of the times for each iteration might be significantly less
than the product of the number of iterations times the maximum time taken by any
iteration.

✦ Example 3.22. We shall perform this more precise analysis on the outer loop
of selection sort. Despite this extra effort, we still get a quadratic upper bound.
As Example 3.21 demonstrated, the running time of the iteration of the outer loop
with the value i for the index variable i is O(n − i − 1). Thus an upper bound on
the time taken by all iterations, as i ranges from its initial value 0 up to n − 2, is
O

(
∑n−2

i=0 (n − i − 1)
)

. The terms in this sum form an arithmetic progression, so we
can use the formula “average of the first and last terms times the number of terms.”
That formula tells us that

n−2
∑

i=0

(n − i − 1) = n(n − 1)/2 = 0.5n2 − 0.5n

Neglecting low-order terms and constant factors, we see that O(0.5n2 − 0.5n) is the
same as O(n2). We again conclude that selection sort has a quadratic upper bound
on its running time. ✦
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1

Time
per

iteration

n − 1

0

Value of i

n − 2

Fig. 3.16. Simple and precise estimates of loop running time.

The difference between the simple analysis in Example 3.21 and the more de-
tailed analysis in Example 3.22 is illustrated by Fig. 3.16. In Example 3.21, we
took the maximum time of any iteration as the time for each iteration, thus getting
the area of the rectangle as our bound on the running time of the outer for-loop in
Fig. 3.11. In Example 3.22, we bounded the running time of each iteration by the
diagonal line, since the time for each iteration decreases linearly with i. Thus, we
obtained the area of the triangle as our estimate of the running time. However, it is
well known that the area of the triangle is half the area of the rectangle. Since the
factor of 2 gets lost with the other constant factors that are hidden by the big-oh
notation anyway, the two upper bounds on the running time are really the same.

EXERCISES

3.7.1: Figure 3.17 contains a C program to find the average of the elements of an
array A[0..n-1] and to print the index of the element that is closest to average (a
tie is broken in favor of the element appearing first). We assume that n ≥ 1 and do
not include the necessary check for an empty array. Build a structure tree showing
how the statements are grouped into progressively more complex statements, and
give a simple and tight big-oh upper bound on the running time for each of the
statements in the tree. What is the running time of the entire program?

3.7.2: The fragment in Fig. 3.18 transforms an n by n matrix A. Show the structure
tree for the fragment. Give a big-oh upper bound on the running time of each
compound statement

a) Making the bound for the two inner loops a function of n and i.
b) Making the bound for all loops be a function of n only.

For the whole program, is there a big-oh difference between your answers to parts
(a) and (b)?
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#include <stdio.h>

#define MAX 100

int A[MAX];

main()

{

int closest, i, n;

float avg, sum;

(1) for (n = 0; n < MAX && scanf("%d", &A[n]) != EOF; n++)

(2) ;

(3) sum = 0;

(4) for (i = 0; i < n; i++)

(5) sum += A[i];

(6) avg = sum/n;

(7) closest = 0;

(8) i = 1;

(9) while (i < n) {

/* squaring elements in the test below eliminates

the need to distinguish positive and negative

differences */

(10) if ((A[i]-avg)*(A[i]-avg) <

(A[closest]-avg)*(A[closest]-avg))

(11) closest = i;

(12) i++;

}

(13) printf("%d\n",closest);

}

Fig. 3.17. Program for Exercise 3.7.1.

(1) for (i = 0; i < n-1; i++)

(2) for (j = i+1; j < n; j++)

(3) for (k = i; k < n; k++)

(4) A[j][k] = A[j][k] - A[i][k]*A[j][i]/A[i][i];

Fig. 3.18. Program for Exercise 3.7.2.

3.7.3*: Figure 3.19 contains a program fragment that applies the powers-of-2 op-
eration discussed in Example 3.8 to the integers i from 1 to n. Show the structure
tree for the fragment. Give a big-oh upper bound on the running time of each
compound statement

a) Making the bound for the while-loop a function of (the factors of) i.
b) Making the bound for the while-loop a function of n only.

For the whole program, is there a big-oh difference between your answers to parts
(a) and (b)?
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(1) for (i = 1; i <= n; i++) {

(2) m = 0;

(3) j = i;

(4) while (j%2 == 0) {

(5) j = j/2;

(6) m++;

}

}

Fig. 3.19. Program for Exercise 3.7.3.

3.7.4: In Fig. 3.20 is a function that determines whether the argument n is a prime.
Note that if n is not a prime, then it is divisible evenly by some integer i between
2 and

√
n. Show the structure tree for the function. Give a big-oh upper bound

on the running time of each compound statement, as a function of n. What is the
running time of the function as a whole?

int prime(int n)

{

int i;

(1) i = 2;

(2) while (i*i <= n)

(3) if (n%i == 0)

(4) return FALSE;

else

(5) i++;

(6) return TRUE;

}

Fig. 3.20. Program for Exercise 3.7.4.

✦
✦ ✦

✦
3.8 Analyzing Programs with Function Calls

We now show how to analyze the running time of a program or program fragment
that contains function calls. To begin, if all functions are nonrecursive, we can
determine the running time of the functions making up the program one at a time,
starting with those functions that do not call any other function. Then we evaluate
the running times of the functions that call only functions whose running times we
have already determined. We proceed in this fashion until we have evaluated the
running time for all functions.

There are some complexities introduced by the fact that for different functions
there may be different natural measures of the size of the input. In general, the
input to a function is the list of the arguments of that function. If function F calls
function G, we must relate the size measure for the arguments of G to the measure
of size that is used for F . It is hard to give useful generalities, but some examples in
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this section and the next will help us see how the process of bounding the running
time for functions works in simple cases.

Suppose we have determined that a good upper bound on the running time
of a function F is O

(

h(n)
)

, where n is a measure of the size of the arguments of
F . Then when a call to F is made from within a simple statement (e.g., in an
assignment), we add O

(

h(n)
)

to the cost of that statement.

#include <stdio.h>

int bar(int x, int n);

int foo(int x, int n);

main()

{

int a, n;

(1) scanf("%d", &n);

(2) a = foo(0,n);

(3) printf("%d\n", bar(a,n));

}

int bar(int x, int n)

{

int i;

(4) for (i = 1; i <= n; i++)

(5) x += i;

(6) return x;

}

int foo(int x, int n)

{

int i;

(7) for (i = 1; i <= n; i++)

(8) x += bar(i,n);

(9) return x;

}

Fig. 3.21. Program illustrating nonrecursive function calls.

When a function call with upper bound O
(

h(n)
)

appears in a condition of a
while-, do-while-, or if-statement, or in the initialization, test, or reinitialization of
a for-statement, the time of that function call is accounted for as follows:

1. If the function call is in the condition of a while- or do-while-loop, or in the
condition or reinitialization of a for-loop, add h(n) to the bound on the time
for each iteration. Then proceed as in Section 3.7 to obtain the running time
of the loop.
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Program Analysis in a Nutshell

Here are the major points that you should take from Sections 3.7 and 3.8.

✦ The running time of a sequence of statements is the sum of the running times of
the statements. Often, one of the statements dominates the others by having
a running time that is at least as big as any. By the summation rule the
big-oh running time of the sequence is just the running time of the dominant
statement.

✦ The running time of a loop is computed by taking the running time of the body,
plus any control steps (e.g., reinitializing the index of a for-loop and comparing
it to the limit). Multiply this running time by an upper bound on the number
of times the loop can be iterated. Then, add anything that is done just once,
such as the initialization or the first test for termination, if the loop might be
iterated zero times.

✦ The running time of a selection statement (if-else, e.g.) is the time to decide
which branch to take plus the larger of the running times of the branches.

2. If the function call is in the initialization of a for-loop, add O
(

h(n)
)

to the cost
of the loop.

3. If the function call is in the condition of an if-statement, add h(n) to the cost
of the statement.

✦ Example 3.23. Let us analyze the (meaningless) program of Fig. 3.21. First,
let us note that it is not a recursive program. The function main calls both functions
foo and bar, and foo calls bar, but that is all. The diagram of Fig. 3.22, called a
calling graph, indicates how functions call one another. Since there are no cycles,Calling graph

there is no recursion, and we can analyze the functions by starting with “group 0,”
those that do not call other functions (bar in this case), then working on “group 1,”
those that call only functions in group 0 (foo in this case), and then on “group 2,”
those that call only functions in groups 0 and 1 (main in this case). At this point,
we are done, since all functions are in groups. In general, we would have to consider
a larger number of groups, but as long as there are no cycles, we can eventually
place each function in a group.

The order in which we analyze the running time of the functions is also the
order in which we should examine them in order to gain an understanding of what
the program does. Thus, let us first consider what the function bar does. The
for-loop of lines (4) and (5) adds each of the integers 1 through n to x. As a
result, bar(x, n) is equal to x +

∑n
i=1 i. The summation

∑n
i=1 i is another example

of summing an arithmetic progression, which we can calculate by adding the first
and last terms, multiplying by the number of terms, and dividing by 2. That is,
∑n

i=1 i = (1 + n)n/2. Thus, bar(x, n) = x + n(n + 1)/2.

Now, consider function foo, which adds to its argument x the sum
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main

foo

bar

Fig. 3.22. Calling graph for Fig. 3.21.

Proofs and Program Understanding

The reader may notice that in our examination of the program in Fig. 3.21, we were
able to understand what the program does, but we did not prove anything formally
as we did in Chapter 2. However, there are many simple inductive proofs lurking
just below the surface. For example, we need to prove by induction on the number
of times around the loop of lines (4) and (5) that the value of x, just before we

begin the iteration with value i for i, is the initial value of x plus
∑i−1

j=1 j. Note
that if i = 1, then this sum consists of 0 terms and therefore has the value 0.

n
∑

i=1

bar(i, n)

From our understanding of bar we know that bar(i, n) = i + n(n + 1)/2. Thus foo
adds to x the quantity

∑n
i=1(i+n(n+1)/2). We have another arithmetic progression

to sum, and this one requires more algebraic manipulation. However, the reader
may check that the quantity foo adds to its argument x is (n3 + 2n2 + n)/2.

Finally, let us consider the function main. We read n at line (1). At line (2) we
apply foo to 0 and n. By our understanding of foo, the value of foo(0,n) at line (2)
will be 0 plus (n3 +2n2 +n)/2. At line (3), we print the value of bar(foo(0,n),n),
which, by our understanding of bar is the sum of n(n + 1)/2 and the current value
of foo(a,n). Thus, the value printed is (n3 + 3n2 + 2n)/2.

Now let us analyze the running time of the program in Fig. 3.21, working from
bar to foo and then to main, as we did in Example 3.23. In this case, we shall take
the value n to be the size of the input to all three functions. That is, even though
we generally want to consider the “size” of all the arguments to a function, in this
case the running time of the functions depends only on n.

To analyze bar, we note that line (5) takes O(1) time. The for-loop of lines
(4) and (5) iterates n times, and so the time for lines (4) and (5) is O(n). Line (6)
takes O(1) time, and so the time for the block of lines (4) to (6) is O(n).

Now we proceed to foo. The assignment in line (8) takes O(1) plus the time of
a call to bar(i,n). That call, we already know, takes O(n) time, and so the time
for line (8) is O(n). The for-loop of lines (7) and (8) iterates n times, and so we
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multiply the O(n) for the body by n to get O(n2) as the running time of a call to
foo.

Finally, we may analyze main. Line (1) takes O(1) time. The call to foo at
line (2) takes O(n2) time, as we just deduced. The print-statement of line (3) takes
O(1) plus the time for a call to bar. The latter takes O(n) time, and so line (3) as
a whole takes O(1) + O(n) time. The total time for the block of lines (1) through
(3) is therefore O(1)+O(n2)+O(1)+O(n). By the rule for sums, we can eliminate
all but the second term, concluding that the function main takes O(n2) time. That
is, the call to foo at line (2) is the dominant cost. ✦

EXERCISES

3.8.1: Show the claim in Example 3.23, that
∑n

i=1(i + n(n + 1)/2) = (n3 + 2n2 + n)/2

3.8.2: Suppose that prime(n) is a function call that takes time O(
√

n). Consider
a function whose body is

if ( prime(n) )

A;

else

B;

Give a simple and tight big-oh upper bound on the running time of this function,
as a function of n, on the assumption that

a) A takes O(n) time and B takes O(1) time

b) A and B both take O(1) time

3.8.3: Consider a function whose body is

sum = 0;

for (i = 1; i <= f(n); i++)

sum += i;

where f(n) is a function call. Give a simple and tight big-oh upper bound on the
running time of this function, as a function of n, on the assumption that

a) The running time of f(n) is O(n), and the value of f(n) is n!

b) The running time of f(n) is O(n), and the value of f(n) is n

c) The running time of f(n) is O(n2), and the value of f(n) is n

d) The running time of f(n) is O(1), and the value of f(n) is 0

3.8.4: Draw the calling graph for the functions in the merge sort program from
Section 2.8. Is the program recursive?

3.8.5*: Suppose that line (7) in the function foo of Fig. 3.21 were replaced by

for (i = 1; i <= bar(n,n); i++)

What would the running time of main be then?
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✦
✦ ✦

✦
3.9 Analyzing Recursive Functions

Determining the running time of a function that calls itself recursively requires more
work than analyzing nonrecursive functions. The analysis for a recursive function
requires that we associate with each function F in a program an unknown running
time TF (n). This unknown function represents F ’s running time as a function of
n, the size of F ’s arguments. We then establish an inductive definition, called a
recurrence relation for TF (n), that relates TF (n) to functions of the form TG(k) forRecurrence

relation the other functions G in the program and their associated argument sizes k. If F
is directly recursive, then one or more of the G’s will be the same as F .

The value of TF (n) is normally established by an induction on the argument
size n. Thus, it is necessary to pick a notion of argument size that guarantees
functions are called with progressively smaller arguments as the recursion proceeds.
The requirement is the same as what we encountered in Section 2.9, when we tried
to prove statements about recursive programs. That should be no surprise, because
a statement about the running time of a program is just one example of something
that we might try to prove about a program.

Once we have a suitable notion of argument size, we can consider two cases:

1. The argument size is sufficiently small that no recursive calls will be made by
F . This case corresponds to the basis in an inductive definition of TF (n).

2. For larger argument sizes, one or more recursive calls may occur. Note that
whatever recursive calls F makes, whether to itself or to some other function G,
will be made with smaller arguments. This case corresponds to the inductive
step in the definition of TF (n).

The recurrence relation defining TF (n) is derived by examining the code for
function F and doing the following:

a) For each call to a function G or use of a function G in an expression (note
that G may be F ), use TG(k) as the running time of the call, where k is the
appropriate measure of the size of the arguments in the call.

b) Evaluate the running time of the body of function F , using the same techniques
as in previous sections, but leaving terms like TG(k) as unknown functions,
rather than concrete functions such as n2. These terms cannot generally be
combined with concrete functions using simplification tricks such as the sum-
mation rule. We must analyze F twice — once on the assumption that F ’s
argument size n is sufficiently small that no recursive function calls are made,
and once assuming that n is not that small. As a result, we obtain two expres-
sions for the running time of F — one (the basis expression) serving as the basis
of the recurrence relation for TF (n), and the other (the induction expression)Basis and

induction

expressions

serving as the inductive part.

c) In the resulting basis and induction expressions for the running time of F ,
replace big-oh terms like O

(

f(n)
)

by a specific constant times the function
involved — for example, cf(n).

d) If a is a basis value for the input size, set TF (a) equal to the basis expression
resulting from step (c) on the assumption that there are no recursive calls.
Also, set TF (n) equal to the induction expression from (c) for the case where
n is not a basis value.
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int fact(int n)

{

(1) if (n <= 1)

(2) return 1; /* basis */

else

(3) return n*fact(n-1); /* induction */

}

Fig. 3.23. Program to compute n!.

The running time of the entire function is determined by solving this recurrence
relation. In Section 3.11, we shall give general techniques for solving recurrences of
the kind that arise in the analysis of common recursive functions. For the moment,
we solve these recurrences by ad hoc means.

✦ Example 3.24. Let us reconsider the recursive program from Section 2.7 to
compute the factorial function; the code is shown in Fig. 3.23. Since there is only
one function, fact, involved, we shall use T (n) for the unknown running time
of this function. We shall use n, the value of the argument, as the size of the
argument. Clearly, recursive calls made by fact when the argument is n have a
smaller argument, n − 1 to be precise.

For the basis of the inductive definition of T (n) we shall take n = 1, since no
recursive call is made by fact when its argument is 1. With n = 1, the condition
of line (1) is true, and so the call to fact executes lines (1) and (2). Each takes
O(1) time, and so the running time of fact in the basis case is O(1). That is, T (1)
is O(1).

Now, consider what happens when n > 1. The condition of line (1) is false,
and so we execute only lines (1) and (3). Line (1) takes O(1) time, and line (3)
takes O(1) for the multiplication and assignment, plus T (n − 1) for the recursive
call to fact. That is, for n > 1, the running time of fact is O(1) + T (n − 1). We
can thus define T (n) by the following recurrence relation:

BASIS. T (1) = O(1).

INDUCTION. T (n) = O(1) + T (n − 1), for n > 1.

We now invent constant symbols to stand for those constants hidden within
the various big-oh expressions, as was suggested by rule (c) above. In this case, we
can replace the O(1) in the basis by some constant a, and the O(1) in the induction
by some constant b. These changes give us the following recurrence relation:

BASIS. T (1) = a.

INDUCTION. T (n) = b + T (n − 1), for n > 1.

Now we must solve this recurrence for T (n). We can calculate the first few
values easily. T (1) = a by the basis. Thus, by the inductive rule, we have
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T (2) = b + T (1) = a + b

Continuing to use the inductive rule, we get

T (3) = b + T (2) = b + (a + b) = a + 2b

Then

T (4) = b + T (3) = b + (a + 2b) = a + 3b

By this point, it should be no surprise if we guess that T (n) = a + (n − 1)b, for all
n ≥ 1. Indeed, computing some sample values, then guessing a solution, and finally
proving our guess correct by an inductive proof is a common method of dealing with
recurrences.

In this case, however, we can derive the solution directly by a method knownRepeated

substitution as repeated substitution. First, let us make a substitution of variables, m for n, in
the recursive equation, which now becomes

T (m) = b + T (m − 1), for m > 1 (3.3)

Now, we can substitute n, n − 1, n − 2, . . . , 2 for m in equation (3.3) to get the
sequence of equations

1) T (n) = b + T (n − 1)
2) T (n− 1) = b + T (n − 2)
3) T (n− 2) = b + T (n − 3)

· · ·
n − 1) T (2) = b + T (1)

Next, we can use line (2) above to substitute for T (n−1) in (1), to get the equation

T (n) = b +
(

b + T (n − 2)
)

= 2b + T (n − 2)

Now, we use line (3) to substitute for T (n − 2) in the above to get

T (n) = 2b +
(

b + T (n − 3)
)

= 3b + T (n− 3)

We proceed in this manner, each time replacing T (n− i) by b + T (n− i − 1), until
we get down to T (1). At that point, we have the equation

T (n) = (n − 1)b + T (1)

We can then use the basis to replace T (1) by a, and conclude that T (n) = a+(n−1)b.

To make this analysis more formal, we need to prove by induction our intuitive
observations about what happens when we repeatedly substitute for T (n− i). Thus
we shall prove the following by induction on i:

STATEMENT S(i): If 1 ≤ i < n, then T (n) = ib + T (n − i).

BASIS. The basis is i = 1. S(1) says that T (n) = b+T (n−1). This is the inductive
part of the definition of T (n) and therefore known to be true.

INDUCTION. If i ≥ n− 1, there is nothing to prove. The reason is that statement
S(i + 1) begins, “If 1 ≤ i + 1 < n · · · ,” and when the condition of an if-statement
is false, the statement is true regardless of what follows the “then.” In this case,
where i ≥ n − 1, the condition i + 1 < n must be false, so S(i + 1) is true.
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The hard part is when i ≤ n−2. In that case, S(i) says that T (n) = ib+T (n−i).
Since i ≤ n − 2, the argument of T (n − i) is at least 2. Thus we can apply the
inductive rule for T — that is, (3.3) with n− i in place of m — to get the equation
T (n − i) = b + T (n − i − 1). When we substitute b + T (n − i − 1) for T (n − i) in
the equation T (n) = ib + T (n − i), we obtain T (n) = ib +

(

b + T (n − i − 1)
)

, or
regrouping terms,

T (n) = (i + 1)b + T
(

n − (i + 1)
)

This equation is the statement S(i+1), and we have now proved the induction step.

We have now shown that T (n) = a + (n − 1)b. However, a and b are unknown
constants. Thus, there is no point in presenting the solution this way. Rather,
we can express T (n) as a polynomial in n, namely, bn + (a − b), and then replace
terms by big-oh expressions, giving O(n) + O(1). Using the summation rule, we
can eliminate O(1), which tells us that T (n) is O(n). That makes sense; it says
that to compute n!, we make on the order of n calls to fact (the actual number is
exactly n), each of which requires O(1) time, excluding the time spent performing
the recursive call to fact. ✦

EXERCISES

3.9.1: Set up a recurrence relation for the running time of the function sum men-
tioned in Exercise 2.9.2, as a function of the length of the list that is input to the
program. Replace big-oh’s by (unknown) constants, and try to solve your recur-
rence. What is the running time of sum?

3.9.2: Repeat Exercise 3.9.1 for the function find0 from Exercise 2.9.3. What is a
suitable size measure?

3.9.3*: Repeat Exercise 3.9.1 for the recursive selection sort program in Fig. 2.22
of Section 2.7. What is a suitable size measure?

3.9.4**: Repeat Exercise 3.9.1 for the function of Fig. 3.24, which computes theFibonacci

numbers Fibonacci numbers. (The first two are 1, and each succeeding number is the sum of
the previous two. The first seven Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13.) Note
that the value of n is the appropriate size of an argument and that you need both
1 and 2 as basis cases.

int fibonacci(int n)

{

if (n <= 2)

return 1;

else

return fibonacci(n-1) + fibonacci(n-2);

}

Fig. 3.24. C function computing the Fibonacci numbers.
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3.9.5*: Write a recursive program to compute gcd(i, j), the greatest common di-
visor of two integers i and j, as outlined in Exercise 2.7.8. Show that the running
time of the program is O(log i). Hint : Show that after two calls we invoke gcd(m, n)
where m ≤ i/2.

✦
✦ ✦

✦
3.10 Analysis of Merge Sort

We shall now analyze the merge sort algorithm that we presented in Section 2.8.
First, we show that the merge and split functions each take O(n) time on lists of
length n, and then we use these bounds to show that the MergeSort function takes
O(n log n) time on lists of length n.

Analysis of the Merge Function

We begin with the analysis of the recursive function merge, whose code we repeat
as Fig. 3.25. The appropriate notion of size n for the argument of merge is the sum
of the lengths of the lists list1 and list2. Thus, we let T (n) be the time taken by
merge when the sum of the lengths of its argument lists is n. We shall take n = 1
to be the basis case, and so we must analyze Fig. 3.25 on the assumption that one
of list1 and list2 is empty and the other has only one element. There are two
cases:

1. If the test of line (1) — that is, list1 equals NULL — succeeds, then we return
list2, which takes O(1) time. Lines (2) through (7) are not executed. Thus,
the entire function call takes O(1) time to test the selection of line (1) and O(1)
time to perform the assignment on line (1), a total of O(1) time.

2. If the test of line (1) fails, then list1 is not empty. Since we assume that the
sum of the lengths of the lists is only 1, list2 must therefore be empty. Thus,
the test on line (2) — namely, list2 equals NULL — must succeed. We then take
O(1) time to perform the test of line (1), O(1) to perform the test of line (2),
and O(1) to return list1 on line (2). Lines (3) through (7) are not executed.
Again, we take only O(1) time.

We conclude that in the basis case merge takes O(1) time.
Now let us consider the inductive case, where the sum of the list lengths is

greater than 1. Of course, even if the sum of the lengths is 2 or more, one of the
lists could still be empty. Thus, any of the four cases represented by the nested
selection statements could be taken. The structure tree for the program of Fig. 3.25
is shown in Fig. 3.26. We can analyze the program by working from the bottom,
up the structure tree.

The innermost selection begins with the “if” on line (3), where we test which
list has the smaller first element and then either execute lines (4) and (5) or execute
lines (6) and (7). The condition of line (3) takes O(1) time to evaluate. Line (5)
takes O(1) time to evaluate, and line (4) takes O(1) time plus T (n − 1) time for
the recursive call to merge. Note that n − 1 is the argument size for the recursive
call, since we have eliminated exactly one element from one of the lists and left the
other list as it was. Thus, the block of lines (4) and (5) takes O(1)+T (n− 1) time.

The analysis for the else-part in lines (6) and (7) is exactly the same: line
(7) takes O(1) time and line (6) takes O(1) + T (n − 1) time. Thus, when we take
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LIST merge(LIST list1, LIST list2)

{

(1) if (list1 == NULL) return list2;

(2) else if (list2 == NULL) return list1;

(3) else if (list1->element <= list2->element) {

(4) list1->next = merge(list1->next, list2);

(5) return list1;

}

else { /* list2 has smaller first element */

(6) list2->next = merge(list1, list2->next);

(7) return list2;

}

}

Fig. 3.25. The function merge.

if

(1)–(7)

if

(2)–(7)

if

(3)–(7)

block
(4)–(5)

block
(6)–(7)

retn
(1)

retn
(2)

retn
(4)

retn
(5)

retn
(6)

retn
(7)

Fig. 3.26. Structure of merge.

the maximum of the running times of the if- and else-parts, we find these times to
be the same. The O(1) for the test of the condition can be neglected, and so we
conclude that the running time of the innermost selection is O(1) + T (n − 1).

Now we proceed to the selection beginning on line (2), where we test whether
list2 equals NULL. The time for testing the condition is O(1), and the time for
the if-part, which is the return on line (2), is also O(1). However, the else-part
is the selection statement of lines (3) through (7), which we just determined takes
O(1) + T (n − 1) time. Thus, the time for the selection of lines (2) through (7) is

O(1) + max
(

O(1), O(1) + T (n− 1)
)

The second term of the maximum dominates the first and also dominates the O(1)
contributed by the test of the condition. Thus, the time for the if-statement begin-
ning at line (2) is also O(1) + T (n− 1).

Finally, we perform the same analysis for the outermost if-statement. Essen-
tially, the dominant time is the else-part, which consists of lines (2) through (7).
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A Common Form of Recursion

Many of the simplest recursive functions, such as fact and merge, perform some
operation that takes O(1) time and then make a recursive call to themselves on an
argument one size smaller. Assuming the basis case takes O(1) time, we see that
such a function always leads to a recurrence relation T (n) = O(1) + T (n− 1). The
solution for T (n) is O(n), or linear in the size of the argument. In Section 3.11 we
shall see some generalizations of this principle.

That is, the time for the cases in which there is a recursive call, lines (4) and (5)
or lines (6) and (7), dominates the time for the cases in which there is no recursive
call, represented by lines (1) and (2), and also dominates the time for all three tests
on lines (1), (2), and (3). Thus, the time for the function merge, when n > 1, is
bounded above by O(1) + T (n − 1). We therefore have the following recurrence
relation for defining T (n):

BASIS. T (1) = O(1).

INDUCTION. T (n) = O(1) + T (n − 1), for n > 1.

These equations are exactly the same as those derived for the function fact

in Example 3.24. Thus, the solution is the same and we can conclude that T (n)
is O(n). That result makes intuitive sense, since merge works by eliminating an
element from one of the lists, taking O(1) time to do so, and then calling itself
recursively on the remaining lists. It follows that the number of recursive calls will
be no greater than the sum of the lengths of the lists. Since each call takes O(1)
time, exclusive of the time taken by its recursive call, we expect the time for merge
to be O(n).

LIST split(LIST list)

{

LIST pSecondCell;

(1) if (list == NULL) return NULL;

(2) else if (list->next == NULL) return NULL;

else { /* there are at least two cells */

(3) pSecondCell = list->next;

(4) list->next = pSecondCell->next;

(5) pSecondCell->next = split(pSecondCell->next);

(6) return pSecondCell;

}

}

Fig. 3.27. The function split.
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Analysis of the Split Function

Now let us consider the split function, which we reproduce as Fig. 3.27. The
analysis is quite similar to that for merge. We let the size n of the argument be
the length of the list, and we here use T (n) for the time taken by split on a list of
length n.

For the basis, we take both n = 0 and n = 1. If n = 0 — that is, list is empty
— the test of line (1) succeeds and we return NULL on line (1). Lines (2) through (6)
are not executed, and we therefore take O(1) time. If n = 1, that is, list is a single
element, the test of line (1) fails, but the test of line (2) succeeds. We therefore
return NULL on line (2) and do not execute lines (3) through (6). Again, only O(1)
time is needed for the two tests and one return statement.

For the induction, n > 1, there is a three-way selection branch, similar to the
four-way branch we encountered in merge. To save time in analysis, we may observe
— as we eventually concluded for merge — that we take O(1) time to do one or
both of the selection tests of lines (1) and (2). Also, in the cases in which one of
these two tests is true, where we return on line (1) or (2), the additional time is only
O(1). The dominant time is the case in which both tests fail, that is, in which the
list is of length at least 2; in this case we execute the statements of lines (3) through
(6). All but the recursive call in line (5) contributes O(1) time. The recursive call
takes T (n − 2) time, since the argument list is the original value of list, missing
its first two elements (to see why, refer to the material in Section 2.8, especially the
diagram of Fig. 2.28). Thus, in the inductive case, T (n) is O(1) + T (n− 2).

We may set up the following recurrence relation:

BASIS. T (0) = O(1) and T (1) = O(1).

INDUCTION. T (n) = O(1) + T (n − 2), for n > 1.

As in Example 3.24, we must next invent constants to represent the constants
of proportionality hidden by the O(1)’s. We shall let a and b be the constants
represented by O(1) in the basis for the values of T (0) and T (1), respectively, and
we shall use c for the constant represented by O(1) in the inductive step. Thus, we
may rewrite the recursive definition as

BASIS. T (0) = a and T (1) = b.

INDUCTION. T (n) = c + T (n− 2) for n ≥ 2.

Let us evaluate the first few values of T (n). Evidently T (0) = a and T (1) = b
by the basis. We may use the inductive step to deduce

T (2) = c + T (0) = a + c
T (3) = c + T (1) = b + c
T (4) = c + T (2) = c + (a + c) = a + 2c
T (5) = c + T (3) = c + (b + c) = b + 2c
T (6) = c + T (4) = c + (a + 2c) = a + 3c
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The calculation of T (n) is really two separate calculations, one for odd n and the
other for even n. For even n, we get T (n) = a+ cn/2. That makes sense, since with
an even-length list, we eliminate two elements, taking time c to do so, and after n/2
recursive calls, we are left with an empty list, on which we make no more recursive
calls and take a time.

On an odd-length list, we again eliminate two elements, taking time c to do so.
After (n− 1)/2 calls, we are down to a list of length 1, for which time b is required.
Thus, the time for odd-length lists will be b + c(n − 1)/2.

The inductive proofs of these observations closely parallel the proof in Example
3.24. That is, we prove the following:

STATEMENT S(i): If 1 ≤ i ≤ n/2, then T (n) = ic + T (n− 2i).

In the proof, we use the inductive rule in the definition of T (n), which we can
rewrite with argument m as

T (m) = c + T (m− 2), for m ≥ 2 (3.4)

We may then prove S(i) by induction as follows:

BASIS. The basis, i = 1, is (3.4) with n in place of m.

INDUCTION. Because S(i) has an if-then form, S(i + 1) is always true if i ≥ n/2.
Thus, the inductive step — that S(i) implies S(i+1) — requires no proof if i ≥ n/2.

The hard case occurs when 1 ≤ i < n/2. In this situation, suppose that the
inductive hypothesis S(i) is true; T (n) = ic + T (n − 2i). We substitute n − 2i for
m in (3.4), giving us

T (n − 2i) = c + T (n − 2i − 2)

If we substitute for T (n− 2i) in S(i), we get

T (n) = ic +
(

c + T (n− 2i − 2)
)

If we then group terms, we get

T (n) = (i + 1)c + T
(

n − 2(i + 1)
)

which is the statement S(i + 1). We have thus proved the inductive step, and we
conclude T (n) = ic + T (n− 2i).

Now if n is even, let i = n/2. Then S(n/2) says that T (n) = cn/2 + T (0),
which is a + cn/2. If n is odd, let i = (n − 1)/2. S((n − 1)/2) tells us that T (n) is

c(n − 1)/2 + T (1)

which equals b + c(n − 1)/2 since T (1) = b.
Finally, we must convert to big-oh notation the constants a, b, and c, which

represent compiler- and machine-specific quantities. Both the polynomials a+ cn/2
and b + c(n − 1)/2 have high-order terms proportional to n. Thus, the question
whether n is odd or even is actually irrelevant; the running time of split is O(n)
in either case. Again, that is the intuitively correct answer, since on a list of length
n, split makes about n/2 recursive calls, each taking O(1) time.
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LIST MergeSort(LIST list)

{

LIST SecondList;

(1) if (list == NULL) return NULL;

(2) else if (list->next == NULL) return list;

else {

/* at least two elements on list */

(3) SecondList = split(list);

(4) return merge(MergeSort(list), MergeSort(SecondList));

}

}

Fig. 3.28. The merge sort algorithm.

The Function MergeSort

Finally, we come to the function MergeSort, which is reproduced in Fig. 3.28. The
appropriate measure n of argument size is again the length of the list to be sorted.
Here, we shall use T (n) as the running time of MergeSort on a list of length n.

We take n = 1 as the basis case and n > 1 as the inductive case, where recursive
calls are made. If we examine MergeSort, we observe that, unless we call MergeSort
from another function with an argument that is an empty list, then there is no way
to get a call with an empty list as argument. The reason is that we execute line (4)
only when list has at least two elements, in which case the lists that result from
a split will have at least one element each. Thus, we can ignore the case n = 0 and
start our induction at n = 1.

BASIS. If list consists of a single element, then we execute lines (1) and (2), but
none of the other code. Thus, in the basis case, T (1) is O(1).

INDUCTION. In the inductive case, the tests of lines (1) and (2) both fail, and so
we execute the block of lines (3) and (4). To make things simpler, let us assume
that n is a power of 2. The reason it helps to make this assumption is that when
n is even, the split of the list is into two pieces of length exactly n/2. Moreover,
if n is a power of 2, then n/2 is also a power of 2, and the divisions by 2 are all
into equal-sized pieces until we get down to pieces of 1 element each, at which time
the recursion ends. The time spent by MergeSort when n > 1 is the sum of the
following terms:

1. O(1) for the two tests

2. O(1) + O(n) for the assignment and call to split on line (3)

3. T (n/2) for the first recursive call to MergeSort on line (4)

4. T (n/2) for the second recursive call to MergeSort on line (4)

5. O(n) for the call to merge on line (4)

6. O(1) for the return on line (4).
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Inductions that Skip Some Values

The reader should not be concerned by the new kind of induction that is involved
in the analysis of MergeSort, where we skip over all but the powers of 2 in our
proof. In general, if i1, i2, . . . is a sequence of integers about which we want to prove
a statement S, we can show S(i1) as a basis and then show for the induction that
S(ij) implies S(ij+1), for all j. That is an ordinary induction if we think of it as
an induction on j. More precisely, define the statement S′ by S′(j) = S(ij). Then
we prove S′(j) by induction on j. For the case at hand, i1 = 1, i2 = 2, i3 = 4, and
in general, ij = 2j−1.

Incidentally, note that T (n), the running time of MergeSort, surely does not
decrease as n increases. Thus, showing that T (n) is O(n log n) for n equal to a
power of 2 also shows that T (n) is O(n log n) for all n.

If we add these terms, and drop the O(1)’s in favor of the larger O(n)’s that come
from the calls to split and merge, we get the bound 2T (n/2) + O(n) for the time
spent by MergeSort in the inductive case. We thus have the recurrence relation:

BASIS. T (1) = O(1).

INDUCTION. T (n) = 2T (n/2)+ O(n), where n is a power of 2 and greater than 1.

Our next step is to replace the big-oh expressions by functions with concrete
constants. We shall replace the O(1) in the basis by constant a, and the O(n) in
the inductive step by bn, for some constant b. Our recurrence relation thus becomes

BASIS. T (1) = a.

INDUCTION. T (n) = 2T (n/2) + bn, where n is a power of 2 and greater than 1.

This recurrence is rather more complicated than the ones studied so far, but
we can apply the same techniques. First, let us explore the values of T (n) for some
small n’s. The basis tells us that T (1) = a. Then the inductive step says

T (2) = 2T (1) + 2b = 2a + 2b

T (4) = 2T (2) + 4b = 2(2a + 2b) + 4b = 4a + 8b

T (8) = 2T (4) + 8b = 2(4a + 8b) + 8b = 8a + 24b

T (16) = 2T (8) + 16b = 2(8a + 24b) + 16b = 16a + 64b

It may not be easy to see what is going on. Evidently, the coefficient of a keeps
pace with the value of n; that is, T (n) is n times a plus some number of b’s. But
the coefficient of b grows faster than any multiple of n. The relationship between n
and the coefficient of b is summarized as follows:

Value of n 2 4 8 16
Coefficient of b 2 8 24 64
Ratio 1 2 3 4
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The ratio is the coefficient of b divided by the value of n. Thus, it appears that
the coefficient of b is n times another factor that grows by 1 each time n doubles.
In particular, we can see that this ratio is log2 n, because log2 2 = 1, log2 4 = 2,
log2 8 = 3, and log2 16 = 4. It is thus reasonable to conjecture that the solution to
our recurrence relation is T (n) = an + bn log2 n, at least for n a power of 2. We
shall see that this formula is correct.

To get a solution to the recurrence, let us follow the same strategy as for
previous examples. We write the inductive rule with argument m, as

T (m) = 2T (m/2) + bm, for m a power of 2 and m > 1 (3.5)

We then start with T (n) and use (3.5) to replace T (n) by an expression involv-
ing smaller values of the argument; in this case, the replacing expression involves
T (n/2). That is, we begin with

T (n) = 2T (n/2) + bn (3.6)

Next, we use (3.5), with n/2 in place of m, to get a replacement for T (n/2) in
(3.6). That is, (3.5) says that T (n/2) = 2T (n/4) + bn/2, and we can replace (3.6)
by

T (n) = 2
(

2T (n/4) + bn/2
)

+ bn = 4T (n/4) + 2bn

Then, we can replace T (n/4) by 2T (n/8)+ bn/4; the justification is (3.5) with n/4
in place of m. That gives us

T (n) = 4
(

2T (n/8) + bn/4
)

+ 2bn = 8T (n/8) + 3bn

The statement that we shall prove by induction on i is

STATEMENT S(i): If 1 ≤ i ≤ log2 n, then T (n) = 2iT (n/2i) + ibn.

BASIS. For i = 1, the statement S(1) says that T (n) = 2T (n/2)+bn. This equality
is the inductive rule in the definition of T (n), the running time of merge and sort,
so we know that the basis holds.

INDUCTION. As in similar inductions where the inductive hypothesis is of the if-
then form, the inductive step holds whenever i is outside the assumed range; here,
i ≥ log2 n is the simple case, where S(i + 1) is seen to hold.

For the hard part, suppose that i < log2 n. Also, assume the inductive hy-
pothesis S(i); that is, T (n) = 2iT (n/2i) + ibn. Substitute n/2i for m in (3.5) to
get

T (n/2i) = 2T (n/2i+1) + bn/2i (3.7)

Substitute the right side of (3.7) for T (n/2i) in S(i) to get

T (n) = 2i
(

2T (n/2i+1) + bn/2i
)

+ ibn

= 2i+1T (n/2i+1) + bn + ibn

= 2i+1T (n/2i+1) + (i + 1)bn

The last equality is the statement S(i + 1), and so we have proved the inductive
step.
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We conclude that the equality S(i) — that is, T (n) = 2iT (n/2i)+ ibn — holds
for any i between 1 and log2 n. Now consider the formula S(log2 n), that is,

T (n) = 2log
2

nT (n/2log
2

n) + (log2 n)bn

We know that 2log
2

n = n (recall that the definition of log2 n is the power to which
we must raise 2 to equal n). Also, n/2log

2
n = 1. Thus, S(log2 n) can be written

T (n) = nT (1) + bn log2 n

We also know that T (1) = a, by the basis of the definition of T . Thus,

T (n) = an + bn log2 n

After this analysis, we must replace the constants a and b by big-oh expressions.
That is, T (n) is O(n) + O(n log n).8 Since n grows more slowly than n log n, we
may neglect the O(n) term and say that T (n) is O(n log n). That is, merge sort
is an O(n log n)-time algorithm. Remember that selection sort was shown to take
O(n2) time. Although strictly speaking, O(n2) is only an upper bound, it is in fact
the tightest simple bound for selection sort. Thus, we can be sure that, as n gets
large, merge sort will always run faster than selection sort. In practice, merge sort
is faster than selection sort for n’s larger than a few dozen.

EXERCISES

3.10.1: Draw structure trees for the functions

a) split

b) MergeSort

Indicate the running time for each node of the trees.

3.10.2*: Define a function k-mergesort that splits a list into k pieces, sorts each
piece, and then merges the result.

a) What is the running time of k-mergesort as a function of k and n?
b)**What value of k gives the fastest algorithm (as a function of n)? This problem

requires that you estimate the running times sufficiently precisely that you can
distinguish constant factors. Since you cannot be that precise in practice, for
the reasons we discussed at the beginning of the chapter, you really need to
examine how the running time from (a) varies with k and get an approximate
minimum.

✦
✦ ✦

✦
3.11 Solving Recurrence Relations

There are many techniques for solving recurrence relations. In this section, we shall
discuss two such approaches. The first, which we have already seen, is repeatedly
substituting the inductive rule into itself until we get a relationship between T (n)
and T (1) or — if 1 is not the basis — between T (n) and T (i) for some i that is
covered by the basis. The second method we introduce is guessing a solution and
checking its correctness by substituting into the basis and the inductive rules.

8 Remember that inside a big-oh expression, we do not have to specify the base of a logarithm,
because logarithms to all bases are the same, to within a constant factor.
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In the previous two sections, we have solved exactly for T (n). However, since
T (n) is really a big-oh upper bound on the exact running time, it is sufficient to find
a tight upper bound on T (n). Thus, especially for the “guess-and-check” approach,
we require only that the solution be an upper bound on the true solution to the
recurrence.

Solving Recurrences by Repeated Substitution

Probably the simplest form of recurrence that we encounter in practice is that of
Example 3.24:

BASIS. T (1) = a.

INDUCTION. T (n) = T (n − 1) + b, for n > 1.

We can generalize this form slightly if we allow the addition of some function g(n)
in place of the constant b in the induction. We can write this form as

BASIS. T (1) = a.

INDUCTION. T (n) = T (n − 1) + g(n), for n > 1.

This form arises whenever we have a recursive function that takes time g(n) and
then calls itself with an argument one smaller than the argument with which the
current function call was made. Examples are the factorial function of Example
3.24, the function merge of Section 3.10, and the recursive selection sort of Section
2.7. In the first two of these functions, g(n) is a constant, and in the third it is linear
in n. The function split of Section 3.10 is almost of this form; it calls itself with
an argument that is smaller by 2. We shall see that this difference is unimportant.

Let us solve this recurrence by repeated substitution. As in Example 3.24, we
first write the inductive rule with the argument m, as

T (m) = T (m − 1) + g(m)

and then proceed to substitute for T repeatedly in the right side of the original
inductive rule. Doing this, we get the sequence of expressions

T (n) = T (n− 1) + g(n)

= T (n− 2) + g(n − 1) + g(n)

= T (n− 3) + g(n − 2) + g(n − 1) + g(n)
· · ·
= T (n− i) + g(n − i + 1) + g(n − i + 2) + · · · + g(n − 1) + g(n)

Using the technique in Example 3.24, we can prove by induction on i, for i =
1, 2, . . . , n − 1, that

T (n) = T (n − i) +

i−1
∑

j=0

g(n − j)
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We want to pick a value for i so that T (n− i) is covered by the basis; thus, we

pick i = n − 1. Since T (1) = a, we have T (n) = a +
∑n−2

j=0 g(n − j). Put another
way, T (n) is the constant a plus the sum of all the values of g from 2 to n, or
a + g(2) + g(3) + · · · + g(n). Unless all the g(j)’s are 0, the a term will not matter
when we convert this expression to a big-oh expression, and so we generally just
need the sum of the g(j)’s.

✦ Example 3.25. Consider the recursive selection sort function of Fig. 2.22, the
body of which we reproduce as Fig. 3.29. If we let T (m) be the running time of the
function SelectionSort when given an array of m elements to sort (that is, when
the value of its argument i is n−m), we can develop a recurrence relation for T (m)
as follows. First, the basis case is m = 1. Here, only line (1) is executed, taking
O(1) time.

(1) if (i < n-1) {

(2) small = i;

(3) for (j = i+1; j < n; j++)

(4) if (A[j] < A[small])

(5) small = j;

(6) temp = A[small];

(7) A[small] = A[i];

(8) A[i] = temp;

(9) recSS(A, i+1, n);

}

}

Fig. 3.29. Recursive selection sort.

For the inductive case, m > 1, we execute the test of line (1) and the assign-
ments of lines (2), (6), (7), and (8), all of which take O(1) time. The for-loop of
lines (3) to (5) takes O(n − i) time, or O(m) time, as we discussed in connection
with the iterative selection sort program in Example 3.17. To review why, note
that the body, lines (4) and (5), takes O(1) time, and we go m − 1 times around
the loop. Thus, the time of the for-loop dominates lines (1) through (8), and we
can write T (m), the time of the entire function, as T (m − 1) + O(m). The second
term, O(m), covers lines (1) through (8), and the T (m − 1) term is the time for
line (9), the recursive call. If we replace the hidden constant factors in the big-oh
expressions by concrete constants, we get the recurrence relation

BASIS. T (1) = a.

INDUCTION. T (m) = T (m − 1) + bm, for m > 1.

This recurrence is of the form we studied, with g(m) = bm. That is, the
solution is
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T (m) = a +
m−2
∑

j=0

b(m − j)

= a + 2b + 3b + · · · + mb

= a + b(m − 1)(m + 2)/2

Thus, T (m) is O(m2). Since we are interested in the running time of function
SelectionSort on the entire array of length n, that is, when called with i = 1, we
need the expression for T (n) and find that it is O(n2). Thus, the recursive version
of selection sort is quadratic, just like the iterative version. ✦

Another common form of recurrence generalizes the recurrence we derived for
MergeSort in the previous section:

BASIS. T (1) = a.

INDUCTION. T (n) = 2T (n/2) + g(n), for n a power of 2 and greater than 1.

This is the recurrence for a recursive algorithm that solves a problem of size n
by subdividing it into two subproblems, each of size n/2. Here g(n) is the amount
of time taken to create the subproblems and combine the solutions. For example,
MergeSort divides a problem of size n into two problems of size n/2. The function
g(n) is bn for some constant b, since the time taken by MergeSort exclusive of
recursive calls to itself is O(n), principally for the split and merge algorithms.

To solve this recurrence, we substitute for T on the right side. Here we assume
that n = 2k for some k. The recursive equation can be written with m as its
argument: T (m) = 2T (m/2) + g(m). If we substitute n/2i for m, we get

T (n/2i) = 2T (n/2i+1) + g(n/2i) (3.8)

If we start with the inductive rule and proceed to substitute for T using (3.8) with
progressively greater values of i, we find

T (n) = 2T (n/2) + g(n)

= 2
(

2T (n/22) + g(n/2)
)

+ g(n)

= 22T (n/22) + 2g(n/2) + g(n)

= 22
(

2T (n/23) + g(n/22)
)

+ 2g(n/2) + g(n)

= 23T (n/23) + 22g(n/22) + 2g(n/2) + g(n)

· · ·

= 2iT (n/2i) +

i−1
∑

j=0

2jg(n/2j)

If n = 2k, we know that T (n/2k) = T (1) = a. Thus, when i = k, that is, when
i = log2 n, we obtain the solution

T (n) = an +

(log
2

n)−1
∑

j=0

2jg(n/2j) (3.9)
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to our recurrence.
Intuitively, the first term of (3.9) represents the contribution of the basis value

a. That is, there are n calls to the recursive function with an argument of size
1. The summation is the contribution of the recursion, and it represents the work
performed by all the calls with argument size greater than 1.

Figure 3.30 suggests the accumulation of time during the execution of Merge-
Sort. It represents the time to sort eight elements. The first row represents the
work on the outermost call, involving all eight elements; the second row represents
the work of the two calls with four elements each; and the third row is the four
calls with two elements each. Finally, the bottom row represents the eight calls
to MergeSort with a list of length one. In general, if there are n elements in the
original unsorted list, there will be log2 n levels at which bn work is done by calls
to MergeSort that result in other calls. The accumulated time of all these calls is
thus bn log2 n. There will be one level at which calls are made that do not result in
further calls, and an is the total time spent by these calls. Note that the first log2 n
levels represent the terms of the summation in (3.9) and the lowest level represents
the term an.

bn

bn

bn

an

Fig. 3.30. Time spent by the calls to mergesort.

✦ Example 3.26. In the case of MergeSort, the function g(n) is bn for some
constant b. The solution (3.9) with these parameters is therefore

T (n) = an +

(log
2

n)−1
∑

j=0

2jbn/2j

= an + bn

(log
2

n)−1
∑

j=0

1

= an + bn logn

The last equality comes from the fact there are log2 n terms in the sum and each
term is 1. Thus, when g(n) is linear, the solution to (3.9) is O(n log n). ✦

Solving Recurrences by Guessing a Solution

Another useful approach to solving recurrences is to guess a solution f(n) and then
use the recurrence to show that T (n) ≤ f(n). That may not give the exact value
of T (n), but if it gives a tight upper bound, we are satisfied. Often we guess only
the functional form of f(n), leaving some parameters unspecified; for example, we
may guess that f(n) = anb, for some a and b. The values of the parameters will be
forced, as we try to prove T (n) ≤ f(n) for all n.
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Although we may consider it bizarre to imagine that we can guess solutions
accurately, we can frequently deduce the high-order term by looking at the values
of T (n) for a few small values of n. We then throw in some lower-order terms as
well, and see whether their coefficients turn out to be nonzero.9

✦ Example 3.27. Let us again examine the MergeSort recurrence relation from
the previous section, which we wrote as

BASIS. T (1) = a.

INDUCTION. T (n) = 2T (n/2) + bn, for n a power of 2 and greater than 1.

We are going to guess that an upper bound to T (n) is f(n) = cn log2 n + d for
some constants c and d. Recall that this form is not exactly right; in the previous
example we derived the solution and saw that it had an O(n log n) term with an
O(n) term, rather than with a constant term. However, this guess turns out to be
good enough to prove an O(n log n) upper bound on T (n).

We shall use complete induction on n to prove the following, for some constants
c and d:

STATEMENT S(n): If n is a power of 2 and n ≥ 1, then T (n) ≤ f(n), where f(n)
is the function cn log2 n + d.

BASIS. When n = 1, T (1) ≤ f(1) provided a ≤ d. The reason is that the cn log2 n
term of f(n) is 0 when n = 1, so that f(1) = d, and it is given that T (1) = a.

INDUCTION. Let us assume S(i) for all i < n, and prove S(n) for some n > 1.10

If n is not a power of 2, there is nothing to prove, since the if-portion of the if-then
statement S(n) is not true. Thus, consider the hard case, in which n is a power of
2. We may assume S(n/2), that is,

T (n/2) ≤ (cn/2) log2(n/2) + d

because it is part of the inductive hypothesis. For the inductive step, we need to
show that

T (n) ≤ f(n) = cn log2 n + d

When n ≥ 2, the inductive part of the definition of T (n) tells us that

T (n) ≤ 2T (n/2) + bn

Using the inductive hypothesis to bound T (n/2), we have

T (n) ≤ 2[c(n/2) log2(n/2) + d] + bn

9 If it is any comfort, the theory of differential equations, which in many ways resembles the
theory of recurrence equations, also relies on known solutions to equations of a few common
forms and then educated guessing to solve other equations.

10 In most complete inductions we assume S(i) for i up to n and prove S(n+ 1). In this case it
is notationally simpler to prove S(n) from S(i), for i < n, which amounts to the same thing.
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Manipulating Inequalities

In Example 3.27 we derive one inequality, T (n) ≤ cn log2 n + d, from another,

T (n) ≤ cn log2 n + (b − c)n + 2d

Our method was to find an “excess” and requiring it to be at most 0. The general
principle is that if we have an inequality A ≤ B + E, and if we want to show that
A ≤ B, then it is sufficient to show that E ≤ 0. In Example 3.27, A is T (n), B is
cn log2 n + d, and E, the excess, is (b − c)n + d.

Since log2(n/2) = log2 n − log2 2 = log2 n − 1, we may simplify this expression to

T (n) ≤ cn log2 n + (b − c)n + 2d (3.10)

We now show that T (n) ≤ cn log2 n + d, provided that the excess over cn log2 n + d
on the right side of (3.10) is at most 0; that is, (b − c)n + d ≤ 0. Since n > 1, this
inequality is true when d ≥ 0 and b − c ≤ −d.

We now have three constraints for f(n) = cn log n + d to be an upper bound
on T (n):

1. The constraint a ≤ d comes from the basis.

2. d ≥ 0 comes from the induction, but since we know that a > 0, this inequality
is superseded by (1).

3. b − c ≤ −d, or c ≥ b + d, also comes from the induction.

These constraints are obviously satisfied if we let d = a and c = a + b. We have
now shown by induction on n that for all n ≥ 1 and a power of 2,

T (n) ≤ (a + b)n log2 n + a

This argument shows that T (n) is O(n log n), that is, that T (n) does not grow
any faster than n log n. However, the bound (a + b)n log2 n + a that we obtained is
slightly larger than the exact answer that we obtained in Example 3.26, which was
bn log2 n + an. At least we were successful in obtaining a bound. Had we taken the
simpler guess of f(n) = cn log2 n, we would have failed, because there is no value of
c that can make f(1) ≥ a. The reason is that c × 1 × log2 1 = 0, so that f(1) = 0.
If a > 0, we evidently cannot make f(1) ≥ a. ✦

✦ Example 3.28. Now let us consider a recurrence relation that we shall en-
counter later in the book:

BASIS. G(1) = 3.

INDUCTION. G(n) = (2n/2 + 1)G(n/2), for n > 1.

This recurrence has actual numbers, like 3, instead of symbolic constants like a. In
Chapter 13, we shall use recurrences such as this to count the number of gates in
a circuit, and gates can be counted exactly, without needing the big-oh notation to
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Summary of Solutions

In the table below, we list the solutions to some of the most common recurrence
relations, including some we have not covered in this section. In each case, we
assume that the basis equation is T (1) = a and that k ≥ 0.

INDUCTIVE EQUATION T (n)

T (n) = T (n− 1) + bnk O(nk+1)

T (n) = cT (n− 1) + bnk, for c > 1 O(cn)

T (n) = cT (n/d) + bnk, for c > dk O(nlog
d

c)

T (n) = cT (n/d) + bnk, for c < dk O(nk)

T (n) = cT (n/d) + bnk, for c = dk O(nk log n)

All the above also hold if bnk is replaced by any kth-degree polynomial.

hide unknowable constant factors.
If we think about a solution by repeated substitution, we might see that we are

going to make log2 n − 1 substitutions before G(n) is expressed in terms of G(1).
As we make the substitutions, we generate factors

(2n/2 + 1)(2n/4 + 1)(2n/8 + 1) · · · (21 + 1)

If we neglect the “+1” term in each factor, we have approximately the product
2n/22n/42n/8 · · · 21, which is

2n/2+n/4+n/8+···+1

or 2n−1 if we sum the geometric series in the exponent. That is half of 2n, and so
we might guess that 2n is a term in the solution G(n). However, if we guess that
f(n) = c2n is an upper bound on G(n), we shall fail, as the reader may check. That
is, we get two inequalities involving c that have no solution.

We shall thus guess the next simplest form, f(n) = c2n + d, and here we shall
be successful. That is, we can prove the following statement by complete induction
on n for some constants c and d:

STATEMENT S(n): If n is a power of 2 and n ≥ 1, then G(n) ≤ c2n + d.

BASIS. If n = 1, then we must show that G(1) ≤ c21 + d, that is, that 3 ≤ 2c + d.
This inequality becomes one of the constraints on c and d.

INDUCTION. As in Example 3.27, the only hard part occurs when n is a power of
2 and we want to prove S(n) from S(n/2). The equation in this case is

G(n/2) ≤ c2n/2 + d

We must prove S(n), which is G(n) ≤ c2n+d. We start with the inductive definition
of G,

G(n) = (2n/2 + 1)G(n/2)
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and then substitute our upper bound for G(n/2), converting this expression to

G(n) ≤ (2n/2 + 1)(c2n/2 + d)

Simplifying, we get

G(n) ≤ c2n + (c + d)2n/2 + d

That will give the desired upper bound, c2n + d, on G(n), provided that the excess
on the right, (c + d)2n/2, is no more than 0. It is thus sufficient that c + d ≤ 0.

We need to select c and d to satisfy the two inequalities

1. 2c + d ≥ 3, from the basis, and

2. c + d ≤ 0, from the induction.

For example, these inequalities are satisfied if c = 3 and d = −3. Then we know
that G(n) ≤ 3(2n − 1). Thus, G(n) grows exponentially with n. It happens that
this function is the exact solution, that is, that G(n) = 3(2n−1), as the reader may
prove by induction on n. ✦

EXERCISES

3.11.1: Let T (n) be defined by the recurrence

T (n) = T (n − 1) + g(n), for n > 1

Prove by induction on i that if 1 ≤ i < n, then

T (n) = T (n − i) +

i−1
∑

j=0

g(n − j)

3.11.2: Suppose we have a recurrence of the form

T (1) = a
T (n) = T (n − 1) + g(n), for n > 1

Give tight big-oh upper bounds on the solution if g(n) is

a) n2

b) n2 + 3n
c) n3/2

d) n log n
e) 2n

3.11.3: Suppose we have a recurrence of the form

T (1) = a
T (n) = T (n/2) + g(n), for n a power of 2 and n > 1

Give tight big-oh upper bounds on the solution if g(n) is

a) n2

b) 2n
c) 10
d) n log n
e) 2n



SEC. 3.11 SOLVING RECURRENCE RELATIONS 153

3.11.4*: Guess each of the following as the solution to the recurrence

T (1) = a
T (n) = 2T (n/2) + bn, for n a power of 2 and n > 1

a) cn log2 n + dn + e

b) cn + d

c) cn2

What constraints on the unknown constants c, d, and e are implied? For which of
these forms does there exist an upper bound on T (n)?

3.11.5: Show that if we guess G(n) ≤ c2n for the recurrence of Example 3.28, we
fail to find a solution.

3.11.6*: Show that if

T (1) = a
T (n) = T (n − 1) + nk, for n > 1

then T (n) is O(nk+1). You may assume k ≥ 0. Also, show that this is the tightest
simple big-oh upper bound, that is, that T (n) is not O(nm) if m < k + 1. Hint :
Expand T (n) in terms of T (n − i), for i = 1, 2, . . . , to get the upper bound. For
the lower bound, show that T (n) is at least cnk+1 for some particular c > 0.

3.11.7**: Show that if

T (1) = a
T (n) = cT (n − 1) + p(n), for n > 1

where p(n) is any polynomial in n and c > 1, then T (n) is O(cn). Also, show that
this is the tightest simple big-oh upper bound, that is, that T (n) is not O(dn) if
d < c.

3.11.8**: Consider the recurrence

T (1) = a
T (n) = cT (n/d) + bnk, for n a power of d

Iteratively expand T (n) in terms of T (n/di) for i = 1, 2, . . . . Show that

a) If c > dk, then T (n) is O(nlog
d

c)

b) If c = dk, then T (n) is O(nk log n)

c) If c < dk, then T (n) is O(nk)

3.11.9: Solve the following recurrences, each of which has T (1) = a:

a) T (n) = 3T (n/2) + n2, for n a power of 2 and n > 1

b) T (n) = 10T (n/3) + n2, for n a power of 3 and n > 1

c) T (n) = 16T (n/4) + n2, for n a power of 4 and n > 1

You may use the solutions of Exercise 3.11.8.

3.11.10: Solve the recurrence

T (1) = 1
T (n) = 3nT (n/2), for n a power of 2 and n > 1

3.11.11: The Fibonacci recurrence is F (0) = F (1) = 1, and
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F (n) = F (n − 1) + F (n − 2), for n > 1

The values F (0), F (1), F (2), . . . form the sequence of Fibonacci numbers, in which
each number after the first two is the sum of the two previous numbers. (See
Exercise 3.9.4.) Let r = (1 +

√
5)/2. This constant r is called the golden ratioGolden ratio

and its value is about 1.62. Show that F (n) is O(rn). Hint : For the induction, it
helps to guess that F (n) ≤ arn for some n, and attempt to prove that inequality
by induction on n. The basis must incorporate the two values n = 0 and n = 1. In
the inductive step, it helps to notice that r satisfies the equation r2 = r + 1.

✦
✦ ✦

✦
3.12 Summary of Chapter 3

Here are the important concepts covered in Chapter 3.

✦ Many factors go into the selection of an algorithm for a program, but simplicity,
ease of implementation, and efficiency often dominate.

✦ Big-oh expressions provide a convenient notation for upper bounds on the run-
ning times of programs.

✦ There are recursive rules for evaluating the running time of the various com-
pound statements of C, such as for-loops and conditions, in terms of the running
times of their constituent parts.

✦ We can evaluate the running time of a function by drawing a structure tree
that represents the nesting structure of statements and evaluating the running
time of the various pieces in a bottom-up order.

✦ Recurrence relations are a natural way to model the running time of recursive
programs.

✦ We can solve recurrence relations either by iterated substitution or by guessing
a solution and checking our guess is correct.

Divide and conquer is an important algorithm-design technique in which a problem
is partitioned into subproblems, the solutions to which can be combined to provide
a solution to the whole problem. A few rules of thumb can be used to evaluate the
running time of the resulting algorithm: A function that takes time O(1) and then
calls itself on a subproblem of size n−1 takes time O(n). Examples are the factorial
function and the merge function.

✦ More generally, a function that takes time O(nk) and then calls itself on a
subproblem of size n − 1 takes time O(nk+1).

✦ If a function calls itself twice but the recursion goes on for log2 n levels (as in
merge sort), then the total running time is O(n log n) times the work done at
each call, plus O(n) times the work done at the basis. In the case of merge
sort, the work at each call, including basis calls, is O(1), so the total running
time is O(n log n) + O(n), or just O(n log n).
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✦ If a function calls itself twice and the recursion goes on for n levels (as in the
Fibonacci program of Exercise 3.9.4), then the running time is exponential in
n.

✦
✦ ✦

✦
3.13 Bibliographic Notes for Chapter 3

The study of the running time of programs and the computational complexity of
problems was pioneered by Hartmanis and Stearns [1964]. Knuth [1968] was the
book that established the study of the running time of algorithms as an essential
ingredient in computer science.

Since that time, a rich theory for the difficulty of problems has been developed.
Many of the key ideas are found in Aho, Hopcroft, and Ullman [1974, 1983].

In this chapter, we have concentrated on upper bounds for the running times of
programs. Knuth [1976] describes analogous notations for lower bounds and exact
bounds on running times.

For more discussion of divide and conquer as an algorithm-design technique,
see Aho, Hopcroft, and Ullman [1974] or Borodin and Munro [1975]. Additional
information on techniques for solving recurrence relations can be found in Graham,
Knuth, and Patashnik [1989].
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