
CHAPTER 4

✦
✦ ✦

✦

Combinatorics

and

Probability

In computer science we frequently need to count things and measure the likelihood
of events. The science of counting is captured by a branch of mathematics called
combinatorics. The concepts that surround attempts to measure the likelihood of
events are embodied in a field called probability theory. This chapter introduces the
rudiments of these two fields. We shall learn how to answer questions such as how
many execution paths are there in a program, or what is the likelihood of occurrence
of a given path?

✦
✦ ✦

✦
4.1 What This Chapter Is About

We shall study combinatorics, or “counting,” by presenting a sequence of increas-
ingly more complex situations, each of which is represented by a simple paradigm
problem. For each problem, we derive a formula that lets us determine the number
of possible outcomes. The problems we study are:

✦ Counting assignments (Section 4.2). The paradigm problem is how many ways
can we paint a row of n houses, each in any of k colors.

✦ Counting permutations (Section 4.3). The paradigm problem here is to deter-
mine the number of different orderings for n distinct items.

✦ Counting ordered selections (Section 4.4), that is, the number of ways to pick
k things out of n and arrange the k things in order. The paradigm problem
is counting the number of ways different horses can win, place, and show in a
horse race.

✦ Counting the combinations of m things out of n (Section 4.5), that is, the
selection of m from n distinct objects, without regard to the order of the
selected objects. The paradigm problem is counting the number of possible
poker hands.

156

SEC. 4.2 COUNTING ASSIGNMENTS 157

✦ Counting permutations with some identical items (Section 4.6). The paradigm
problem is counting the number of anagrams of a word that may have some
letters appearing more than once.

✦ Counting the number of ways objects, some of which may be identical, can be
distributed among bins (Section 4.7). The paradigm problem is counting the
number of ways of distributing fruits to children.

In the second half of this chapter we discuss probability theory, covering the follow-
ing topics:

✦ Basic concepts: probability spaces, experiments, events, probabilities of events.

✦ Conditional probabilities and independence of events. These concepts help
us think about how observation of the outcome of one experiment, e.g., the
drawing of a card, influences the probability of future events.

✦ Probabilistic reasoning and ways that we can estimate probabilities of com-
binations of events from limited data about the probabilities and conditional
probabilities of events.

We also discuss some applications of probability theory to computing, including
systems for making likely inferences from data and a class of useful algorithms that
work “with high probability” but are not guaranteed to work all the time.

✦
✦ ✦

✦
4.2 Counting Assignments

One of the simplest but most important counting problems deals with a list of items,
to each of which we must assign one of a fixed set of values. We need to determine
how many different assignments of values to items are possible.

✦ Example 4.1. A typical example is suggested by Fig. 4.1, where we have four
houses in a row, and we may paint each in one of three colors: red, green, or blue.
Here, the houses are the “items” mentioned above, and the colors are the “values.”
Figure 4.1 shows one possible assignment of colors, in which the first house is painted
red, the second and fourth blue, and the third green.

Red GreenBlue Blue

Fig. 4.1. One assignment of colors to houses.

To answer the question, “How many different assignments are there?” we first
need to define what we mean by an “assignment.” In this case, an assignment is a
list of four values, in which each value is chosen from one of the three colors red,
green, or blue. We shall represent these colors by the letters R, G, and B. Two
such lists are different if and only if they differ in at least one position.

158 COMBINATORICS AND PROBABILITY

In the example of houses and colors, we can choose any of three colors for the
first house. Whatever color we choose for the first house, there are three colors in
which to paint the second house. There are thus nine different ways to paint the first
two houses, corresponding to the nine different pairs of letters, each letter chosen
from R, G, and B. Similarly, for each of the nine assignments of colors to the first
two houses, we may select a color for the third house in three possible ways. Thus,
there are 9 × 3 = 27 ways to paint the first three houses. Finally, each of these 27
assignments can be extended to the fourth house in 3 different ways, giving a total
of 27 × 3 = 81 assignments of colors to the houses. ✦

The Rule for Counting Assignments

We can extend the above example. In the general setting, we have a list of n
“items,” such as the houses in Example 4.1. There is also a set of k “values,” such
as the colors in Example 4.1, any one of which can be assigned to an item. An
assignment is a list of n values (v1, v2, . . . , vn). Each of v1, v2, . . . , vn is chosen toAssignment

be one of the k values. This assignment assigns the value vi to the ith item, for
i = 1, 2, . . . , n.

There are kn different assignments when there are n items and each item is to
be assigned one of k values. For instance, in Example 4.1 we had n = 4 items, the
houses, and k = 3 values, the colors. We calculated that there were 81 different
assignments. Note that 34 = 81. We can prove the general rule by an induction
on n.

STATEMENT S(n): The number of ways to assign any one of k values to each of
n items is kn.

BASIS. The basis is n = 1. If there is one item, we can choose any of the k values
for it. Thus there are k different assignments. Since k1 = k, the basis is proved.

INDUCTION. Suppose the statement S(n) is true, and consider S(n + 1), the
statement that there are kn+1 ways to assign one of k values to each of n+1 items.
We may break any such assignment into a choice of value for the first item and, for
each choice of first value, an assignment of values to the remaining n items. There
are k choices of value for the first item. For each such choice, by the inductive
hypothesis there are kn assignments of values to the remaining n items. The total
number of assignments is thus k × kn, or kn+1. We have thus proved S(n + 1) and
completed the induction.

Figure 4.2 suggests this selection of first value and the associated choices of
assignment for the remaining items in the case that n + 1 = 4 and k = 3, using
as a concrete example the four houses and three colors of Example 4.1. There, we
assume by the inductive hypothesis that there are 27 assignments of three colors to
three houses.

SEC. 4.2 COUNTING ASSIGNMENTS 159

27

Assignments

27

Assignments

27

Assignments

First house Other three houses

Red

Green

Blue

Fig. 4.2. The number of ways to paint 4 houses using 3 colors.

Counting Bit Strings

In computer systems, we frequently encounter strings of 0’s and 1’s, and these
strings often are used as the names of objects. For example, we may purchase a
computer with “64 megabytes of main memory.” Each of the bytes has a name,
and that name is a sequence of 26 bits, each of which is either a 0 or 1. The stringBit

of 0’s and 1’s representing the name is called a bit string.
Why 26 bits for a 64-megabyte memory? The answer lies in an assignment-

counting problem. When we count the number of bit strings of length n, we may
think of the “items” as the positions of the string, each of which may hold a 0 or a
1. The “values” are thus 0 and 1. Since there are two values, we have k = 2, and
the number of assignments of 2 values to each of n items is 2n.

If n = 26 — that is, we consider bit strings of length 26 — there are 226 possible
strings. The exact value of 226 is 67,108,864. In computer parlance, this number is
thought of as “64 million,” although obviously the true number is about 5% higher.
The box about powers of 2 tells us a little about the subject and tries to explain
the general rules involved in naming the powers of 2.

EXERCISES

4.2.1: In how many ways can we paint

a) Three houses, each in any of four colors
b) Five houses, each in any of five colors
c) Two houses, each in any of ten colors

4.2.2: Suppose a computer password consists of eight to ten letters and/or digits.
How many different possible passwords are there? Remember that an upper-case
letter is different from a lower-case one.

4.2.3*: Consider the function f in Fig. 4.3. How many different values can f return?

160 COMBINATORICS AND PROBABILITY

int f(int x)

{

int n;

n = 1;

if (x%2 == 0) n *= 2;

if (x%3 == 0) n *= 3;

if (x%5 == 0) n *= 5;

if (x%7 == 0) n *= 7;

if (x%11 == 0) n *= 11;

if (x%13 == 0) n *= 13;

if (x%17 == 0) n *= 17;

if (x%19 == 0) n *= 19;

return n;

}

Fig. 4.3. Function f.

4.2.4: In the game of “Hollywood squares,” X’s and O’s may be placed in any of the
nine squares of a tic-tac-toe board (a 3×3 matrix) in any combination (i.e., unlike
ordinary tic-tac-toe, it is not necessary that X’s and O’s be placed alternately, so,
for example, all the squares could wind up with X’s). Squares may also be blank,
i.e., not containing either an X or and O. How many different boards are there?

4.2.5: How many different strings of length n can be formed from the ten digits?
A digit may appear any number of times in the string or not at all.

4.2.6: How many different strings of length n can be formed from the 26 lower-case
letters? A letter may appear any number of times or not at all.

4.2.7: Convert the following into K’s, M’s, G’s, T’s, or P’s, according to the rules
of the box in Section 4.2: (a) 213 (b) 217 (c) 224 (d) 238 (e) 245 (f) 259.

4.2.8*: Convert the following powers of 10 into approximate powers of 2: (a) 1012

(b) 1018 (c) 1099.

✦
✦ ✦

✦
4.3 Counting Permutations

In this section we shall address another fundamental counting problem: Given n
distinct objects, in how many different ways can we order those objects in a line?
Such an ordering is called a permutation of the objects. We shall let Π(n) stand for
the number of permutations of n objects.

As one example of where counting permutations is significant in computer
science, suppose we are given n objects, a1, a2, . . . , an, to sort. If we know nothing
about the objects, it is possible that any order will be the correct sorted order, and
thus the number of possible outcomes of the sort will be equal to Π(n), the number
of permutations of n objects. We shall soon see that this observation helps us
argue that general-purpose sorting algorithms require time proportional to n log n,
and therefore that algorithms like merge sort, which we saw in Section 3.10 takes

SEC. 4.3 COUNTING PERMUTATIONS 161

K’s and M’s and Powers of 2

A useful trick for converting powers of 2 into decimal is to notice that 210, or 1024,
is very close to one thousand. Thus 230 is (210)3, or about 10003, that is, a billion.
Then, 232 = 4× 230, or about four billion. In fact, computer scientists often accept
the fiction that 210 is exactly 1000 and speak of 210 as “1K”; the K stands for “kilo.”
We convert 215, for example, into “32K,” because

215 = 25 × 210 = 32 × “1000”

But 220, which is exactly 1,048,576, we call “1M,” or “one million,” rather than
“1000K” or “1024K.” For powers of 2 between 20 and 29, we factor out 220. Thus,
226 is 26 × 220 or 64 “million.” That is why 226 bytes is referred to as 64 million
bytes or 64 “megabytes.”

Below is a table that gives the terms for various powers of 10 and their rough
equivalents in powers of 2.

PREFIX LETTER VALUE

Kilo K 103 or 210

Mega M 106 or 220

Giga G 109 or 230

Tera T 1012 or 240

Peta P 1015 or 250

This table suggests that for powers of 2 beyond 29 we factor out 230, 240, or 2
raised to whatever multiple-of-10 power we can. The remaining powers of 2 name
the number of giga-, tera-, or peta- of whatever unit we are measuring. For example,
243 bytes is 8 terabytes.

O(n log n) time, are to within a constant factor as fast as can be.

There are many other applications of the counting rule for permutations. For
example, it figures heavily in more complex counting questions like combinations
and probabilities, as we shall see in later sections.

✦ Example 4.2. To develop some intuition, let us enumerate the permutations of
small numbers of objects. First, it should be clear that Π(1) = 1. That is, if there
is only one object A, there is only one order: A.

Now suppose there are two objects, A and B. We may select one of the two
objects to be first and then the remaining object is second. Thus there are two
orders: AB and BA. Therefore, Π(2) = 2 × 1 = 2.

Next, let there be three objects: A, B, and C. We may select any of the three
to be first. Consider the case in which we select A to be first. Then the remaining
two objects, B and C, can be arranged in either of the two orders for two objects to
complete the permutation. We thus see that there are two orders that begin with
A, namely ABC and ACB.

Similarly, if we start with B, there are two ways to complete the order, corre-

162 COMBINATORICS AND PROBABILITY

sponding to the two ways in which we may order the remaining objects A and C.
We thus have orders BAC and BCA. Finally, if we start with C first, we can order
the remaining objects A and B in the two possible ways, giving us orders CAB and
CBA. These six orders,

ABC, ACB, BAC, BCA, CAB, CBA

are all the possible orders of three elements. That is, Π(3) = 3 × 2 × 1 = 6.

Next, consider how many permutations there are for 4 objects: A, B, C, and
D. If we pick A first, we may follow A by the objects B, C, and D in any of their
6 orders. Similarly, if we pick B first, we can order the remaining A, C, and D in
any of their 6 ways. The general pattern should now be clear. We can pick any
of the four elements first, and for each such selection, we can order the remaining
three elements in any of the Π(3) = 6 possible ways. It is important to note that
the number of permutations of the three objects does not depend on which three
elements they are. We conclude that the number of permutations of 4 objects is 4
times the number of permutations of 3 objects. ✦

More generally,

Π(n + 1) = (n + 1)Π(n) for any n ≥ 1 (4.1)

That is, to count the permutations of n + 1 objects we may pick any of the n + 1
objects to be first. We are then left with n remaining objects, and these can be
permuted in Π(n) ways, as suggested in Fig. 4.4. For our example where n + 1 = 4,
we have Π(4) = 4 × Π(3) = 4 × 6 = 24.

Π(n)

orders

Π(n)

orders

Π(n)

orders

First object n remaining objects

.

.

.

Object 1

Object 2

.

.

.

Object n + 1

Fig. 4.4. The permutations of n + 1 objects.

SEC. 4.3 COUNTING PERMUTATIONS 163

The Formula for Permutations

Equation (4.1) is the inductive step in the definition of the factorial function intro-
duced in Section 2.5. Thus it should not be a surprise that Π(n) equals n!. We can
prove this equivalence by a simple induction.

STATEMENT S(n): Π(n) = n! for all n ≥ 1.

BASIS. For n = 1, S(1) says that there is 1 permutation of 1 object. We observed
this simple point in Example 4.2.

INDUCTION. Suppose Π(n) = n!. Then S(n + 1), which we must prove, says that
Π(n + 1) = (n + 1)!. We start with Equation (4.1), which says that

Π(n + 1) = (n + 1) × Π(n)

By the inductive hypothesis, Π(n) = n!. Thus, Π(n + 1) = (n + 1)n!. Since

n! = n × (n − 1) × · · · × 1

it must be that (n+1)×n! = (n+1)×n× (n− 1)× · · ·× 1. But the latter product
is (n + 1)!, which proves S(n + 1).

✦ Example 4.3. As a result of the formula Π(n) = n!, we conclude that the
number of permutations of 4 objects is 4! = 4 × 3 × 2 × 1 = 24, as we saw above.
As another example, the number of permutations of 7 objects is 7! = 5040. ✦

How Long Does it Take to Sort?

One of the interesting uses of the formula for counting permutations is in a proof
that sorting algorithms must take at least time proportional to n log n to sort n
elements, unless they make use of some special properties of the elements. For
example, as we note in the box on special-case sorting algorithms, we can do better
than proportional to n logn if we write a sorting algorithm that works only for small
integers.

However, if a sorting algorithm works on any kind of data, as long as it can
be compared by some “less than” notion, then the only way the algorithm can
decide on the proper order is to consider the outcome of a test for whether one
of two elements is less than the other. A sorting algorithm is called a general-

purpose sorting algorithm if its only operation upon the elements to be sorted is aGeneral

purpose sorting

algorithm

comparison between two of them to determine their relative order. For instance,
selection sort and merge sort of Chapter 2 each make their decisions that way. Even
though we wrote them for integer data, we could have written them more generally
by replacing comparisons like

if (A[j] < A[small])

on line (4) of Fig. 2.2 by a test that calls a Boolean-valued function such as

if (lessThan(A[j], A[small]))

164 COMBINATORICS AND PROBABILITY

Suppose we are given n distinct elements to sort. The answer — that is, the
correct sorted order — can be any of the n! permutations of these elements. If our
algorithm for sorting arbitrary types of elements is to work correctly, it must be
able to distinguish all n! different possible answers.

Consider the first comparison of elements that the algorithm makes, say

lessThan(X,Y)

For each of the n! possible sorted orders, either X is less than Y or it is not. Thus,
the n! possible orders are divided into two groups, those for which the answer to
the first test is “yes” and those for which it is “no.”

One of these groups must have at least n!/2 members. For if both groups have
fewer than n!/2 members, then the total number of orders is less than n!/2 + n!/2,
or less than n! orders. But this upper limit on orders contradicts the fact that we
started with exactly n! orders.

Now consider the second test, on the assumption that the outcome of the
comparison between X and Y was such that the larger of the two groups of possible
orders remains (take either outcome if the groups are the same size). That is, at
least n!/2 orders remain, among which the algorithm must distinguish. The second
comparison likewise has two possible outcomes, and at least half the remaining
orders will be consistent with one of these outcomes. Thus, we can find a group of
at least n!/4 orders consistent with the first two tests.

We can repeat this argument until the algorithm has determined the correct
sorted order. At each step, by focusing on the outcome with the larger population
of consistent possible orders, we are left with at least half as many possible orders as
at the previous step. Thus, we can find a sequence of tests and outcomes such that
after the ith test, there are at least n!/2i orders consistent with all these outcomes.

Since we cannot finish sorting until every sequence of tests and outcomes is
consistent with at most one sorted order, the number of tests t made before we
finish must satisfy the equation

n!/2t ≤ 1 (4.2)

If we take logarithms base 2 of both sides of Equation (4.2) we have log2 n!− t ≤ 0,
or

t ≥ log2(n!)

We shall see that log2(n!) is about n log2 n. But first, let us consider an example of
the process of splitting the possible orders.

✦ Example 4.3. Let us consider how the selection sort algorithm of Fig. 2.2
makes its decisions when given three elements (a, b, c) to sort. The first comparison
is between a and b, as suggested at the top of Fig. 4.5, where we show in the box
that all 6 possible orders are consistent before we make any tests. After the test,
the orders abc, acb, and cab are consistent with the “yes” outcome (i.e., a < b),
while the orders bac, bca, and cba are consistent with the opposite outcome, where
b > a. We again show in a box the consistent orders in each case.

In the algorithm of Fig. 2.2, the index of the smaller becomes the value small.
Thus, we next compare c with the smaller of a and b. Note that which test is made
next depends on the outcome of previous tests.

SEC. 4.3 COUNTING PERMUTATIONS 165

After making the second decision, the smallest of the three is moved into the
first position of the array, and a third comparison is made to determine which of
the remaining elements is the larger. That comparison is the last comparison made
by the algorithm when three elements are to be sorted. As we see at the bottom
of Fig. 4.5, sometimes that decision is determined. For example, if we have already
found a < b and c < a, then c is the smallest and the last comparison of a and b
must find a smaller.

a < b?

b < c?a < c?

abc, acb, cab bac, bca, cba

b < c? a < b? a < c? a < b?

cababc, acb bac, bca cba

abc acb cab bac bca cba

Y N

Y N Y N

Y N Y N Y N Y N

abc, acb, bac, bca, cab, cba

Fig. 4.5. Decision tree for selection sorting of 3 elements.

In this example, all paths involve 3 decisions, and at the end there is at most
one consistent order, which is the correct sorted order. The two paths with no
consistent order never occur. Equation (4.2) tells us that the number of tests t
must be at least log2 3!, which is log2 6. Since 6 is between 22 and 23, we know that
log2 6 will be between 2 and 3. Thus, at least some sequences of outcomes in any
algorithm that sorts three elements must make 3 tests. Since selection sort makes
only 3 tests for 3 elements, it is at least as good as any other sorting algorithm for 3
elements in the worst case. Of course, as the number of elements becomes large, we
know that selection sort is not as good as can be done, since it is an O(n2) sorting
algorithm and there are better algorithms such as merge sort. ✦

We must now estimate how large log2 n! is. Since n! is the product of all the
integers from 1 to n, it is surely larger than the product of only the n

2
+ 1 integers

from n/2 through n. This product is in turn at least as large as n/2 multiplied by
itself n/2 times, or (n/2)n/2. Thus, log2 n! is at least log2

(

(n/2)n/2
)

. But the latter
is n

2
(log2 n − log2 2), which is

n

2
(log2 n − 1)

For large n, this formula is approximately (n log2 n)/2.

A more careful analysis will tell us that the factor of 1/2 does not have to be
there. That is, log2 n! is very close to n log2 n rather than to half that expression.

166 COMBINATORICS AND PROBABILITY

A Linear-Time Special-Purpose Sorting Algorithm

If we restrict the inputs on which a sorting algorithm will work, it can in one step
divide the possible orders into more than 2 parts and thus work in less than time
proportional to n log n. Here is a simple example that works if the input is n distinct
integers, each chosen in the range 0 to 2n− 1.

(1) for (i = 0; i < 2*n; i++)

(2) count[i] = 0;

(3) for (i = 0; i < n; i++)

(4) count[a[i]]++;

(5) for (i = 0; i < 2*n; i++)

(6) if (count[i] > 0)

(7) printf("%d\n", i);

We assume the input is in an array a of length n. In lines (1) and (2) we
initialize an array count of length 2n to 0. Then in lines (3) and (4) we add 1
to the count for x if x is the value of a[i], the ith input element. Finally, in
the last three lines we print each of the integers i such that count[i] is positive.
Thus we print those elements appearing one or more times in the input and, on the
assumption the inputs are distinct, it prints all the input elements, sorted smallest
first.

We can analyze the running time of this algorithm easily. Lines (1) and (2)
are a loop that iterates 2n times and has a body taking O(1) time. Thus, it takes
O(n) time. The same applies to the loop of lines (3) and (4), but it iterates n times
rather than 2n times; it too takes O(n) time. Finally, the body of the loop of lines
(5) through (7) takes O(1) time and it is iterated 2n times. Thus, all three loops
take O(n) time, and the entire sorting algorithm likewise takes O(n) time. Note
that if given an input for which the algorithm is not tailored, such as integers in a
range larger than 0 through 2n− 1, the program above fails to sort correctly.

We have shown only that any general-purpose sorting algorithm must have
some input for which it makes about n log2 n comparisons or more. Thus any
general-purpose sorting algorithm must take at least time proportional to n log n
in the worst case. In fact, it can be shown that the same applies to the “average”
input. That is, the average over all inputs of the time taken by a general-purpose
sorting algorithm must be at least proportional to n log n. Thus, merge sort is about
as good as we can do, since it has this big-oh running time for all inputs.

EXERCISES

4.3.1: Suppose we have selected 9 players for a baseball team.

a) How many possible batting orders are there?
b) If the pitcher has to bat last, how many possible batting orders are there?

4.3.2: How many comparisons does the selection sort algorithm of Fig. 2.2 make
if there are 4 elements? Is this number the best possible? Show the top 3 levels of
the decision tree in the style of Fig. 4.5.

SEC. 4.4 ORDERED SELECTIONS 167

4.3.3: How many comparisons does the merge sort algorithm of Section 2.8 make
if there are 4 elements? Is this number the best possible? Show the top 3 levels of
the decision tree in the style of Fig. 4.5.

4.3.4*: Are there more assignments of n values to n items or permutations of n+1
items? Note: The answer may not be the same for all n.

4.3.5*: Are there more assignments of n/2 values to n items than there are per-
mutations of n items?

4.3.6**: Show how to sort n integers in the range 0 to n2 − 1 in O(n) time.

✦
✦ ✦

✦
4.4 Ordered Selections

Sometimes we wish to select only some of the items in a set and give them an order.
Let us generalize the function Π(n) that counted permutations in the previous
section to a two-argument function Π(n, m), which we define to be the number of
ways we can select m items from n in such a way that order matters for the selected
items, but there is no order for the unselected items. Thus, Π(n) = Π(n, n).

✦ Example 4.5. A horse race awards prizes to the first three finishers; the first
horse is said to “win,” the second to “place,” and the third to “show.” Suppose
there are 10 horses in a race. How many different awards for win, place, and show
are there?

Clearly, any of the 10 horses can be the winner. Given which horse is the
winner, any of the 9 remaining horses can place. Thus, there are 10 × 9 = 90
choices for horses in first and second positions. For any of these 90 selections of
win and place, there are 8 remaining horses. Any of these can finish third. Thus,
there are 90 × 8 = 720 selections of win, place, and show. Figure 4.6 suggests all
these possible selections, concentrating on the case where 3 is selected first and 1 is
selected second. ✦

The General Rule for Selections Without Replacement

Let us now deduce the formula for Π(n, m). Following Example 4.5, we know that
there are n choices for the first selection. Whatever selection is first made, there
will be n− 1 remaining items to choose from. Thus, the second choice can be made
in n− 1 different ways, and the first two choices occur in n(n − 1) ways. Similarly,
for the third choice we are left with n − 2 unselected items, so the third choice
can be made in n − 2 different ways. Hence the first three choices can occur in
n(n − 1)(n − 2) distinct ways.

We proceed in this way until m choices have been made. Each choice is made
from one fewer item than the choice before. The conclusion is that we may select
m items from n without replacement but with order significant in

Π(n, m) = n(n − 1)(n − 2) · · · (n − m + 1) (4.3)

different ways. That is, expression (4.3) is the product of the m integers starting
and n and counting down.

Another way to write (4.3) is as n!/(n − m)!. That is,

168 COMBINATORICS AND PROBABILITY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

. .

.

.

3

1

1 All but 1

2 All but 2
2

4

5

10

10 All but 10

2

4

10

All but 2, 3

All but 3, 4

All but 3, 10

Fig. 4.6. Ordered selection of three things out of 10.

n!

(n − m)!
=

n(n − 1) · · · (n − m + 1)(n − m)(n − m − 1) · · · (1)

(n − m)(n − m − 1) · · · (1)

The denominator is the product of the integers from 1 to n−m. The numerator
is the product of the integers from 1 to n. Since the last n − m factors in the
numerator and denominator above are the same, (n − m)(n − m − 1) · · · (1), they
cancel and the result is that

n!

(n − m)!
= n(n − 1) · · · (n − m + 1)

This formula is the same as that in (4.3), which shows that Π(n, m) = n!/(n−m)!.

✦ Example 4.6. Consider the case from Example 4.5, where n = 10 and m =
3. We observed that Π(10, 3) = 10 × 9 × 8 = 720. The formula (4.3) says that
Π(10, 3) = 10!/7!, or

SEC. 4.4 ORDERED SELECTIONS 169

Selections With and Without Replacement

The problem considered in Example 4.5 differs only slightly from the assignment
problem considered in Section 4.2. In terms of houses and colors, we could almost
see the selection of the first three finishing horses as an assignment of one of ten
horses (the “colors”) to each of three finishing positions (the “houses”). The only
difference is that, while we are free to paint several houses the same color, it makes
no sense to say that one horse finished both first and third, for example. Thus, while
the number of ways to color three houses in any of ten colors is 103 or 10× 10× 10,
the number of ways to select the first three finishers out of 10 is 10 × 9 × 8.

We sometimes refer to the kind of selection we did in Section 4.2 as selection

with replacement. That is, when we select a color, say red, for a house, we “replace”Selection with

replacement red into the pool of possible colors. We are then free to select red again for one or
more additional houses.

On the other hand, the sort of selection we discussed in Example 4.5 is called
selection without replacement. Here, if the horse Sea Biscuit is selected to be theSelection

without

replacement

winner, then Sea Biscuit is not replaced in the pool of horses that can place or
show. Similarly, if Secretariat is selected for second place, he is not eligible to be
the third-place horse also.

10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

7 × 6 × 5 × 4 × 3 × 2 × 1

The factors from 1 through 7 appear in both numerator and denominator and thus
cancel. The result is the product of the integers from 8 through 10, or 10 × 9 × 8,
as we saw in Example 4.5. ✦

EXERCISES

4.4.1: How many ways are there to form a sequence of m letters out of the 26
letters, if no letter is allowed to appear more than once, for (a) m = 3 (b) m = 5.

4.4.2: In a class of 200 students, we wish to elect a President, Vice President,
Secretary, and Treasurer. In how many ways can these four officers be selected?

4.4.3: Compute the following quotients of factorials: (a) 100!/97! (b) 200!/195!.

4.4.4: The game of Mastermind requires players to select a “code” consisting of aMastermind

sequence of four pegs, each of which may be of any of six colors: red, green, blue,
yellow, white, and black.

a) How may different codes are there?

b*) How may different codes are there that have two or more pegs of the same
color? Hint : This quantity is the difference between the answer to (a) and
another easily computed quantity.

c) How many codes are there that have no red peg?

d*) How many codes are there that have no red peg but have at least two pegs of
the same color?

170 COMBINATORICS AND PROBABILITY

Quotients of Factorials

Note that in general, a!/b! is the product of the integers between b + 1 and a, as
long as b < a. It is much easier to calculate the quotient of factorials as

a × (a − 1) × · · · × (b + 1)

than to compute each factorial and divide, especially if b is not much less than a.

4.4.5*: Prove by induction on n that for any m between 1 and n, Π(n, m) =
n!/(n − m)!.

4.4.6*: Prove by induction on a − b that a!/b! = a(a − 1)(a − 2) · · · (b + 1).

✦
✦ ✦

✦
4.5 Unordered Selections

There are many situations in which we wish to count the ways to select a set of
items, but the order in which the selections are made does not matter. In terms of
the horse race example of the previous section, we may wish to know which horses
were the first three to finish, but we do not care about the order in which these
three finished. Put another way, we wish to know how many ways we can select
three horses out of n to be the top three finishers.

✦ Example 4.7. Let us again assume n = 10. We know from Example 4.5 that
there are 720 ways to select three horses, say A, B, and C, to be the win, place, and
show horses, respectively. However, now we do not care about the order of finish
of these three horses, only that A, B, and C were the first three finishers in some
order. Thus, we shall get the answer “A, B, and C are the three best horses” in
six different ways, corresponding to the ways that these three horses can be ordered
among the top three. We know there are exactly six ways, because the number of
ways to order 3 items is Π(3) = 3! = 6. However, if there is any doubt, the six ways
are seen in Fig. 4.7.

Win Place Show

A B C
A C B
B A C
B C A
C A B
C B A

Fig. 4.7. Six orders in which a set of three horses may finish.

What is true for the set of horses A, B, and C is true of any set of three horses.
Each set of three horses will appear exactly 6 times, in all of their possible orders,
when we count the ordered selections of three horses out of 10. Thus, if we wish

SEC. 4.5 UNORDERED SELECTIONS 171

to count only the sets of three horses that may be the three top finishers, we must
divide Π(10, 3) by 6. Thus, there are 720/6 = 120 different sets of three horses out
of 10. ✦

✦ Example 4.8. Let us count the number of poker hands. In poker, each player
is dealt five cards from a 52-card deck. We do not care in what order the five cards
are dealt, just what five cards we have. To count the number of sets of five cards
we may be dealt, we could start by calculating Π(52, 5), which is the number of
ordered selections of five objects out of 52. This number is 52!/(52 − 5)!, which is
52!/47!, or 52 × 51 × 50 × 49 × 48 = 311,875,200.

However, just as the three fastest horses in Example 4.7 appear in 3! = 6
different orders, any set of five cards to appear in Π(5) = 5! = 120 different orders.
Thus, to count the number of poker hands without regard to order of selection,
we must take the number of ordered selections and divide by 120. The result is
311,875,200/120 = 2,598,960 different hands. ✦

Counting Combinations

Let us now generalize Examples 4.7 and 4.8 to get a formula for the number of ways
to select m items out of n without regard to order of selection. This function is
usually written

(

n
m

)

and spoken “n choose m” or “combinations of m things out of

n.” To compute
(

n
m

)

, we start with Π(n, m) = n!/(n − m)!, the number of orderedCombinations of

m things out of

n

selections of m things out of n. We then group these ordered selections according
to the set of m items selected. Since these m items can be ordered in Π(m) = m!
different ways, the groups will each have m! members. We must divide the number
of ordered selections by m! to get the number of unordered selections. That is,

(

n

m

)

=
Π(n, m)

Π(m)
=

n!

(n − m)! × m!
(4.4)

✦ Example 4.9. Let us repeat Example 4.8, using formula (4.4) with n = 52 and
m = 5. We have

(

52

5

)

= 52!/(47!× 5!). If we cancel the 47! with the last 47 factors
of 52! and expand 5!, we can write

(

52

5

)

=
52 × 51 × 50 × 49 × 48

5 × 4 × 3 × 2 × 1

Simplifying, we get
(

52

5

)

= 26 × 17 × 10 × 49 × 12 = 2,598,960. ✦

A Recursive Definition of n Choose m

If we think recursively about the number of ways to select m items out of n, we can
develop a recursive algorithm to compute

(

n
m

)

.

BASIS.

(

n
0

)

= 1 for any n ≥ 1. That is, there is only one way to pick zero things

out of n: pick nothing. Also,
(

n
n

)

= 1; that is, the only way to pick n things out of
n is to pick them all.

172 COMBINATORICS AND PROBABILITY

INDUCTION. If 0 < m < n, then
(

n
m

)

=
(

n−1

m

)

+
(

n−1

m−1

)

. That is, if we wish to pick
m things out of n, we can either

i) Not pick the first element, and then pick m things from the remaining n − 1
elements. The term

(

n−1

m

)

counts this number of possibilities.

or

ii) Pick the first element and then select m− 1 things from among the remaining
n − 1 elements. The term

(

n−1

m−1

)

counts these possibilities.

Incidently, while the idea of the induction should be clear — we proceed from
the simplest cases of picking all or none to more complicated cases where we pick
some but not all — we have to be careful to state what quantity the induction
is “on.” One way to look at this induction is that it is a complete induction on
the product of n and the minimum of m and n − m. Then the basis case occurs
when this product is 0 and the induction is for larger values of the product. We
have to check for the induction that n × min(m, n − m) is always greater than
(n − 1) × min(m, n − m − 1) and (n − 1) × min(m − 1, n − m) when 0 < m < n.
This check is left as an exercise.

This recursion is often displayed by Pascal’s triangle, illustrated in Fig. 4.8,Pascal’s triangle

where the borders are all 1’s (for the basis) and each interior entry is the sum of
the two numbers above it to the northeast and northwest (for the induction). Then
(

n
m

)

can be read from the (m + 1)st entry of the (n + 1)st row.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Fig. 4.8. The first rows of Pascal’s triangle.

✦ Example 4.10. Consider the case where n = 4 and m = 2. We find the value
of

(

4

2

)

in the 3rd entry of the 5th row of Fig. 4.8. This entry is 6, and it is easy to

check that
(

4

2

)

= 4!/(2! × 2!) = 24/(2 × 2) = 6. ✦

The two ways we have to compute
(

n
m

)

— by formula (4.4) or by the above
recursion — each compute the same value, naturally. We can argue so by appeal to
physical reasoning. Both methods compute the number of ways to select m items
out of n in an unordered fashion, so they must produce the same value. However,
we can also prove the equality of the two approaches by an induction on n. We
leave this proof as an exercise.

SEC. 4.5 UNORDERED SELECTIONS 173

Running Time of Algorithms to Compute
(

n
m

)

As we saw in Example 4.9, when we use formula (4.4) to compute
(

n
m

)

we can cancel

(n − m)! in the denominator against the last n − m factors in n! to express
(

n
m

)

as
(

n

m

)

=
n × (n − 1) × · · · × (n − m + 1)

m × (m − 1) × · · · × 1
(4.5)

If m is small compared to n, we can evaluate the above formula much faster than
we can evaluate (4.4). In principle, the fragment of C code in Fig. 4.9 does the job.

(1) c = 1;

(2) for (i = n; i > n-m; i--)

(3) c *= i;

(4) for (i = 2; i <= m; i++)

(5) c /= i;

Fig. 4.9. Code to compute
(

n

m

)

.

Line (1) initializes c to 1; c will become the result,
(

n
m

)

. Lines (2) and (3)
multiply c by each of the integers between n−m+1 and n. Then, lines (4) and (5)
divide c by each of the integers between 2 and m. Thus, Fig. 4.9 implements the
formula of Equation (4.5).

For the running time of Fig. 4.9, we have only to observe that the two loops,
lines (2) – (3) and lines (4) – (5), each iterate m times and have a body that takes
O(1) time. Thus, the running time is O(m).

In the case that m is close to n but n−m is small, we can interchange the role of
m and n−m. That is, we can cancel factors of n! and m!, getting n(n−1) · · · (m+1)
and divide that by (n − m)!. This approach gives us an alternative to (4.5), which
is

(

n

m

)

=
n × (n − 1) × · · · × (m + 1)

(n − m) × (n − m − 1) × · · · × 1
(4.6)

Likewise, there is a code fragment similar to Fig. 4.9 that implements formula (4.6)
and takes time O(n−m). Since both n−m and m must be n or less for

(

n
m

)

to be
defined, we know that either way, O(n) is a bound on the running time. Moreover,
when m is either close to 0 or close to n, then the running time of the better of the
two approaches is much less than O(n).

However, Fig. 4.9 is flawed in an important way. It starts by computing the
product of a number of integers and then divides by an equal number of integers.
Since ordinary computer arithmetic can only deal with integers of a limited size
(often, about two billion is as large as an integer can get), we run the risk of
computing an intermediate result after line (3) of Fig. 4.9 that overflows the limit
on integer size. That may be the case even though the value of

(

n
m

)

is small enough
to be represented in the computer.

A more desirable approach is to alternate multiplications and divisions. Start
by multiplying by n, then divide by m. Multiply by n − 1; then divide by m − 1,
and so on. The problem with this approach is that we have no reason to believe
the result will be an integer at each stage. For instance, in Example 4.9 we would
begin by multiplying by 52 and dividing by 5. The result is already not an integer.

174 COMBINATORICS AND PROBABILITY

Formulas for
(

n
m

)

Must Yield Integers

It may not be obvious why the quotients of many factors in Equations (4.4), (4.5),
or (4.6) must always turn out to be an integer. The only simple argument is to
appeal to physical reasoning. The formulas all compute the number of ways to
choose m things out of n, and this number must be some integer.

It is much harder to argue this fact from properties of integers, without appeal-
ing to the physical meaning of the formulas. It can in fact be shown by a careful
analysis of the number of factors of each prime in numerator and denominator. As
a sample, look at the expression in Example 4.9. There is a 5 in the denominator,
and there are 5 factors in the numerator. Since these factors are consecutive, we
know one of them must be divisible by 5; it happens to be the middle factor, 50.
Thus, the 5 in the denominator surely cancels.

Thus, we need to convert to floating-point numbers before doing any calculation.
We leave this modification as an exercise.

Now, let us consider the recursive algorithm to compute
(

n
m

)

. We can imple-
ment it by the simple recursive function of Fig. 4.10.

/* compute n choose m for 0 <= m <= n */

int choose(int n, int m)

{

int n, m;

(1) if (m < 0 || m > n) {/* error conditions */

(2) printf("invalid input\n");

(3) return 0;

}

(4) else if (m == 0 || m == n) /* basis case */

(5) return 1;

else /* induction */

(6) return (choose(n-1, m-1) + choose(n-1, m));

}

Fig. 4.10. Recursive function to compute
(

n

m

)

.

The function of Fig. 4.10 is not efficient; it creates an exponential explosion in
the number of calls to choose. The reason is that when called with n as its first
argument, it usually makes two recursive calls at line (6) with first argument n− 1.
Thus, we might expect the number of calls made to double when n increases by 1.
Unfortunately, the exact number of recursive calls made is harder to count. The
reason is that the basis case on lines (4) and (5) can apply not only when n = 1,
but for higher n, provided m has the value 0 or n.

We can prove a simple, but slightly pessimistic upper bound as follows. Let
T (n) be the running time of Fig. 4.10 with first argument n. We can prove that
T (n) is O(2n) simply. Let a be the total running time of lines (1) through (5), plus

SEC. 4.5 UNORDERED SELECTIONS 175

that part of line (6) that is involved in the calls and return, but not the time of the
recursive calls themselves. Then we can prove by induction on n:

STATEMENT S(n): If choose is called with first argument n and some second
argument m between 0 and n, then the running time T (n) of the call is at
most a(2n − 1).

BASIS. n = 1. Then it must be that either m = 0 or m = 1 = n. Thus, the basis
case on lines (4) and (5) applies and we make no recursive calls. The time for lines
(1) through (5) is included in a. Since S(1) says that T (1) is at most a(21 − 1) = a,
we have proved the basis.

INDUCTION. Assume S(n); that is, T (n) ≤ a(2n − 1). To prove S(n + 1), suppose
we call choose with first argument n+1. Then Fig. 4.10 takes time a plus the time
of the two recursive calls on line (6). By the inductive hypothesis, each call takes
at most time a(2n − 1). Thus, the total time consumed is at most

a + 2a(2n − 1) = a(1 + 2n+1 − 2) = a(2n+1 − 1)

This calculation proves S(n + 1) and proves the induction.

We have thus proved that T (n) ≤ a(2n − 1). Dropping the constant factor and
the low-order terms, we see that T (n) is O(2n).

Curiously, while in our analyses of Chapter 3 we easily proved a smooth and
tight upper bound on running time, the O(2n) bound on T (n) is smooth but not
tight. The proper smooth, tight upper bound is slightly less: O(2n/

√
n). A proof

of this fact is quite difficult, but we leave as an exercise the easier fact that the
running time of Fig. 4.10 is proportional to the value it returns:

(

n
m

)

. An important
observation is that the recursive algorithm of Fig. 4.10 is much less efficient that the
linear algorithm of Fig. 4.9. This example is one where recursion hurts considerably.

The Shape of the Function
(

n
m

)

For a fixed value of n, the function of m that is
(

n
m

)

has a number of interesting
properties. For a large value of n, its form is the bell-shaped curve suggested
in Fig. 4.11. We immediately notice that this function is symmetric around theBell curve

midpoint n/2; this is easy to check using formula (4.4) that states
(

n
m

)

=
(

n
n−m

)

.

The maximum height at the center, that is,
(

n
n/2

)

, is approximately 2n/
√

πn/2.

For example, if n = 10, this formula gives 258.37, while
(

10

5

)

= 252.

The “thick part” of the curve extends for approximately
√

n on either side of
the midpoint. For example, if n = 10, 000, then for m between 4900 and 5100 the
value of

(

10,000
m

)

is close to the maximum. For m outside this range, the value of
(

10,000
m

)

falls off very rapidly.

176 COMBINATORICS AND PROBABILITY

0 n/2 n

√
n

2n/
√

πn/2

Fig. 4.11. The function
(

n

m

)

for fixed n.

Binomial Coefficients

The function
(

n
m

)

, in addition to its use in counting, gives us the binomial co-

efficients. These numbers are found when we expand a two-term polynomial (a
binomial) raised to a power, such as (x + y)n.Binomial

When we expand (x+ y)n, we get 2n terms, each of which is xmyn−m for some
m between 0 and n. That is, from each of the factors x + y we may choose either
x or y to contribute as a factor in a particular term. The coefficient of xmyn−m in
the expansion is the number of terms that are composed of m choices of x and the
remaining n − m choices of y.

✦ Example 4.11. Consider the case n = 4, that is, the product

(x + y)(x + y)(x + y)(x + y)

There are 16 terms, of which only one is x4y0 (or just x4). This term is the one
we get if we select x from each of the four factors. On the other hand, there are
four terms x3y, corresponding to the fact that we can select y from any of the four
factors and x from the remaining three factors. Symmetrically, we know that there
is one term y4 and four terms xy3.

How many terms x2y2 are there? We get such a term if we select x from two
of the four factors and y from the remaining two. Thus, we must count the number
of ways to select two of the factors out of four. Since the order in which we select
the two doesn’t matter, this count is

(

4

2

)

= 4!/(2!× 2!) = 24/4 = 6. Thus, there are
six terms x2y2. The complete expansion is

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Notice that the coefficients of the terms on the right side of the equality, (1, 4, 6, 4, 1),
are exactly a row of Pascal’s triangle in Fig. 4.8. That is no coincidence, as we shall
see. ✦

We can generalize the idea that we used to calculate the coefficient of x2y2

in Example 4.11. The coefficient of xmyn−m in the expansion of (x + y)n is
(

n
m

)

.
The reason is that we get a term xmyn−m whenever we select m of the n factors to

SEC. 4.5 UNORDERED SELECTIONS 177

provide an x and the remainder of the factors to provide y. The number of ways to
choose m factors out of n is

(

n
m

)

.
There is another interesting consequence of the relationship between binomial

coefficients and the function
(

n
m

)

. We just observed that

(x + y)n =

n
∑

m=0

(

n

m

)

xmyn−m

Let x = y = 1. Then (x + y)n = 2n. All powers of x and y are 1, so the above
equation becomes

2n =

n
∑

m=0

(

n

m

)

Put another way, the sum of all the binomial coefficients for a fixed n is 2n. In
particular, each coefficient

(

n
m

)

is less than 2n. The implication of Fig. 4.11 is that

for m around n/2,
(

n
m

)

is quite close to 2n. Since the area under the curve of
Fig. 4.11 is 2n, we see why only a few values near the middle can be large.

EXERCISES

4.5.1: Compute the following values: (a)
(

7

3

)

(b)
(

8

3

)

(c)
(

10

7

)

(d)
(

12

11

)

.

4.5.2: In how many ways can we choose a set of 5 different letters out of the 26
possible lower-case letters?

4.5.3: What is the coefficient of

a) x3y4 in the expansion (x + y)7

b) x5y3 in the expansion of (x + y)8

4.5.4*: At Real Security, Inc., computer passwords are required to have four digits
(of 10 possible) and six letters (of 52 possible). Letters and digits may repeat. How
many different possible passwords are there? Hint : Start by counting the number
of ways to select the four positions holding digits.

4.5.5*: How many sequences of 5 letters are there in which exactly two are vowels?

4.5.6: Rewrite the fragment of Fig. 4.9 to take advantage of the case when n − m
is small compared with n.

4.5.7: Rewrite the fragment of Fig. 4.9 to convert to floating-point numbers and
alternately multiply and divide.

4.5.8: Prove that if 0 ≤ m ≤ n, then
(

n
m

)

=
(

n
n−m

)

a) By appealing to the meaning of the function
(

n
m

)

b) By using Equation 4.4

4.5.9*: Prove by induction on n that the recursive definition of
(

n
m

)

correctly defines
(

n
m

)

to be equal to n!/
(

(n − m)! × m!
)

.

4.5.10**: Show by induction on n that the running time of the recursive function
choose(n,m) of Fig. 4.10 is at most c

(

n
m

)

for some constant c.

4.5.11*: Show that n × min(m, n − m) is always greater than

178 COMBINATORICS AND PROBABILITY

(n − 1) × min(m, n − m − 1)

and (n − 1) × min(m − 1, n − m) when 0 < m < n.

✦
✦ ✦

✦
4.6 Orderings With Identical Items

In this section, we shall examine a class of selection problems in which some of the
items are indistinguishable from one another, but the order of appearance of the
items matters when items can be distinguished. The next section will address a
similar class of problems where we do not care about order, and some items are
indistinguishable.

✦ Example 4.12. Anagram puzzles give us a list of letters, which we are askedAnagrams

to rearrange to form a word. We can solve such problems mechanically if we have
a dictionary of legal words and we can generate all the possible orderings of the
letters. Chapter 10 considers efficient ways to check whether a given sequence of
letters is in the dictionary. But now, considering combinatorial problems, we might
start by asking how many different potential words we must check for presence in
the dictionary.

For some anagrams, the count is easy. Suppose we are given the letters abenst.
There are six letters, which may be ordered in Π(6) = 6! = 720 ways. One of these
720 ways is absent, the “solution” to the puzzle.

However, anagrams often contain duplicate letters. Consider the puzzle eilltt.
There are not 720 different sequences of these letters. For example, interchanging
the positions in which the two t’s appear does not make the word different.

Suppose we “tagged” the t’s and l’s so we could distinguish between them, say
t1, t2, l1, and l2. Then we would have 720 orders of tagged letters. However, pair
of orders that differ only in the position of the tagged l’s, such as l1it2t1l2e and
l2it2t1l1e, are not really different. Since all 720 orders group into pairs differing
only in the subscript on the l’s, we can account for the fact that the l’s are really
identical if we divide the number of strings of letters by 2. We conclude that the
number of different anagrams in which the t’s are tagged but the l’s are not is
720/2=360.

Similarly, we may pair the strings with only t’s tagged if they differ only in the
subscript of the t’s. For example, lit1t2le and lit2t1le are paired. Thus, if we
divide by 2 again, we have the number of different anagram strings with the tags
removed from both t’s and l’s. This number is 360/2 = 180. We conclude that
there are 180 different anagrams of eilltt. ✦

We may generalize the idea of Example 4.12 to a situation where there are
n items, and these items are divided into k groups. Members of each group are
indistinguishable, but members of different groups are distinguishable. We may let
mi be the number of items in the ith group, for i = 1, 2, . . . , k.

✦ Example 4.13. Reconsider the anagram problem eilltt from Example 4.12.
Here, there are six items, so n = 6. The number of groups k is 4, since there are

SEC. 4.6 ORDERINGS WITH IDENTICAL ITEMS 179

4 different letters. Two of the groups have one member (e and i), while the other
two groups have two members. We may thus take i1 = i2 = 1 and i3 = i4 = 2. ✦

If we tag the items so members of a group are distinguishable, then there are
n! different orders. However, if there are i1 members of the first group, these tagged
items may appear in i1! different orders. Thus, when we remove the tags from the
items in group 1, we cluster the orders into sets of size i1! that become identical.
We must thus divide the number of orders by i1! to account for the removal of tags
from group 1.

Similarly, removing the tags from each group in turn forces us to divide the
number of distinguishable orders by i2!, by i3!, and so on. For those ij ’s that are 1,
this division is by 1! = 1 and thus has no effect. However, we must divide by the
factorial of the size of each group of more than one item. That is what happened in
Example 4.12. There were two groups with more than one member, each of size 2,
and we divided by 2! twice. We can state and prove the general rule by induction
on k.

STATEMENT S(k): If there are n items divided into k groups of sizes i1, i2, . . . , ik
respectively, items within a group are not distinguishable, but items in differ-
ent groups are distinguishable, then the number of different distinguishable
orders of the n items is

n!
∏k

j=1
ij !

(4.7)

BASIS. If k = 1, then there is one group of indistinguishable items, which gives us
only one distinguishable order no matter how large n is. If k = 1 then i1 must be
n, and formula (4.7) reduces to n!/n!, or 1. Thus, S(1) holds.

INDUCTION. Suppose S(k) is true, and consider a situation with k+1 groups. Let
the last group have m = ik+1 members. These items will appear in m positions,
and we can choose these positions in

(

n
m

)

different ways. Once we have chosen the
m positions, it does not matter which items in the last group we place in these
positions, since they are indistinguishable.

Having chosen the positions for the last group, we have n−m positions left to
fill with the remaining k groups. The inductive hypothesis applies and tells us that
each selection of positions for the last group can be coupled with (n−m)!/

∏k
j=1

ij !
distinguishable orders in which to place the remaining groups in the remaining
positions. This formula is just (4.7) with n − m replacing n since there are only
n − m items remaining to be placed. The total number of ways to order the k + 1
groups is thus

(

n
m

)

(n − m)!
∏k

j=1
ij!

(4.8)

Let us replace
(

n
m

)

in (4.8) by its equivalent in factorials: n!/
(

(n−m)!m!
)

. We
then have

180 COMBINATORICS AND PROBABILITY

n!

(n − m)!m!

(n − m)!
∏k

j=1
ij !

(4.9)

We may cancel (n−m)! from numerator and denominator in (4.8). Also, remember
that m is ik+1, the number of members in the (k + 1)st group. We thus discover
that the number of orders is

n!
∏k+1

j=1
ij !

This formula is exactly what is given by S(k + 1).

✦ Example 4.14. An explorer has rations for two weeks, consisting of 4 cans of
Tuna, 7 cans of Spam, and 3 cans of Beanie Weenies. If he opens one can each day,
in how many orders can he consume the rations? Here, there are 14 items divided
into groups of 4, 7, and 3 identical items. In terms of Equation (4.7), n = 14, k = 3,
i1 = 4, i2 = 7, and i3 = 3. The number of orders is thus

14!

4!7!3!

Let us begin by canceling the 7! in the denominator with the last 7 factors in
14! of the numerator. That gives us

14 × 13 × 12 × 11 × 10 × 9 × 8

4 × 3 × 2 × 1 × 3 × 2 × 1

Continuing to cancel factors in the numerator and denominator, we find the resulting
product is 120,120. That is, there are over a hundred thousand ways in which to
consume the rations. None sounds very appetizing. ✦

EXERCISES

4.6.1: Count the number of anagrams of the following words: (a) error (b) street
(c) allele (d) Mississippi.

4.6.2: In how many ways can we arrange in a line

a) Three apples, four pears, and five bananas

b) Two apples, six pears, three bananas, and two plums

4.6.3*: In how many ways can we place a white king, a black king, two white
knights, and a black rook on the chessboard?

4.6.4*: One hundred people participate in a lottery. One will win the grand prize
of $1000, and five more will win consolation prizes of a $50 savings bond. How
many different possible outcomes of the lottery are there?

4.6.5: Write a simple formula for the number of orders in which we may place 2n
objects that occur in n pairs of two identical objects each.

SEC. 4.7 DISTRIBUTION OF OBJECTS TO BINS 181

✦
✦ ✦

✦
4.7 Distribution of Objects to Bins

Our next class of counting problems involve the selection of a bin in which to place
each of several objects. The objects may or may not be identical, but the bins are
distinguishable. We must count the number of ways in which the bins can be filled.

✦ Example 4.15. Kathy, Peter, and Susan are three children. We have four
apples to distribute among them, without cutting apples into parts. In how many
different ways may the children receive apples?

There are sufficiently few ways that we can enumerate them. Kathy may receive
anything from 0 to 4 apples, and whatever remains can be divided between Peter
and Susan in only a few ways. If we let (i, j, k) represent the situation in which
Kathy receives i apples, Peter receives j, and Susan receives k, the 15 possibilities
are as shown in Fig. 4.12. Each row corresponds to the number of apples given to
Kathy.

(0,0,4) (0,1,3) (0,2,2) (0,3,1) (0,4,0)
(1,0,3) (1,1,2) (1,2,1) (1,3,0)
(2,0,2) (2,1,1) (2,2,0)
(3,0,1) (3,1,0)
(4,0,0)

Fig. 4.12. Four apples can be distributed to three children in 15 ways.

There is a trick to counting the number of ways to distribute identical objects
to bins. Suppose we have four letter A’s representing apples. Let us also use two *’s
which will represent partitions between the apples belonging to different children.
We order the A’s and *’s as we like and interpret all A’s before the first * as being
apples belonging to Kathy. Those A’s between the two *’s belong to Peter, and the
A’s after the second * are apples belonging to Susan. For instance, AA*A*A represents
the distribution (2,1,1), where Kathy gets two apples and the other two children
get one each. Sequence AAA*A* represents the situation (3,1,0), where Kathy gets
three, Peter gets one, and Susan gets none.

Thus, each distribution of apples to bins is associated with a unique string of 4
A’s and 2 *’s. How many such strings are there? Think of the six positions forming
such a string. Any four of those positions may be selected to hold the A’s; the other
two will hold the *’s. The number of ways to select 4 items out of 6 is

(

6

4

)

, as we

learned in Section 4.5. Since
(

6

4

)

= 15, we again conclude that there are 15 ways to
distribute four apples to three children. ✦

The General Rule for Distribution to Bins

We can generalize the problem of Example 4.15 as follows. Suppose we are given
n bins; these correspond to the three children in the example. Suppose also we are
given m identical objects to place arbitrarily into the bins. How many distributions
into bins are there.

We may again think of strings of A’s and *’s. The A’s now represent the objects,
and the *’s represent boundaries between the bins. If there are n objects, we use n

182 COMBINATORICS AND PROBABILITY

A’s, and if there are m bins, we need m − 1 *’s to serve as boundaries between the
portions for the various bins. Thus, strings are of length n + m − 1.

We may choose any n of these positions to hold A’s, and the rest will hold *’s.
There are thus

(

n+m−1

n

)

strings of A’s and *’s, so there are this many distributions
of objects to bins. In Example 4.15 we had n = 4 and m = 3, and we concluded
that there were

(

n+m−1

n

)

=
(

6

4

)

distributions.

✦ Example 4.16. In the game of Chuck-a-Luck we throw three dice, each withChuck-a-Luck

six sides numbered 1 through 6. Players bet a dollar on a number. If the number
does not come up, the dollar is lost. If the number comes up one or more times,
the player wins as many dollars as there are occurrences of the number.

We would like to count the “outcomes,” but there may initially be some ques-
tion about what an “outcome” is. If we were to color the dice different colors so
we could tell them apart, we could see this counting problem as that of Section 4.2,
where we assign one of six numbers to each of three dice. We know there are
63 = 216 ways to make this assignment.

However, the dice ordinarily aren’t distinguishable, and the order in which the
numbers come up doesn’t matter; it is only the occurrences of each number that
determines which players get paid and how much. For instance, we might observe
that 1 comes up on two dice and 6 comes up on the third. The 6 might have
appeared on the first, second, or third die, but it doesn’t matter which.

Thus, we can see the problem as one of distribution of identical objects to bins.
The “bins” are the numbers 1 through 6, and the “objects” are the three dice. A
die is “distributed” to the bin corresponding to the number thrown on that die.
Thus, there are

(

6+3−1

3

)

=
(

8

3

)

= 56 different outcomes in Chuck-a-Luck. ✦

Distributing Distinguishable Objects

We can extend the previous formula to allow for distribution into m bins of a
collection of n objects that fall into k different classes. Objects within a class
are indistinguishable from each other, but are distinguishable from those of other
classes. Let us use symbol ai to represent members of the ith class. We may thus
form strings consisting of

1. For each class i, as many ai’s as there are members of that class.

2. m − 1 *’s to represent the boundaries between the m bins.

The length of these strings is thus n + m − 1. Note that the *’s form a (k + 1)st
class, with m members.

We learned how to count the number of such strings in Section 4.6. There are

(n + m − 1)!

(m − 1)!
∏k

j=1
ij!

strings, where ij is the number of members of the jth class.

✦ Example 4.17. Suppose we have three apples, two pears, and a banana to
distribute to Kathy, Peter, and Susan. Then m = 3, the number of “bins,” which
is the number of children. There are k = 3 groups, with i1 = 3, i2 = 2, and i3 = 1.
Since there are 6 objects in all, n = 6, and the strings in question are of length

SEC. 4.7 DISTRIBUTION OF OBJECTS TO BINS 183

Comparison of Counting Problems

In this and the previous five sections we have considered six different counting
problems. Each can be thought of as assigning objects to certain positions. For
example, the assignment problem of Section 4.2 may be thought of as one where
we are given n positions (corresponding to the houses) and and infinite supply of
objects of k different types (the colors). We can classify these problems along three
axes:

1. Do they place all the given objects?

2. Is the order in which objects are assigned important?

3. Are all the objects distinct, or are some indistinguishable?

Here is a table indicating the differences between the problems mentioned in each
of these sections.

SECTION TYPICAL MUST USE ORDER IDENTICAL

PROBLEM ALL? IMPORTANT? OBJECTS?

4.2 Painting houses N Y N
4.3 Sorting Y Y N
4.4 Horse race N Y N
4.5 Poker hands N N Y
4.6 Anagrams Y Y Y
4.7 Apples to children Y N Y

The problems of Sections 4.2 and 4.4 are not differentiated in the table above.
The distinction is one of replacement, as discussed in the box on “Selections With
and Without Replacement” in Section 4.4. That is, in Section 4.2 we had an infinite
supply of each “color” and could select a color many times. In Section 4.4, a “horse”
selected is not available for later selections.

n+m−1 = 8. The strings consist of three A’s standing for apples, two P’s standing
for pears, one B standing for the banana, and two *’s, the boundaries between the
shares of the children. The formula for the number of distributions is thus

(n + m − 1)!

(m − 1)!i1!i2!i3!
=

8!

2!3!2!1!
= 1680

ways in which these fruits may be distributed to Kathy, Peter, and Susan. ✦

EXERCISES

4.7.1: In how many ways can we distribute

a) Six apples to four children
b) Four apples to six children
c) Six apples and three pears to five children
d) Two apples, five pears, and six bananas to three children

4.7.2: How many outcomes are there if we throw

184 COMBINATORICS AND PROBABILITY

(a) Four indistinguishable dice

b) Five indistinguishable dice

4.7.3*: How many ways can we distribute seven apples to three children so that
each child gets at least one apple?

4.7.4*: Suppose we start at the lower-left corner of a chessboard and move to the
upper-right corner, making moves that are each either one square up or one square
right. In how many ways can we make the journey?

4.7.5*: Generalize Exercise 4.7.4. If we have a rectangle of n squares by m squares,
and we move only one square up or one square right, in how many ways can we
move from lower-left to upper-right?

✦
✦ ✦

✦
4.8 Combining Counting Rules

The subject of combinatorics offers myriad challenges, and few are as simple as
those discussed so far in this chapter. However, the rules learned so far are valuable
building blocks that may be combined in various ways to count more complex
structures. In this section, we shall learn three useful “tricks” for counting:

1. Express a count as a sequence of choices.

2. Express a count as a difference of counts.

3. Express a count as a sum of counts for subcases.

Breaking a Count Into a Sequence of Choices

One useful approach to be taken, when faced with the problem of counting some
class of arrangements is to describe the things to be counted in terms of a series of
choices, each of which refines the description of a particular member of the class.
In this section we present a series of examples intended to suggest some of the
possibilities.

✦ Example 4.18. Let us count the number of poker hands that are one-pair
hands. A hand with one pair consists of two cards of one rank and three cards
of ranks1 that are different and also distinct from the rank of the pair. We can
describe all one-pair hands by the following steps.

1. Select the rank of the pair.

2. Select the three ranks for the other three cards from the remaining 12 ranks.

3. Select the suits for the two cards of the pair.

4. Select the suits for each of the other three cards.

1 The 13 ranks are Ace, King, Queen, Jack, and 10 through 2.

SEC. 4.8 COMBINING COUNTING RULES 185

If we multiply all these numbers together, we shall have the number of one-pair
hands. Note that the order in which the cards appear in the hand is not important,
as we discussed in Example 4.8, and we have made no attempt to specify the order.

Now, let us take each of these factors in turn. We can select the rank of the pair
in 13 different ways. Whichever rank we select for the pair, we have 12 ranks left.
We must select 3 of these for the remaining cards of the hand. This is a selection
in which order is unimportant, as discussed in Section 4.5. We may perform this
selection in

(

12

3

)

= 220 ways.

Now, we must select the suits for the pair. There are four suits, and we must
select two of them. Again we have an unordered selection, which we may do in
(

4

2

)

= 6 ways. Finally, we must select a suit for each of the three remaining cards.
Each has 4 choices of suit, so we have an assignment like those of Section 4.2. We
may make this assignment in 43 = 64 ways.

The total number of one-pair hands is thus 13 × 220 × 6 × 64 = 1, 098, 240.
This number is over 40% of the total number of 2,598,960 poker hands. ✦

Computing a Count as a Difference of Counts

Another useful technique is to express what we want to count as the difference
between some more general class C of arrangements and those in C that do not
meet the condition for the thing we want to count.

✦ Example 4.19. There are a number of other poker hands — two pairs, three
of a kind, four of a kind, and full house — that can be counted in a manner similar
to Example 4.18. However, there are other hands that require a different approach.

First, let us consider a straight-flush, which is five cards of consecutive rank
(a straight) of the same suit (a flush). First, each straight begins with one of the
ten ranks Ace through 10 as the lowest card. That is, the straights are Ace-2-3-4-5,
2-3-4-5-6, 3-4-5-6-7, and so on, up to 10-Jack-Queen-King-Ace. Once the ranks are
determined, the straight-flush can be completely specified by giving the suit. Thus,
we can count the straight-flushes by

1. Select the lowest rank in the straight (10 choices).

2. Select the suit (4 choices).

Thus, there are 10 × 4 = 40 straight-flushes.

Now, let us count the straights, that is, those hands whose ranks are consec-
utive but that are not straight-flushes. We shall first count all those hands with
consecutive ranks, regardless of whether the suits are the same, and then subtract
the 40 straight-flushes. To count hands with consecutive ranks, we can

1. Select the low rank (10 choices).

2. Assign a suit to each of the five ranks (45 = 1024 choices, as in Section 4.2).

The number of straights and straight-flushes is thus 10× 1024 = 10,240. When we
subtract the straight-flushes, we are left with 10,240−40 = 10,200 hands that are
classified as straights.

Next, let us count the number of flushes. Again, we shall first include the
straight-flushes and then subtract 40. We can define a flush by

186 COMBINATORICS AND PROBABILITY

1. Select the suit (4 choices).

2. Select the five ranks out of thirteen ranks in any of
(

13

5

)

= 1287 ways, as in
Section 4.5.

We conclude that the number of flushes is 4 × 1287− 40 = 5108. ✦

Expressing a Count as a Sum of Subcases

Our third “trick” is to be methodical when faced with a problem that is too hard
to solve directly. We break the problem of counting a class C into two or more
separate problems, where each member of class C is covered by exactly one of the
subproblems.

✦ Example 4.20. Suppose we toss a sequence of 10 coins. In how many sequences
will 8 or more of the coins be heads? If we wanted to know how many sequences
had exactly 8 heads, we could answer the problem by the method of Section 4.5.
That is, there are 10 coins, and we wish to select 8 of them to be heads. We can do
so in

(

10

8

)

= 45 ways.

To solve the problem of counting sequences of 8 or more heads, we break it
into the three subproblems of counting sequences with exactly 8 heads, exactly 9
heads, and exactly 10 heads. We already did the first. The number of sequences
with 9 heads is

(

10

9

)

= 10, and there is
(

10

10

)

= 1 sequence with all 10 heads. Thus,
the number of sequences with 8 or more heads is 45 + 10 + 1 = 56. ✦

✦ Example 4.21. Let us reconsider the problem of counting the outcomes in
Chuck-a-Luck, which we solved in Example 4.16. Another approach is to divide
the problem into three subproblems, depending on whether the number of different
numbers showing is 3, 2, or 1.

a) We can count the number of outcomes with three different numbers using the
technique of Section 4.5. That is, we must select 3 out of the 6 possible numbers
on a die, and we can do so in

(

6

3

)

= 20 different ways.

b) Next, we must count the number of outcomes with two of one number and one
of another. There are 6 choices for the number that appears twice, and no
matter which number we choose to appear twice, there are 5 choices for the
number that appears once. There are thus 6 × 5 = 30 outcomes with two of
one number and one of another.

c) One number on all three dice can occur in 6 different ways, one for each of the
numbers on a die.

Thus, the number of possible outcomes is 20 + 30 + 6 = 56, as we also deduced in
Example 4.16. ✦

EXERCISES

4.8.1*: Count the number of poker hands of the following types:

SEC. 4.9 INTRODUCTION TO PROBABILITY THEORY 187

a) Two pairs
b) Three of a kind
c) Full house
d) Four of a kind

Be careful when counting one type of hand not to include hands that are better.
For example, in (a), make sure that the two pairs are different (so you don’t really
have four of a kind) and the fifth card is different from the pairs (so you don’t have
a full house).

4.8.2*: A blackjack consists of two cards, one of which is an Ace and the other ofBlackjack

which is a 10-point card, either a 10, Jack, Queen, or King.

a) How many different blackjacks are there in a 52-card deck?

b) In the game blackjack, one card is dealt down and the other is dealt up. Thus,
in a sense order of the two cards matters. In this case, how many different
blackjacks are there?

c) In a pinochle deck there are eight cards of each rank 9, 10, Jack, Queen, King,Pinochle deck

Ace (two indistinguishable cards of each suit) and no other cards. How many
blackjacks are there, assuming order is unimportant?

4.8.3: How many poker hands are “nothing” (i.e., not one-pair or better)? You may
use the results of Examples 4.18 and 4.19 as well as the answer to Exercise 4.8.1.

4.8.4: If we toss 12 coins in sequence, how many have

a) At least 9 heads
b) At most 4 heads
c) Between 5 and 7 heads
d) Fewer than 2 or more than 10 heads

4.8.5*: How many outcomes in Chuck-a-Luck have at least one 1?

4.8.6*: How many anagrams of the word little are there in which the two t’s are
not adjacent?

4.8.7**: A bridge hand consists of 13 of the 52 cards. We often classify hands byBridge

“distribution,” that is, the way cards are grouped into suits. For example, a hand
of 4-3-3-3 distribution has four of one suit and three of each of the other suits. A
hand with 5-4-3-1 distribution has one suit of five cards, one of four, one of three,
and one of one card. Count the number of hands with the following distributions:
(a) 4-3-3-3 (b) 5-4-3-1 (c) 4-4-3-2 (d) 9-2-2-0.

✦
✦ ✦

✦
4.9 Introduction to Probability Theory

Probability theory, along with its general importance, has many uses in computer
science. One important application is the estimation of the running time of pro-
grams in the case of average or typical inputs. This evaluation is important for
those algorithms whose worst-case running time is very much larger than the aver-
age running time. We shall see examples of such evaluations shortly.

Another use of probability is in designing algorithms for making decisions in
the presence of uncertainty. For example, we can use probability theory to design

188 COMBINATORICS AND PROBABILITY

algorithms for making the best possible medical diagnosis from available information
or algorithms for allocating resources on the basis of expected future needs.

Probability Spaces

When we speak of a probability space, we mean a finite set of points, each of which
represents one possible outcome of an experiment. Each point x has associated withExperiment,

outcome it a nonnegative real number called the probability of x, such that the sum of the
probabilities of all the points is 1. One also speaks of probability spaces that have
infinite numbers of points, although there is little application for these in computer
science, and we shall not deal with them here.

Commonly, the points of a probability space have equal probability. Unless we
state otherwise, you may assume that the probabilities of the various points in a
probability space are equal. Thus, if there are n points in the probability space the
probability of each point is 1/n.

✦ Example 4.22. In Fig. 4.13 is a probability space with six points. The points
are each identified with one of the numbers from 1 to 6, and we may think of this
space as representing the outcomes of the “experiment” of throwing a single fair
die. That is, one of the six numbers will appear on top of the die, and each number
is equally likely to appear, that is, 1/6th of the time. ✦

• • •

• ••

1 2 3

5 64

Fig. 4.13. A probability space with six points.

Any subset of the points in a probability space is called an event. The probabilityEvent

of an event E, denoted PROB(E), is the sum of the probabilities of the points in
E. If the points are all equally likely, then we can compute the probability of E by
dividing the number of points in E by the number of points in the total probability
space.

Probability Calculations

Often, the calculation of the probability of an event involves combinatorics. We
must count the number of points in the event as well as the number of points in
the entire probability space. When points are equally likely, the ratio of these two
counts is the probability of the event. We shall give a series of examples to illustrate
the calculation of probabilities in this fashion.

SEC. 4.9 INTRODUCTION TO PROBABILITY THEORY 189

Infinite Probability Spaces

In certain circumstances, we can imagine that a probability space has an infinite
number of points. The probability of any given point may be infinitesimal, and we
can only associate finite probabilities with some collections of points. For a simple
example, here is a probability space, the square, whose points are all the points of
the plane within the square.

E

Event

We may suppose that any point in the square is equally likely to be chosen.
The “experiment” may be thought of as throwing a dart at the square in such a
way that the dart is equally likely to wind up anywhere within the square, but not
outside it. Although any point has only infinitesimal probability of being hit, the
probability of a region of the square is the ratio of the area of the region to the area
of the entire square. Thus, we can compute the probability of certain events.

For example, we show within the probability space an event E consisting of an
ellipse contained within the square. Let us suppose the area of the ellipse is 29%
of the area of the square. Then PROB(E) is 0.29. That is, if the dart is thrown at
random at the square, 29% of the time the dart will land within the ellipse.

✦ Example 4.23. Figure 4.14 shows the probability space representing the throw
of two dice. That is, the experiment is the tossing of two dice, in order, and observing
the numbers on their upper faces. Assuming the dice are fair, there are 36 equally
likely points, or outcomes of the experiment, so each point has probability 1/36.
Each point corresponds to the assignment of one of six values to each die. For
example, (2, 3) represents the outcome where 2 appears on the first die and 3 on
the second. Pair (3, 2) represents 3 on the first die and 2 on the second.

The outlined region represents the event “craps,” that is, a total 7 or 11 on the
two dice. There are eight points in this event, six where the total is 7 and two where
the total is 11. The probability of throwing craps is thus 8/36, or about 22%. ✦

✦ Example 4.24. Let us calculate the probability that a poker hand is a one-
pair hand. We learned in Example 4.8 that there are 2,598,960 different poker
hands. Consider the experiment of dealing a poker hand fairly, that is, with all
hands equally likely. Thus, the probability space for this experiment has 2,598,960

190 COMBINATORICS AND PROBABILITY

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
(1, 1)

•

•

•

•

•

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(6, 1)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(1, 3)

(2, 3)

(3, 3)

(4, 3)

(5, 3)

(6, 3)

(1, 4)

(2, 4)

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(1, 5)

(2, 5)

(3, 5)

(4, 5)

(5, 5)

(6, 5)

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

Fig. 4.14. The event “craps” in the probability space for the toss of two dice.

points. We also learned in Example 4.18 that 1,098,240 of these points represent
hands classified as one pair. Assuming all hands are equally likely to be dealt, the
probability of the event “one pair” is 1,098,240/2,598,960, or about 42%. ✦

✦ Example 4.25. In the game of Keno, twenty of the numbers from 1 to 80 are
selected at random. Before the selection, players may guess some numbers; we shall
concentrate on the “5-spot game,” where players guess five numbers. A player whoKeno

guesses correctly three, four, or five of the twenty selected numbers is rewarded;
the amount of the payoff increases with the number of correct guesses. We shall
calculate the probability that a player guesses exactly three numbers correctly in a
5-spot game. The probabilities of guessing four or five correctly are left as exercises.

To begin, the appropriate probability space has one point for each possible
selection of twenty numbers from 1 to 80. The number of such selections is

(

80

20

)

=
80!

20!60!

SEC. 4.9 INTRODUCTION TO PROBABILITY THEORY 191

When are Outcomes Random?

We have assumed in our examples that certain experiments have “random” out-
comes; that is, all possible outcomes are equally likely. In some cases the justifi-
cation for this assumptions comes from physics. For instance, when throwing fair
(unweighted) dice, we assume that it is not physically possible to control the toss
in such a way that one face is more likely than others to appear on top. That is a
valid assumption in practice. Similarly, we assume that a fairly shuffled deck will
not bias the outcome, and any card is equally likely to be found in any position in
the deck.

In other cases, we find that what we imagine is random is actually not random
at all, but is the result of a process that is predictable in principle but unpredictable
in practice. For example, the numbers in a Keno game may be generated by a com-
puter executing a particular algorithm, and yet without access to secret information
used by the computer, it is impossible to predict the outcome.

All computer-generated “random” sequences of outcomes are the result of a
special kind of algorithm called a random number generator. Designing one of theseRandom

number

generator

algorithms requires knowledge of some specialized mathematics and is beyond the
scope of this book. However, we can offer an example of a random number generator
that works fairly well in practice, called a linear congruential generator.

We specify constants a ≥ 2, b ≥ 1, x0 ≥ 0, and a modulus m > max(a, b, x0).
We can generate a sequence of numbers x0, x1, x2, . . . using the formula

xn+1 = (axn + b) mod m

For suitable choices of a, b, m, and x0, the resulting sequence of numbers will appear
quite random, even though they are constructed from the “seed” x0 by a specific
algorithm.

Sequences generated by a random number generator have many uses. For in-
stance, we can select numbers in a Keno game by taking numbers from the sequence
described above, dividing each by 80, taking the remainder, and adding 1 to get a
“random” number from 1 to 80. We keep doing so, throwing away repeated num-
bers, until twenty numbers are selected. The game will be perceived as fair, as long
as no one knows the generation algorithm and the seed.

a number so huge that we are fortunate we do not have to write it down.

Now we must count the number of selections of twenty numbers out of eighty
that include three of the five numbers chosen by the player and seventeen numbers
from the seventy-five that the player has not chosen. We can choose three of the
five in

(

5

3

)

= 10 ways, and we can choose seventeen from the remaining seventy-five

in
(

75

17

)

= 75!

17!58!
ways.

The ratio of the number of outcomes where the player picks three out of five
to the total number of selections is thus

10 75!

17!58!

80!

20!60!

If we multiply top and bottom by 20!60!

80!
, the above becomes

192 COMBINATORICS AND PROBABILITY

10(
75!

17!58!
)(

20!60!

80!
)

Now, we find in the numerator and denominator pairs of factorials that are close
and can almost be canceled. For instance, 75! in the numerator and 80! in the
denominator can be replaced by the product of the five numbers from 80 down to
76 in the denominator. The resulting simplification is

10 × 60 × 59 × 20 × 19 × 18

80 × 79 × 78 × 77 × 76

Now we have a computation that involves manageable numbers. The result is
about 0.084. That is, about 8.4% of the time the player guesses three out of five
correctly. ✦

Fundamental Relationships

Let us close this section by observing several important properties of probabilities.
First, if p is the probability of any event, then

0 ≤ p ≤ 1

That is, any event consists of 0 or more points, so its probability cannot be negative.
Also, no event can consist of more points than are in the entire probability space,
so its probability cannot exceed 1.

Second, let E be an event in a probability space P . Then the complement eventComplement

event Ē for E is the set of points of P that are not in event E. We may observe that

PROB(E) + PROB(Ē) = 1

or put another way, PROB(Ē) = 1− PROB(E). The reason is that every point in P
is either in E or in Ē, but not both.

EXERCISES

4.9.1: Using the probability space for the toss of two fair dice shown in Fig. 4.14,
give the probabilities of the following events:

a) A six is thrown (i.e., the sum of the dice is 6)
b) A ten is thrown
c) The sum of the dice is odd
d) The sum of the dice is between 5 and 9

4.9.2*: Calculate the probabilities of the following events. The probability space
is the deal of two cards in order from an ordinary 52-card deck.

a) At least one card is an Ace
b) The cards are of the same rank
c) The cards are of the same suit
d) The cards are of the same rank and suit
e) The cards are the same either in rank or in suit
f) The first card is of a higher rank than the second card

4.9.3*: A dart is thrown at a one foot square on the wall, with equal likelihood of
entering the square at any point. What is the probability that the dart is thrown

SEC. 4.10 CONDITIONAL PROBABILITY 193

a) Within three inches of the center?
b) Within three inches of the border?

Note that for this exercise, the probability space is an infinite one-foot square, with
all points within it equally likely.

4.9.4: Calculate the probability of the player in a 5-spot game of Keno guessing

a) Four out of five
b) All five

4.9.5: Write a C program to implement a linear congruential random number
generator. Plot a histogram of the frequencies of the least significant digits of the
first 100 numbers generated. What property should this histogram have?

✦
✦ ✦

✦
4.10 Conditional Probability

In this section we shall develop a number of formulas and strategies for think-
ing about relationships among the probabilities of several events. One important
development is a notion of independent experiments, where the outcome of one ex-
periment does not affect the outcome of others. We shall also use our techniques to
calculate probabilities in some complicated situations.

These developments depend upon a notion of “conditional probability.” Infor-
mally, if we conduct an experiment and we find that an event E has occurred, it
may or may not be the case that the point representing the outcome is also in some
other event F . Figure 4.15 suggests this situation. The conditional probability of
F given E is the probability that F has also occurred.

E

A

F

B

Fig. 4.15. The conditional probability of F given E is the probability that the

outcome is in A divided by the probability that the outcome is in A or B.

Formally, if E and F are two events in a probability space, we say the condi-

tional probability of F given E, denoted PROB(F/E), is the sum of the probabilities
of the points that are in both E and F divided by the sum of the probabilities of
the points in E. In Fig. 4.15, region A is those points that are in both E and F ,
and B is those points that are in E but not F . If all points are equally likely, then

194 COMBINATORICS AND PROBABILITY

PROB(F/E) is the number of points in A divided by the sum of the numbers of
points in A and B.

✦ Example 4.26. Let us consider the probability space of Fig. 4.14, which repre-
sents the toss of two dice. Let the event E be the six points in which the first die
comes out 1, and let the event F be the six points in which the second die comes
out 1. The situation is shown in Fig. 4.16. There is one point in both E and F ,
namely the point (1, 1). There are five points in E that are not in F . Thus, the
conditional probability PROB(F/E) is 1/6. That is, the chance that the second die
is 1, given that the first die is 1, is 1/6.

We may notice that this conditional probability is exactly the same as the
probability of F itself. That is, since F has 6 out of the 36 points in the space,
PROB(F) = 6/36 = 1/6. Intuitively, the probability of throwing 1 on the second
die is not affected by the fact that 1 has been thrown on the first die. We shall
soon define the notion of “independent experiments,” such as the throwing of dice
in sequence, where the outcome of one experiment does not influence the outcome
of the others. In these cases, if E and F are events representing outcomes of the
two experiments, we expect that PROB(F/E) = PROB(F). We have just seen an
example of this phenomenon. ✦

✦ Example 4.27. Suppose our experiment is the deal of two cards, in order,
from the usual 52-card deck. The number of points in this experiment of selection
without replacement (as in Section 4.4) is 52 × 51 = 2652. We shall assume that
the deal is fair, so each point has the same probability.

Let the event E be that the first card is an Ace, and let event F be that the
second card is an Ace. Then the number of points in E is 4×51 = 204. That is, the
first card must be one of the four Aces, and the second card can be any of 51 cards,
excluding the Ace that was chosen first. Thus, PROB(E) = 204/2652 = 1/13. That
result matches our intuition. All 13 ranks being equally likely, we expect that one
time in 13 an Ace will appear first.

Similarly, the number of points in event F is 51 × 4 = 204. We can choose
any of the 4 Aces for the second card and any of the remaining 51 cards for the
first card. The fact that the first card is theoretically dealt first is irrelevant. There
are thus 204 outcomes in which an Ace appears in the second position. Therefore,
PROB(F) = 1/13 just as for E. Again, this result meets our intuition that one time
in 13 an Ace will be dealt as the second card.

Now, let us compute PROB(F/E). Of the 204 points in E, there are 12 that
have an Ace in the second position and therefore are also in F . That is, all points
in E have an Ace in the first position. We may select this Ace in 4 different ways,
corresponding to the 4 suits. For each selection, we have 3 different choices of
Ace for the second position. Thus, the number of choices of two Aces with order
considered is 4 × 3 according to the technique of Section 4.4.

Therefore, the conditional probability PROB(F/E) is 12/204, or 1/17. We no-
tice that the conditional probability of F given E is not the same as the probability
of F in this example. That also makes intuitive sense. The probability of getting an
Ace in the second position goes down when we know there is an Ace in the first po-
sition. For then, there are only 3 Aces remaining out of 51 cards, and 3/51 = 1/17.

SEC. 4.10 CONDITIONAL PROBABILITY 195

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
(1, 1)

•

•

•

•

•

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(6, 1)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(1, 3)

(2, 3)

(3, 3)

(4, 3)

(5, 3)

(6, 3)

(1, 4)

(2, 4)

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(1, 5)

(2, 5)

(3, 5)

(4, 5)

(5, 5)

(6, 5)

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

E

F

Fig. 4.16. Events representing 1 on the first or second dice.

In comparison, if we know nothing about the first card, there are 4 Aces out of 52
that we may receive as the second card. ✦

Independent Experiments

As we suggested in Examples 4.23, 4.26, and 4.27, we sometimes form a probability
space representing the outcomes of two or more experiments. In the simplest cases,
the points in this joint probability space are lists of outcomes, one for each ofJoint

probability

space

the experiments. Figure 4.16 is an example of a probability space that is joint
between two experiments. In other situations, where there is a connection between
the outcomes of the experiments, the joint space may have some points missing.
Example 4.27 discussed such a case, where the joint space represented the deal of
two cards and the pairs of outcomes in which the two cards are identical are not
possible.

There is an intuitive notion of the outcome of one experiment X being “inde-
pendent” of previous experiments in the sequence, meaning that the probabilities
of the various outcomes of X do not depend on the outcomes of the previous ex-
periments. Thus, in Example 4.26 we argued that the roll of the second die is
independent of the roll of the first die, while in Example 4.27 we saw that the

196 COMBINATORICS AND PROBABILITY

second card dealt was not independent of the first, since the first card was then
unavailable.

In defining independence, we shall focus on two experiments. However, since
either experiment may itself be the sequence of several experiments, we effectively
cover the case of many experiments. We must begin with a probability space that
represents the outcome of two successive experiments, X1 and X2.

✦ Example 4.28. Figure 4.14 illustrates a joint probability space in which ex-
periment X1 is the throw of the first die and X2 is the throw of the second die.
Here, every pair of outcomes is represented by one point, and the points have equal
probability, 1/36.

In Example 4.27 we discussed a space of 2652 points representing the selection
of two cards in order. This space consists of all pairs (C, D) in which C and D are
cards, and C 6= D. Again, each of these points has the same probability, 1/2652. ✦

In the probability space representing the outcomes of X1 followed by X2, there
are events that represent the outcome of one of the experiments. That is, if a is a
possible outcome of experiment X1, then there is an event consisting of all those
points in which the outcome of the first experiment is a. Let us call this event Ea.
Similarly, if b is a possible outcome of X2, then there is an event Fb consisting of
all those points in which the outcome of the second experiment is b.

✦ Example 4.29. In Fig. 4.16, E is E1, the event of all points for which the
outcome of the first experiment is 1. Likewise, F is the event F1, whose points are
those where the outcome of the second experiment is 1. More generally, each row
corresponds to one of the six possible outcomes of the first experiment, and each
column corresponds to one of the six possible outcomes of the second experiment. ✦

Formally, we say that experiment X2 is independent of experiment X1 if for allIndependence

outcomes a for X1 and all outcomes b for X2, PROB(Fb/Ea) = PROB(Fb). That is,
no matter what the outcome of experiment X1, the conditional probability of each
outcome of X2 is the same as it is in the whole probability space.

✦ Example 4.30. Returning to the probability space of Fig. 4.16 representing
the toss of two dice, let a and b each be any of the numbers from 1 to 6. Let Ea

be the event that the first die is a and Fb be the event that the second die is b. We
note that the probability of each of these events is 1/6; they are each one row or
column. For any a and b, PROB(Fb/Ea) is also 1/6. We argued this fact for the case
a = b = 1 in Example 4.26, but the same argument applies to any two outcomes a
and b, because their events have exactly one point in common. Thus, the tosses of
the two dice are independent.

On the other hand, in the card-based Example 4.27, we do not get indepen-
dence. Here, the experiment X1 is the selection of the first card, and the experiment
X2 is the selection of the second card from the remaining deck. Consider an event
like FA♠ — that is, the second card is the Ace of Spades. It is easy to count that

SEC. 4.10 CONDITIONAL PROBABILITY 197

the probability of this event, PROB(FA♠), is 1/52.

Now, consider an event like E3♣, the first card is the Three of Clubs. The
number of points in both E3♣ and FA♠ is 1, namely the point (3♣, A♠). The total
number of points in E3♣ is 51, namely those points of the form (3♣, C) where C is
any card but the Three of Clubs. Thus, the conditional probability PROB(FA♠/E3♣)
is 1/51, not 1/52 as it would have to be if the two experiments were independent.

For a more extreme example, consider the event EA♠ in which the first card is
the Ace of Spades. Since EA♠ and FA♠ have no point in common, PROB(FA♠/EA♠)
is 0 instead of 1/52. ✦

A Distributive Law for Probabilities

Sometimes it is easier to calculate the probability of an event if we first divide the
probability space into regions2 that partition the space. That is, every point is inRegion

exactly one region. Typically, the probability space represents the outcome of a
sequence of experiments, and the regions, which are themselves events, correspond
to the possible outcomes of one of these experiments.

Suppose we wish to calculate the probability of event E in a space of n points
that is divided into k regions, R1, R2, . . . , Rk. For simplicity, we shall assume that
all points have equal probability, although the conclusion we draw holds as well if
the points have differing probabilities. Let event E consist of m points. Let region
Ri have ri points, for i = 1, 2, . . . , k. Finally, let the number of points of E that lie
in region Ri be ei. Note that

∑k
i=1

ri = n, and
∑k

i=1
ei = m. The reason in each

case is that points are each in one and only one region.

We know PROB(E) = m/n, because m/n is the fraction of points in E. If we
replace m by the sum of the ei’s we get

PROB(E) =

k
∑

i=1

ei

n

Next, introduce factor ri in both the numerator and denominator in each term of
the sum above. The result is

PROB(E) =
k

∑

i=1

(
ei

ri
)(

ri

n
)

Now, notice that ri/n = PROB(Ri); that is, ri/n is the fraction of the entire space
in region Ri. Also, ei/ri is PROB(E/Ri), the conditional probability of event E
given event Ri. Put another way, ei/ri is the fraction of the points in region Ri

that are in E. The result is the following formula for the probability of an event E.

PROB(E) =
k

∑

i=1

PROB(E/Ri)PROB(Ri) (4.10)

Informally, the probability of E is the sum over all regions of the probability of
being in that region times the probability of E within that region.

2 A “region” is synonymous with an “event,” that is, a subset of a probability space. However,
we shall use the term region to emphasize the fact that the space is being partitioned into
events that completely cover the space and do not overlap.

198 COMBINATORICS AND PROBABILITY

✦ Example 4.31. The diagram in Fig. 4.17 suggests how Equation (4.10) is to
be applied. There we see a probability space that has been divided vertically into
three regions, R1, R2, and R3. There is an event E, which we doubly outline. We
let a through f be the numbers of points in the six sets shown.

R1 R2 R3

a

b

c

d

e

f

E

Fig. 4.17. A probability space divided into regions.

Let n = a + b + c + d + e + f . Then PROB(R1) = (a + b)/n, PROB(R2) =
(c + d)/n, and PROB(R3) = (e + f)/n. Next, the conditional probabilities of E
in the three regions are PROB(E/R1) = a/(a + b), PROB(E/R2) = c/(c + d), and
PROB(E/R3) = e/(e + f). Now, to evaluate formula (4.10), we have

PROB(E) = PROB(E/R1)PROB(R1) + PROB(E/R2)PROB(R2)+

PROB(E/R3)PROB(R3)

This formula, in terms of the parameters a through f , is

PROB(E) = (
a

a + b
)(

a + b

n
) + (

c

c + d
)(

c + d

n
) + (

e

e + f
)(

e + f

n
)

=
a

n
+

c

n
+

e

n

Notice that the same result can be obtained by simply comparing the numbers of
points in the three areas labeled a, c, and e with the size of the entire space. This
fraction, (a + c + e)/n, is exactly what the formula above gives for the probability
of E. That observation illustrates Equation (4.10). ✦

✦ Example 4.32. Let us use Equation (4.10) to compute the probability of the
event E that two cards dealt in order are both Aces. The probability space is the
2652 points discussed in Example 4.27. We shall divide this space into two regions:

R1: Those points in which the first card is an Ace. There are 4 × 51 = 204 such
points, since we may pick the first card to be an Ace in 4 ways, and there are
then 51 choices of second card.

R2: The remaining 2448 points.

SEC. 4.10 CONDITIONAL PROBABILITY 199

Equation (4.10) in this case becomes

PROB(E) = PROB(E/R1)PROB(R1) + PROB(E/R2)PROB(R2)

Clearly PROB(E/R2), the conditional probability of E given R2, is 0. There is
no way to get two Aces if the first card is not an Ace. We must thus compute
PROB(E/R1)PROB(R1), and this value is PROB(E). Now PROB(R1) = 204/2652 =
1/13. In other words, the chance of getting an Ace as the first card is 1/13. Since
there are thirteen ranks, that probability makes sense.

Now, we need to compute PROB(E/R1). If the first card is an Ace, then there
remain 3 Aces out of 51 cards. Thus, PROB(E/R1) = 3/51 = 1/17. We conclude
that PROB(E) = (1/17)(1/13) = 1/221. ✦

✦ Example 4.33. Let us apply Equation (4.10) to the problem of computing the
probability of the event E that at least one 1 appears in the toss of three dice, as in
the game Chuck-a-Luck described in Example 4.16. First, we must understand that
the notion of an “outcome” described in that example does not match the notion
of a point in a probability space. In Example 4.16 we established that there were
56 different “outcomes,” which were defined to be the numbers of occurrences of 1
through 6 on the faces of the dice. For instance, “a 4, a 5, and a 6” is one possible
outcome; “two 3’s and a 4” is another. However, not all outcomes in this sense have
the same probability. In particular, outcomes with three different numbers showing
have twice the probability of outcomes with two of one number and six times the
probability of an outcome where all three dice show the same number.

While we could use the probability space whose points are “outcomes ” in the
sense of Example 4.16, it is more natural to consider the order in which the dice
are rolled and thus develop a probability space whose points have equal probability.
There are 63 = 216 different outcomes corresponding to the roll of three dice, in
order, and each of these outcomes has probability 1/216.

We could calculate the probability of at least one 1 in a direct manner, without
using Equation (4.10). First, calculate the number of rolls in which no 1 appears.
We can assign to each of the three dice any of the numbers from 2 to 6. There are
thus 53 = 125 points in the space that have no 1, and 216 − 125 = 91 points that
do have a 1. Therefore, PROB(E) = 91/216, or about 42%.

The approach above is short but requires that we use several “tricks.” An-
other way to calculate the probability “by force” is to divide the space into three
regions, corresponding to the cases in which there are one, two, or three different
numbers showing. Let Ri be the region of points with i different numbers. We
can calculate the probabilities of the various regions as follows. For R1 there are
only six points, one for each of the numbers 1 through 6 that may appear on all
three dice. For R3 there are 6 × 5 × 4 = 120 ways to select three different numbers
out of six, according to the rule of Section 4.4. Thus, R2 must have the remain-
ing 216 − 6 − 120 = 90 points.3 The probabilities of the regions are PROB(R3) =
6/216 = 1/36, PROB(R2) = 90/216 = 5/12, and PROB(R1) = 120/216 = 5/9.

Next, we can calculate the conditional probabilities. If there are three numbers
out of the possible six showing, the probability is 1/2 that one of them is 1. If two

3 We can compute this number directly by multiplying 6 ways that we can choose the number

to appear twice, times 5 ways we can pick the number on the remaining dice, times
(

3

1

)

= 3

ways we can pick the die that has the unique number. Note that 6 × 5 × 3 = 90.

200 COMBINATORICS AND PROBABILITY

numbers are showing, the probability is 1/3 that 1 appears at least once. If only
one number shows, there is a 1/6 chance that it is 1. Thus, PROB(E/R1) = 1/6,
PROB(E/R2) = 1/3, and PROB(E/R3) = 1/2. We can put all these probabilities
together to evaluate (4.10). The result is

PROB(E) = (1/6)(1/36) + (1/3)(5/12) + (1/2)(5/9)
= 1/216 + 5/36 + 5/18 = 91/216

This fraction agrees with the direct calculation, of course. If we see the “trick” of
the direct calculation, that approach is considerably easier. However, breaking the
problem into regions is frequently a more reliable way to guarantee success. ✦

A Product Rule for Independent Experiments

A common type of probability problem asks for the probability of a sequence of
outcomes to a sequence of independent experiments. In that case, Equation (4.10)
has an especially simple form, and it tells us that the probability of a sequence of
outcomes is the product of the probabilities of each outcome by itself.

First, whenever we divide the probability space into k regions of equal size, we
know that PROB(Ri) = 1/k for all i. Thus (4.10) reduces to

PROB(E) =

k
∑

i=1

1

k
PROB(E/Ri) (4.11)

A useful way to look at (4.11) is that the probability of E is the average over all
regions of the probability of E given we are in that region.

Now, consider a probability space that represents the outcomes of two inde-
pendent experiments X1 and X2. We may divide this space into k regions, each the
set of points for which the outcome of X1 has a particular value. Then each of the
regions has the same probability, 1/k.

Suppose we want to calculate the probability of the event E in which X1 has
the outcome a and X2 has the outcome b. We may use formula (4.11). If Ri is not
the region corresponding to outcome a for X1, then PROB(E/Ri) = 0. Thus, all
but the term for the region of a drops out of (4.11). If Ra is that region, we get

PROB(E) =
1

k
PROB(E/Ra) (4.12)

What is PROB(E/Ra)? It is the probability that X1 has outcome a and X2 has
outcome b, given that X1 has outcome a. Since we are given that X1 has outcome
a, PROB(E/Ra) is just the probability that X2 has outcome b given that X1 has
outcome a. Since X1 and X2 are independent, PROB(E/Ra) is just the probability
that X2 has outcome b. If there are m possible outcomes for X2, then PROB(E/Ra)
is 1/m. Then (4.12) becomes

PROB(E) = (
1

k
)(

1

m
)

We may generalize the above reasoning to any number of experiments. To do
so, we let experiment X1 be a sequence of experiments and show by induction on
the total number of independent experiments that the probability of all having a
particular sequence of outcomes is the product of the probabilities of each outcome.

SEC. 4.10 CONDITIONAL PROBABILITY 201

Using Independence to Simplify Calculations

There are many opportunities to simplify probability calculations if we know that
experiments are independent. The product rule is one such example. Another is that
whenever event E is the set of points with a particular outcome from experiment
X1, and F is the set of points with a particular outcome of another, independent
experiment X2, then PROB(E/F) = PROB(E).

In principle, telling whether two experiments are independent is a complex
task involving examination of the probability space representing pairs of outcomes
of each experiment. However, often we can appeal to the physics of the situation
to conclude that experiments are independent without doing this calculation. For
example, when we throw dice in sequence, there is no physical reason why the
outcome of one would influence the other, so they must be independent experiments.
Contrast the situation of dice with the deal of several cards from a deck. Since cards
dealt are unavailable to be dealt at a future step, we do not expect successive cards
to be independent of each other. We in fact observed this lack of independence in
Example 4.29.

✦ Example 4.34. The probability that the last four digits of a phone number
are 1234 is 0.0001. The selection of each digit is an experiment with ten possible
outcomes: 0 through 9. Moreover, each selection is independent of the other se-
lections, since we are performing a “selection with replacement” as in Section 4.2.
The probability that the first digit is 1 is 1/10. Similarly, the probability that the
second digit is 2 is 1/10, and likewise for the other two digits. The probability of
the event that the four digits are 1234 in order is (1/10)4 = 0.0001. ✦

EXERCISES

4.10.1: Using the space of Fig. 4.14, give the conditional probabilities of the fol-
lowing pairs of events.

a) The second die is even, given that the first die is odd

b) The first die is even, given that the second die is at least 3

c) The sum of the dice is at least 7, given that the first die is 4

d) The second die is 3, given that the sum of the dice is 8

4.10.2: Divide the Chuck-a-Luck (see Example 4.16) probability space into three
regions, as in Example 4.33. Use this division and Equation 4.10 to compute the
probability that

a) There are at least two 1’s showing

b) All three dice are 1

c) There is exactly one 1 showing

4.10.3: Show that in Chuck-a-Luck, the probability of any event in which all three
dice have different values is twice the probability of any event where one number
appears exactly twice and six times the probability of any event in which all three
dice show the same number.

202 COMBINATORICS AND PROBABILITY

4.10.4*: Show by induction on n that if there are n experiments, each of which
is independent of those that go before, then the probability of any sequence of
outcomes is the product of the probabilities of each outcome in its own experiment.

4.10.5*: Show that if PROB(F/E) = PROB(F), then PROB(E/F) = PROB(E).
Thus, show that if experiment X1 is independent of experiment X2, then X2 is
independent of X1.

4.10.6*: Consider the set of sequences of seven letters chosen from W and L. We may
think of these sequences as representing the outcomes of a match of seven games,
where W means the first team wins the game and L means the second team wins the
game. The match is won by the first team to win four games (thus, some games
may never get played, but we need to include their hypothetical outcomes in the
points in order that we have a probability space of equally likely points).

a) What is the probability that a team will win the match, given that it has won
the first game?

b) What is the probability that a team will win the match, given that it has won
the first two games?

c) What is the probability that a team will win the match, given that it has won
two out of the first three games?

4.10.7**: There are three prisoners, A, B, and C. They are told one and only one
is to be shot and that the guard knows who. A asks the guard to tell him the name
of one of the other prisoners who will not be shot. The guard answers that B will
not be shot.

A reasons that either he or C will be shot, so the probability that A will be
shot is 1/2. On the other hand, reasons A, no matter who is to be shot, the guard
knows somebody besides A who will not be shot, so he always has an answer to
A’s question. Therefore, the asking and answering of the question provides no
information about whether or not A is to be shot, so the probability that A will be
shot is still 1/3, as it was before the question was asked.

What is the true probability that A will be shot after the sequence of events
described above? Hint : You need to construct an appropriate probability space,
one that represents not only the experiment in which a prisoner is chosen to be shot
but also the possibility that the guard has a choice of whether to answer “B” or
“C,” and the experiment in which he chooses one if so.

4.10.8*: Suppose that E is an event in a space that is partitioned into k regions
R1, R2, . . . , Rk. Show that

PROB(Rj/E) =
PROB(Rj)PROB(E/Rj)

∑k
i=1

PROB(Ri)PROB(E/Ri)

This formula is called Bayes’ Rule. It gives a value for the probability of Rj givenBayes’ Rule

that E has been observed. For Example 4.31, calculate PROB(R1/E), PROB(R2/E),
and PROB(R3/E) using Bayes’ rule.

SEC. 4.11 PROBABILISTIC REASONING 203

✦
✦ ✦

✦
4.11 Probabilistic Reasoning

An important application of probability in computing is in the design of systems
that predict events. An example is a medical diagnosis system. Ideally, the process
of diagnosis consists of performing tests or observing symptoms until the outcome of
the tests and presence or absence of certain symptoms is sufficient for the physician
to determine what disease the patient has. In practice, however, diagnoses are
rarely certain. Rather, a diagnosis is the most likely disease, or a disease whose
conditional probability, given the outcomes of the experiments that are the tests
and observations of symptoms, is highest.

Let us consider an overly simple example that has the flavor of diagnosis using
probability. Suppose it is known that when a patient has a headache, the probability
that he has the flu is 50%. That is,

PROB(Flu/Headache) = 0.5

In the above, we interpret Flu as the name of an event that can be interpreted as
“the patient has the flu.” Similarly, Headache is the name of the event that the
patient complains of a headache.

Suppose we also know that when the patient’s temperature is measured at 102
(Fahrenheit) or above, the probability is 60% that he has the flu. If we allow Fever
to be the name of the event that the patient’s temperature is at least 102, then we
can write this observation as

PROB(Flu/Fever) = 0.6

Now, consider the following diagnosis situation. A patient comes to the doctor
complaining of a headache. The doctor takes his temperature and finds it is 102.
What is the probability that the patient has the flu?

The situation is suggested by Fig. 4.18. There we see the three events Flu,
Headache, and Fever, which together divide the space into 8 regions, which we
indicate by letters a through h. For example, c is the event that the patient has a
headache and flu, but not a fever.

The given information about probabilities puts some constraints on the sizes
of the events in Fig. 4.18. Let us use the letters a through h as standing not only
for the regions indicated in Fig. 4.18 but as the probabilities of those events. Then
the condition that PROB(Flu/Headache) = 0.5 says that the sum of regions c + f
is half the total size of the headache event, or put another way:

c + f = d + g (4.13)

Similarly, the fact that PROB(Flu/Fever) = 0.6 says that e + f is 3/5 of the total
size of the Fever event, or:

e + f = 3

2
(g + h) (4.14)

Now, let us interpret the question: what is the probability of flu, given both a
fever and a headache? The fact that there is both fever and headache says that we
are either in region f or region g. In region f the diagnosis of flu is correct, and in
g it is not. Thus, the probability of flu is f/(f + g).

What is the value of f/(f + g)? The answer may be surprising. We have
absolutely no information about the probability of flu; it could be 0 or 1 or anything
in between. Here are two examples of how the points of the probability space of
Fig. 4.18 could actually be distributed.

204 COMBINATORICS AND PROBABILITY

a

b
c

d

e

f

g

h

Flu Headache

Fever

Fig. 4.18. The events Flu, Headache, and Fever.

✦ Example 4.35. Suppose that in Fig. 4.18 the probabilities associated with the
various events are: d = f = 0.3, a = h = 0.2, and the four other regions have
probability 0. Note that these values satisfy the constraining equations (4.13) and
(4.14). In this example, f/(f + g) = 1; that is, a patient with both a headache and
fever is certain to have the flu. Then the probability space of Fig. 4.18 actually
looks like that of Fig. 4.19. There we see that whenever a patient has both a fever
and headache, he has the flu, and conversely, whenever he has the flu, he has both
fever and headache.4 ✦

✦ Example 4.36. Another example is given by the probabilities c = g = 0.2,
a = e = 0.3, with other probabilities 0. Again, Equations (4.13) and (4.14) are
satisfied. Now, however, f/(f + g) = 0. That is, if you have both a fever and
headache, then you are certain not to have the flu, a rather doubtful statement, but
one that is not ruled out by Equations (4.13) and (4.14). The situation is shown in
Fig. 4.20. ✦

4 Although there are other examples where b 6= 0 — that is, one can have the flu and yet have
neither fever nor headache — yet f/(f + g) = 1.

SEC. 4.11 PROBABILISTIC REASONING 205

a

f d

h

Headache

Fever

Flu

Fig. 4.19. Example of space where Fever and Headache guarantee Flu.

e g

c

a

Fever

Flu

Headache

Fig. 4.20. Example of space where Fever and Headache guarantee no Flu.

Probability of the OR of Two Events

If we cannot tell anything about what happens when a patient has both fever and
headache in the previous scenario, we might wonder whether there is anything we
can say. In simpler situations there is indeed some limit to how probabilities behave
when events are combined. Perhaps the most straightforward situation occurs when
we combine two events with disjunction or logical-OR.Disjunction

✦ Example 4.37. Referring again to the situation of Fig. 4.18, suppose we are
told that at any time, 2% of the population has a fever and 3% of the population
has a headache. That is, the size of the event Fever is 0.02, and the size of the event
Headache is 0.03. What fraction of the population has either a fever or a headache,
or both?

The answer is that between 3% and 5% of the population has at least one. To
see why, let us do some calculation in terms of the eight regions defined in Fig. 4.18.

206 COMBINATORICS AND PROBABILITY

If Fever has probability 0.02, that says

e + h + f + g = 0.02 (4.15)

If Headache has probability 0.03, then

c + d + f + g = 0.03 (4.16)

We are asked what is the size of the regions that are in either Fever or Headache or
both; that is, how large is e + h + f + g + c + d?

If we add (4.15) and (4.16), we get e + h + 2(f + g) + c + d = 0.05, or put
another way,

e + h + f + g + c + d = 0.05 − (f + g) (4.17)

Since the probability of Fever-or-Headache is the left side of (4.17), it is also the
right side, or 0.05 − (f + g).

At the minimum, f + g is 0, so the probability of Fever-or-Headache can be as
high as 0.05, but no higher. That is, it is possible that fever and headache never
occur together. Then the regions f and g are empty, e+h = 0.02, and c+d = 0.03.
In this case, the probability of Fever-or-Headache is the sum of the probability of
Fever and the Probability of Headache.

What is the maximum value f + g could have? Surely f + g is no bigger than
the entire Fever event and no bigger than the entire Headache event. Since Fever
is smaller, we see that f + g ≤ 0.02. Thus, the smallest the probability of Fever-or-
Headache could be is 0.05−0.02, or 0.03. This result happens to be the probability
of Headache, the larger of the two events. That is no coincidence. Another way to
look at it is that the smallest size Fever-or-Headache could have occurs when the
smaller of the two events is wholly contained within the larger. In this example,
that occurs when e + h = 0, and Fever is contained within Headache. In that
case, you cannot have a fever unless you also have a headache, so the probability of
Fever-or-Headache is the same as the probability of Headache alone, or 0.03. ✦

We can generalize our explorations of Example 4.37 to any two events. The
rule for sums is as follows. If E and F are any two events, and G is the event thatRule for sums

either E or F or both occurs, then

max
(

PROB(E), PROB(F)
)

≤ PROB(G) ≤ PROB(E) + PROB(F) (4.18)

That is, the probability of E-or-F is between the larger of the probabilities of E
and F and the sum of those probabilities.

The same idea holds within any other event H . That is, all the probabilities
in (4.18) may be made conditional on event H , giving us the more general rule

max
(

PROB(E/H), PROB(F/H)
)

≤ PROB(G/H)
≤ PROB(E/H) + PROB(F/H) (4.19)

✦ Example 4.38. Suppose, in the scenario of Fig. 4.18 we are told that 70% of all
people with the flu have a fever, and 80% of all people with the flu have a headache.
Then in (4.19), Flu is the event H , E is the event Fever, F is Headache, and G is
Headache-or-Fever. We are told that PROB(E/H) = PROB(Fever/Flu) = 0.7, and
PROB(F/H) = PROB(Headache/Flu) = 0.8.

SEC. 4.11 PROBABILISTIC REASONING 207

Rule (4.19) says that PROB(G/H) is at least the larger of 0.7 and 0.8. That is,
if you have the flu, then the probability that you have a fever or headache or both
is at least 0.8. Rule (4.19) also says that PROB(G/H) is at most

PROB(E/H) + PROB(F/H)

or 0.7+0.8 = 1.5. However, that upper bound is not useful. We know that no event
can have probability greater than 1, so 1 is a better upper bound on PROB(G/H). ✦

Probability of the AND of Events

Suppose we are again told that the probability of Fever is 0.02 and the probability
of Headache is 0.03. What is the probability of Fever-and-Headache, that is, the
probability that a person has both fever and headache? As for the OR of two events,
we cannot tell exactly, but sometimes we can put some limits on the probability of
the conjunction (logical AND) of two events.Conjunction

In terms of Fig. 4.18, we are asking how big f + g can be. We already observed
in connection with the OR of events that f + g is largest when the smaller of the
two events, Fever in this case, is wholly contained within the other. Then, all the
probability of Fever is concentrated in f +g, and we have f +g = 0.02. That is, the
probability of Fever-and-Headache is at most 0.02, the probability of Fever alone.
In general, the probability of the AND of two events cannot exceed the probability
of the smaller.

How small can f + g be? Evidently there is nothing that prevents Fever and
Headache from being disjoint, so f + g could be 0. That is, there may be no one
who has both a fever and headache.

Yet the above idea does not generalize completely. Suppose that instead of the
tiny probabilities 0.02 and 0.03 for the events Fever and Headache, we found that
60% had a fever and 70% had a headache. Is it possible that no one has both a fever
and a headache? If f + g = 0 in this situation, then e + h = 0.6, and c + d = 0.7.
Then e + h + c + d = 1.3, which is impossible. That is, we would have in Fig. 4.18
an event, e + h + c + d, with a probability greater than 1.

Evidently, the size of the AND of two events cannot be smaller than the sum of
the probabilities of the events minus 1. If not, then the OR of the same two events
has a probability greater than 1. This observation is summarized in the rule for

products. If E and F are two events, and G is the event that both of E and FRule for

products occur, then

PROB(E) + PROB(F) − 1 ≤ PROB(G) ≤ min
(

PROB(E), PROB(F)
)

As with the rule for sums, the same idea applies to probabilities that are
conditional upon some other event H . That is,

PROB(E/H) + PROB(F/H) − 1 ≤ PROB(G/H)
≤ min

(

PROB(E/H), PROB(F/H)
)

(4.20)

✦ Example 4.38. Again referring to Fig. 4.18, suppose that 70% of those with
the flu have a fever and 80% have a headache. How many have both a fever and
a headache? According to (4.20) with H the event Flu, the probability of both a
fever and headache, given that the person has the flu, is at least 0.7 + 0.8− 1 = 0.5
and at most min(0.7, 0.8) = 0.7. ✦

208 COMBINATORICS AND PROBABILITY

Summary of Rules Involving Several Events

The following summarizes rules of this section and rules about independent events
from the last section. Suppose E and F are events with probabilities p and q,
respectively. Then

✦ The probability of event E-or-F (i.e., at least one of E and F) is at least
max(p, q) and at most p + q (or 1 if p + q > 1).

✦ The probability of event E-and-F (i.e., both E and F) is at most min(p, q) and
at least p + q − 1 (or 0 if p + q < 1).

✦ If E and F are independent events, then the probability of E-and-F is pq.

✦ If E and F are independent events, then the probability of E-or-F is p+q−pq.

The latter rule requires some thought. The probability of E-or-F is p+ q minus the
fraction of the space that is in both events, since the latter space is counted twice
when we add the probabilities of E and F . The points in both E and F are exactly
the event E-and-F , whose probability is pq. Thus,

PROB(E-or-F) = PROB(E) + PROB(F) − PROB(E-and-F) = p + q − pq

The diagram below illustrates the relationships between these various events.

E F

E-and-F

E-or-F

prob. = q

prob.

= pq

prob. = p

prob. = p + q − pq

Some Ways to Deal With Relationships Among Events

In applications that require us to compute the probability of compound eventsCompound

event (events that are the AND or OR of several other events), often we do not need to
know exact probabilities. Rather, we need to determine what is the most likely
situation or a situation that has high probability (i.e., probability close to 1). Thus,
the range of probabilities that a compound event may not present a great problem,

SEC. 4.11 PROBABILISTIC REASONING 209

as long as we can deduce that the probability of the event is “high.”

For instance, in the medical diagnosis problem introduced in Example 4.35, we
may never be able to deduce with probability 1 that the patient has the flu. But
as long as the combination of observed symptoms and symptoms not present in the
patient together allow us to conclude that the probability he has the flu is very
high, then it may make good sense to treat the patient for flu.

However, we observed in Example 4.35 that we could say essentially nothing
about the probability that a patient with both a headache and fever has the flu,
even though we know that each symptom by itself strongly suggests the flu. A real
reasoning system needs more information or more rules from which it can estimate
probabilities. As a simple example, we might be given explicitly the probability
PROB(Flu/Headache-and-Fever). That would settle the question immediately.

However, if there are n events E1, E2, . . . , En that in some combination might
let us conclude another event F , then we need to give explicitly 2n − 1 different
probabilities. These are the conditional probabilities of F given each set of one or
more of E1, E2, . . . , En.

✦ Example 4.40. For the case n = 2, such as Example 4.35, we need only
give three conditional probabilities. Thus we might assert, as we did previously,
that PROB(Flu/Fever) = 0.6 and PROB(Flu/Headache) = 0.5. Then, we might add
information such as PROB(Flu/Fever-and-Headache) = 0.9. ✦

To avoid having to specify an exponential number of conditional probabilities,
there are many types of restrictions that have been used to help us deduce or
estimate probabilities. A simple one is a statement that one event implies another;Implication of

events that is, the first event is a subset of the second event. Often, such information tells
us something useful.

✦ Example 4.41. Suppose we state that whenever one has the flu, one is sure to
have a headache. In terms of Fig. 4.18, we are saying that regions b and e are empty.
Suppose also that whenever one has the flu, one also has a fever. Then region c
of Fig. 4.18 is also empty. Figure 4.22 suggests the simplification to Fig. 4.18 that
results from these two assumptions.

Under the conditions that b, c, and e are all 0, and again assuming that
PROB(Flu/Headache) = 0.5 and PROB(Flu/Fever) = 0.6, we can rewrite Equations
(4.13) and (4.14) as

f = d + g
f = 3

2
(g + h)

Since d and h are both at least 0, the first equation says f ≥ g and the second says
f ≥ 3g/2.

Now, let us see what we know about the probability of flu, given both fever and
headache, that is, PROB(Flu/Fever-and-Headache). This conditional probability
in either Fig. 4.18 or Fig. 4.22 is f/(f + g). Since f ≥ 3g/2, we conclude that
f/(f +g) ≥ 0.6. That is, the probability is at least 0.6 that a patient with headache
and fever has the flu. ✦

210 COMBINATORICS AND PROBABILITY

a

f

g

d

h

Fig. 4.22. Here, Flu implies both Headache and Fever.

We can generalize Example 4.41 to apply to any three events, two of which are
implied by the third. Suppose E, F , and G are events, and

PROB(E/G) = PROB(F/G) = 1

That is, whenever G occurs, E and F are certain to occur as well. Suppose further
that PROB(G/E) = p and PROB(G/F) = q. Then

PROB(G/E-and-F) ≥ max(p, q) (4.21)

The reason Equation (4.21) holds can be seen from Fig. 4.22, if we interpret Flu
as G, Fever as E, and Headache as F . Then p = f/(f +g+h) and q = f/(f +g+d).
Since d and h are at least 0, it follows that p ≤ f/(f + g) and q ≤ f/(f + g). But
f/(f + g) is PROB(G/E-and-F). Thus, this conditional probability is equal to or
greater than the larger of p and q.

EXERCISES

4.11.1: Generalize the rule of sums and the rule of products to more than two
events. That is, if E1, E2, . . . , En are events with probabilities p1, p2, . . . , pn, re-
spectively,

a) What can we say about the probability that at least one of the n events occur?

b) What can we say about the probability that all n events occur?

4.11.2*: If PROB(F/E) = p, what, if anything, can we say about

a) PROB(F/Ē)

b) PROB(F̄ /E)

c) PROB(F̄ /Ē)

Recall that Ē is the complement event for E and F̄ is the complement event for F .

SEC. 4.11 PROBABILISTIC REASONING 211

Other Applications of Probabilistic Reasoning

We have seen in this section a tiny illustration of an important application of prob-
abilistic reasoning: medical diagnosis. Here are some of the other areas in which
similar ideas appear in computer solutions.

✦ Systems diagnosis. A device fails, exhibiting some incorrect behavior. For
example, a computer’s screen is blank but the disk is running. What has
caused the problem?

✦ Corporate planning. Given probabilities of economic conditions, such as a rise
in inflation, a decrease in supply of a certain commodity, and so on, what
strategies have the greatest probability of success?

✦ Intelligent appliances. State-of-the-art appliances of many sorts use probabilis-
tic reasoning (often referred to as “fuzzy logic”) to make decisions for the user.Fuzzy logic

For example, a washing machine can spin and weigh its load and predict the
most likely kind of fabric (e.g., wash-and-wear or woolens), adjusting the cycle
accordingly.

4.11.3: An intelligent building control tries to predict whether it will be a “cold”
night, which we shall take to mean that the nighttime low is at least 20 degrees
colder than the daytime high. It knows that when the sunlight falling on its sensor
is high just before sunset, there is a 60% probability of a cold night (because there
is apparently no cloud cover, allowing heat to radiate more easily from the earth).
It also knows that if the change in temperature the hour after sunset is at least 5
degrees, then the probability is 70% of a cold night. Refer to these three events as
Cold, High, and Dropping, respectively. Let us suppose also that PROB(High) =
0.4 and PROB(Dropping) = 0.3.

a) Give upper and lower limits on PROB(High-and-Dropping).

b) Give upper and lower limits on PROB(High-or-Dropping).

c) Suppose we are also told that whenever it is going to be cold at night, the
sunlight sensor reads high, and the temperature drops at least 4 degrees after
sunset, i.e., PROB(High/Cold) and PROB(Dropping/Cold) are both 1. Give
upper and lower limits on PROB(Cold/High-and-Dropping).

d**)Under the same assumption as part (c), give upper and lower limits on

PROB(Cold/High-or-Dropping)

Note that this problem requires reasoning not covered in the section.

4.11.4*: In many situations, such as Example 4.35, two or more events mutually
reinforce a conclusion. That is, we expect intuitively that whatever

PROB(Flu/Headache)

may be, being told that the patient has a fever as well as a headache increases
the probability of flu. Say that event E reinforces event F in the conclusion GReinforcing

events if PROB(G/E-and-F) ≥ PROB(G/F). Show that if events E and F each reinforce
the other in the conclusion G, then Equation (4.21) holds. That is, the conditional

212 COMBINATORICS AND PROBABILITY

probability of G given E and F is at least the larger of the conditional probability
of G given E and the conditional probability of G given F .

✦
✦ ✦

✦
4.12 Expected Value Calculations

Commonly, the possible outcomes of an experiment have associated values. In this
section, we shall use simple gambling games as examples, where money is won or lost
depending on the outcome of the experiment. In the next section, we shall discuss
more complex examples from computer science, where we compute the expected
running time of certain algorithms.

Suppose we have a probability space and a payoff function f on the points ofPayoff function

that space. The expected value of f is the sum over all points x of f(x)PROB(x).
We denote this value by EV(f). When all points are equally likely, we can compute
the expected value EV(f) by

1. Summing f(x) for all x in the space and then

2. Dividing by the number of points in the space.

The expected value is sometimes called the mean value and it can be thought of asMean value

a “center of gravity.”

✦ Example 4.42. Suppose the space is the six points representing the outcomes
of the throw of a fair die. These points are naturally thought of as integers 1
through 6. Let the payoff function be the identity function; that is, f(i) = i for
i = 1, 2, . . . , 6. Then the expected value of f is

EV(f) =
(

f(1) + f(2) + f(3) + f(4) + f(5) + f(6)
)

/6

= (1 + 2 + 3 + 4 + 5 + 6)/6 = 21/6 = 3.5

That is, the expected value of the number on a die is 3.5.
As another example, let g be the payoff function g(i) = i2. Then, for the same

experiment — the throw of one die — the expected value of g is

EV(g) = (12 + 22 + 32 + 42 + 52 + 62)/6

= (1 + 4 + 9 + 16 + 25 + 36)/6 = 91/6 = 15.17

Informally, the expected value for the square of the number thrown on a die is
15.17 ✦

✦ Example 4.43. Let us reconsider the game of Chuck-a-Luck, first introduced
in Example 4.16. The payoff rules for this game are as follows. A player bets one
dollar on a number. If that number comes up one or more times, then the player
receives as many dollars as his number appears. If the number does not come up
at all, then the player loses his dollar.

The probability space for Chuck-a-Luck is the 216 points consisting of the
triples of numbers between 1 and 6. These points represent the outcome of the toss
of three dice. Let us suppose that the player bets on number 1. It should be clear
that the expected value of the player’s winnings or losings does not depend on the
number bet on, as long as the dice are fair.

SEC. 4.12 EXPECTED VALUE CALCULATIONS 213

The payoff function f for this game is:

0. g(i, j, k) = −1 if none of i, j, or k is 1. That is, the player loses a dollar if there
are no 1’s.

1. g(i, j, k) = 1 if exactly one of i, j, or k is 1.

2. g(i, j, k) = 2 if exactly two of i, j, or k are 1.

3. g(i, j, k) = 3 if all three of i, j, or k are 1.

Our problem then is to average g over the 216 points. Since enumeration of all
these points is tedious, we are better off trying to count the number of points with
each of the four different outcomes.

First, let us count the number of triples with no 1’s. There are five numbers
to chose from in each position, so we have an assignment problem as in Section 4.2.
There are thus 53 = 125 points with no 1’s. These 125 points contribute −125 to
the sum of the payoffs, by rule (0) above.

Next, let us count the number of triples with exactly one 1. The 1 can appear
in any of the three places. For each place that holds the 1, there are choices of five
numbers for each of the other two places. Thus, the number of points with exactly
one 1 is 3 × 5 × 5 = 75. These points contribute +75 to the payoff by rule (1).

The number of points with all three 1’s is clearly one, so this possibility con-
tributes +3 to the payoff. The remaining 216− 125− 75− 1 = 15 points must have
two 1’s, so these 15 points contribute +30 to the payoff by rule (2).

Finally, we can compute the expected value of the game by adding the payoffs
from each of the four types of points and dividing by the total number of points.
Thus calculation is

EV(f) = (−125 + 75 + 30 + 3)/216 = −17/216 = −0.079

That is, on the average, the player loses almost 8 cents for every dollar wagered.
This result may be surprising, since the game superficially looks like an even bet.
This point is discussed in the exercises. ✦

As Example 4.43 suggests, it is sometimes easier to group the points according
to the value of their payoff function. In general, suppose we have a probability
space with a payoff function f , and f has a finite number of different values that it
produces. For instance, in Example 4.43 f produced only the values −1, 1, 2, and
3. For each value v produced by f , let Ev be the event consisting of the points x
such that f(x) = v. That is, Ev is the set of points on which f produces value v.
Then

EV(f) =
∑

v

v PROB(Ev) (4.22)

In the common case where the points have equal probability, let nv be the
number of points in event Ev and let n be the total number of points in the space.
Then PROB(Ev) is nv/n, and we may write

EV(f) =
(

∑

v

vnv

)

/n

214 COMBINATORICS AND PROBABILITY

✦ Example 4.44. In Example 4.25, we introduced the game of Keno, and com-
puted the probability of guessing three out of 5 correct. Now let us compute the
expected value of the payoff in the 5-spot game of Keno. Recall that in the 5-spot
game, the player guesses five numbers from 1 to 80. When the game is played,
twenty numbers from 1 to 80 are selected. The player wins if three or more of those
twenty numbers are among the five he selected.

However, the payoff depends on how many of the player’s five numbers are
correct. Typically, for a $1 bet, the player receives $2 if he guesses three out of five
(i.e., the player has a net gain of $1). If he guesses four out of five, he receives $15,
and for guessing all five, he is rewarded with $300. If he guesses fewer than three
correctly, the player receives nothing, and loses his $1.

In Example 4.25, we calculated the probability of guessing three out of five to be
0.08394 (to four significant places). We can similarly calculate that the probability
of guessing four out of five is 0.01209, and the probability of guessing all five is
0.0006449. Then, the probability of guessing fewer than three is 1 minus these
three fractions, or 0.90333. The payoffs for fewer than three, for three, four, and
five are −1, +1, +14, and +299, respectively. Thus, we may apply formula (4.22)
to get the expected payoff of the 5-spot game of Keno. It is

0.90333×−1 + 0.08394× 1 + 0.01209× 14 + 0.0006449× 299 = −0.4573

Thus, the player loses almost 46 cents of every dollar he bets in this game. ✦

EXERCISES

4.12.1: Show that if we throw three dice, the expected number of 1’s that will
appear is 1/2.

4.12.2*: Since we win when there is a 1 and lose when there is not, why does
not the fact in Exercise 4.12.1 imply that Chuck-a-Luck is an even game (i.e., the
expected payoff by betting on 1, or any other number, is 0)?

4.12.3: Suppose that in a 4-spot game of Keno, where the player guesses four
numbers, the payout is as follows: for guessing two, $1 (i.e., the player gets his
dollar back); for guessing three, $4; for guessing all four, $50. What is the expected
value of the payout?

4.12.4: Suppose in a 6-spot game of Keno, the payouts are as follows: for guessing
three, $1; for four, $4; for five, $25; for guessing all six, $1000. What is the expected
value of the payout?

4.12.5: Suppose we play a Chuck-a-Luck type of game with six dice. The player
pays $1 to play, bets on a number, and throws the dice. He is rewarded with $1 for
every time his selected number appears. For instance, if it appears once, the net
payout is 0; if it appears twice, the net payout is +1, and so on. Is this a fair gameFair game

(i.e., is the expected value of the payout 0)?

4.12.6*: Based on the style of payout suggested by Exercise 4.12.5, we could modify
the payout of the standard 3-dice form of Chuck-a-Luck so that the player pays some
amount to play. He is then rewarded with $1 for every time his number appears.
What is the proper amount the player should pay in order that this be a fair game?

SEC. 4.13 SOME PROGRAMMING APPLICATIONS OF PROBABILITY 215

✦
✦ ✦

✦
4.13 Some Programming Applications of Probability

In this section, we shall consider two types of uses for probability calculations in
computer science. The first is an analysis of the expected running time of an
algorithm. The second is a new type of algorithm, often called a “Monte Carlo”
algorithm, because it takes a risk of being incorrect. As we shall see, by adjusting
parameters, it is possible to make Monte-Carlo algorithms correct with as high
a probability as we like, except that we cannot reach probability 1, or absolute
certainty.

A Probabilistic Analysis

Let us consider the following simple problem. Suppose we have an array of n
integers, and we ask whether an integer x is an entry of the array A[0..n-1]. The
algorithm in Fig.4.23 does as well as any. Note that it returns a type which we
called BOOLEAN, defined to be a synonym for int in Section 1.6. Also in that section
were defined the constants TRUE and FALSE, which stand for 1 and 0, respectively.

BOOLEAN find(int x, int A[], int n)

{

int i;

(1) for(i = 0; i < n; i++)

(2) if(A[i] == x)

(3) return TRUE;

(4) return FALSE;

}

Fig. 4.23. Finding an element x in an array A of size n.

The loop of lines (1) – (3) examines each entry of the array, and if x is found
there, immediately terminates the loop with TRUE as our answer. If x is never found,
we reach line (4) and return FALSE. Let the time taken by the body of the loop
and the loop incrementation and test be c. Let d be the time of line (4) and the
initialization of the loop. Then if x is not found, the running time of the function
of Fig. 4.23 is cn + d, which is O(n).

However, suppose x is found; what is the running time of Fig. 4.23 then?
Clearly, the earlier x is found, the less time it takes. If x were somehow guaranteed
to be in A[0], the time would be O(1), since the loop would iterate only once. But
if x were always at or near the end, the time would be O(n).

Surely the worst case is when we find x at the last step, so O(n) is a smooth
and tight upper bound on the worst case. However, is it possible that the average
case is much better than O(n)? In order to address this question, we need to define
a probability space whose points represent the possible places in which x can be
found. The simplest assumption is that x is equally likely to be placed in any of
the n entries of array A. If so, then our space has n points, one representing each
of the integers from 0 to n − 1, which are the bounds of the index of array A.

Our question then becomes: in this probability space, what is the expected
value of the running time of the function of Fig. 4.23? Consider a point i in the

216 COMBINATORICS AND PROBABILITY

space; i can be anything from 0 to n − 1. If x is in A[i], then the loop will iterate
i + 1 times. An upper bound on the running time is thus ci + d. This bound is off
slightly in the constant d, since line (4) is never executed. However, the difference
does not matter, since d will disappear when we translate to a big-oh expression
anyway.

We must thus find the expected value of the function f(i) = ci + d on this
probability space. We sum ci + d where i ranges from 0 to n − 1, and then divide
by n, the number of points. That is,

EV(f) =
(

n−1
∑

i=0

ci + d
)

/n =
(

cn(n − 1)/2 + dn
)

/n = c(n − 1)/2 + d

For large n, this expression is about cn/2. Thus, O(n) is the smooth and tight
upper bound on this expected value. That is, the expected value is, to within a
constant factor of about 2, the same as the worst case. This result makes intuitive
sense. If x is equally likely to be anywhere in the array, it will “typically” be half
way down the array, and we therefore do about half the work that would be done
if x were not in the array at all, or if it were at the last element.

Algorithms That Use Probability

The algorithm of Fig. 4.23 was deterministic, in the sense that it always does theDeterministic

algorithm same thing on the same data. Only the analysis of the expected running time
uses probability calculations. Almost every algorithm we meet is deterministic.
However, there are some problems that are better solved with an algorithm that is
not deterministic, but uses a selection from a probability space in some essential
way. Making such a selection from an imagined probability space is not hard; we
use a random number generator as discussed in the box in Section 4.9.

One common type of probabilistic algorithm, called a Monte-Carlo algorithm,Monte-Carlo

algorithm makes a random selection at each iteration. Based on this selection, it will either
say “true,” in which case that is guaranteed to be the correct answer, or it will say
“I don’t know,” in which case the correct answer could be either “true” or “false.”
The possibilities are suggested by the probability space in Fig.4.24.

The probability that the algorithm will say “true” given that the answer is true
is a/(a + b). That is, this probability is the conditional probability of event a in
Fig. 4.24 given a or b. As long as this probability p is greater than 0, we can iterate
as many times as we like, and get rapidly decreasing probability of a failure. By
“failure,” we mean that the correct answer is “true,” but on no iteration does the
algorithm tell us so.

Since each iteration is an independent experiment, if the correct answer is
“true” and we iterate n times, the probability that the algorithm will never say
true is (1 − p)n. As long as 1 − p is strictly less than 1, we know that (1 − p)n will
decrease rapidly as n increases. For example, if p = 1/2, then 1 − p is also 1/2.
The quantity (0.5)n is about 1/1000 for n = 10 (see the box in Section 4.2); it is
1/1000000 for n = 20, and so on, decreasing by a factor of about 1000 every time n
increases by 10.

The Monte-Carlo algorithm, then, is to run the experiment n times. If the
answer to any experiment is “true,” then the algorithm answers “true.” If all
answers are “false,” then the algorithm answers “false.” Thus,

1. If the correct answer is “false,” the algorithm will surely answer “false.”

SEC. 4.13 SOME PROGRAMMING APPLICATIONS OF PROBABILITY 217

Algorithm

a

Algorithm

Answer is “false”; algorithm says “I don’t know”

c

says “I don’t

answer is
“true”

b

says “true” know,” but

Fig. 4.24. Possible outcomes of one iteration of a Monte-Carlo algorithm.

2. If the correct answer is “true,” then the algorithm answers “false” with proba-
bility (1−p)n, which we assume is very small because n is chosen large enough
to make it small. The algorithm answers “true” with probability 1 − (1 − p)n,
which is presumably very close to 1.

Thus, there are no failures when the correct answer is “false” and very few failures
when the correct answer is “true.”

✦ Example 4.45. Here is an example of a problem that can be solved more
efficiently using a Monte-Carlo algorithm. The XYZ computer company orders
boxes of chips that are supposed to be tested at the factory to make sure they are
all good. However, XYZ believes that some boxes have been leaving the factory
untested, in which case the probability that any given chip is bad is 1/10. A simple
approach solution would be for XYZ itself to test all the chips it receives, but this
process is expensive and time-consuming. If there are n chips in a box, the test of
a box takes O(n) time.

A better approach is to use a Monte-Carlo algorithm. Select from each box k
chips at random to be tested. If a chip is bad, answer “true” — the box had not
been tested at the factory or else the bad chip would have been discovered. If the
chip is good, answer “I don’t know,” and go on to the next chip. If all k chips that
we test are good, declare the entire box to be good.

In terms of Fig. 4.24, region c represents the case that the chips are chosen
from a good box; region b is the case that the box is untested, but the chip happens
to be good; region a is the case that the box is untested, and the chip is bad. Our
assumption that 1/10 of the chips are bad if the box is untested says that the area
of the circle, a, is one-tenth of the area of the ellipse enclosing regions a and b.

Let us compute the probability of failure — all k chips are good, but the box
is untested. The probability of saying “I don’t know” after testing one chip is
1− 1

10
= 0.9. Since the events of testing each chip are independent, the probability

that we shall say “I don’t know” to each of k chips is (0.9)k. Suppose we pick

218 COMBINATORICS AND PROBABILITY

k = 131. Then the probability of failure, (0.9)131, is almost exactly 0.000001, or
one in a million. That is, if the box is good, we shall never find a bad chip in it, so
we surely say the box is good. If the box is untested, then with probability 0.999999
we find a bad chip among the 131 we test and say the box needs full testing. With
probability 0.000001, the box is untested, but we say it is a good box and do not
test the remaining chips in the box.

The running time of this algorithm is O(1). That is, the time to test at most
131 chips is a constant, independent of n, the number of chips in the box. Thus,
compared with the more obvious algorithm of testing all the chips, the cost has
gone down from O(n) to O(1) per box, at the cost of making an error once in every
million untested boxes.

Moreover, we can make the probability of error as small as we like, by changing
the number of chips we test before concluding we have a good box. For example,
if we double the number of tested chips, to 262, then we square the probability
of failure, which then becomes one in a trillion, or 10−12. Also, we could save a
constant factor in time at the cost of a higher failure rate. For instance, if we halved
the number of chips tested, to 66 per box, we would have a failure rate of about
one in a thousand untested boxes. ✦

EXERCISES

4.13.1: Which of 377, 383, 391 is prime?

4.13.2: Suppose that we used the function of Fig. 4.23 to search for element x,
but the probability of finding x in entry i is proportional to n − i. That is, we can
imagine a probability space with n(n + 1)/2 points, n of which represent situations
where x is in A[0], n− 1 points represent situations where x is in A[1], and so on,
down to one point that represents the possibility that x is in A[n-1]. What is the
expected running time of the algorithm for this probability space?

4.13.3: In 1993, the National Basketball Association held a lottery in which the
11 teams that did not make the playoffs participated. At stake was the first choice
in the player draft. The team with the worst record was given 11 tickets in the
lottery, the next-worst team got 10, and so on, until the 11th-worst team was given
one ticket. A ticket was picked at random and the first-place draft was awarded to
the holder of that ticket. What is the expected value of the function f(t) that is
the finishing place (from the bottom) of the holder of the selected ticket t?

4.13.4**: The lottery described in Exercise 4.13.3 continued. The winning team
had all their tickets removed, and another ticket was picked for second place in
the draft. That winner’s remaining tickets were removed, and a third ticket was
selected for third place in the draft. What are the expected values of the finishing
positions of the teams that got second and third places in the draft?

4.13.5*: Suppose that we are given an array of size n, either sorted or filled at ran-
dom with integers. We wish to construct a Monte-Carlo algorithm that will either
say “true” if it finds the array unsorted or will say “I don’t know.” By repeating the
test k times, we’d like to know there is no more than a 2−k probability of failure.
Suggest such an algorithm. Hint : Make sure that your tests are independent. As
an example of tests that are not independent, we might test whether A[0]<A[1]

and that A[1]<A[2]. These tests are independent. However, if we then tested that

SEC. 4.13 SOME PROGRAMMING APPLICATIONS OF PROBABILITY 219

Testing Whether an Integer is a Prime

While Example 4.45 is not really a program, it still exhibits a useful algorithmic
principle, and is in fact a realistic portrayal of a technique for measuring the relia-
bility of manufactured goods. There are some interesting computer algorithms that
use the Monte-Carlo idea as well.

Perhaps first among these is the problem of testing whether a number is a
prime. That question is not an idle one of number theory. It turns out that many
of the central ideas of computer security involve knowing that a very large number
is a prime. Roughly, when we encrypt information using n-digit primes, decryptingCryptography

without knowing the secret key appears to involve guessing from among almost all of
the 10n possibilities. By making n sufficiently large, we can ensure that “breaking”
the code requires either tremendous luck or more computer time than is available.

Thus, we would like a way to test whether a very large number is a prime, and to
do so in time that is much less than the value of that prime; ideally we’d like it to take
time proportional to the number of digits (i.e., proportional to the logarithm of the
number). It seems that the problem of detecting composite numbers (nonprimes)
is not hard. For example, every even number except 2 is composite, so it looks
like half the problem is solved already. Similarly, those divisible by 3 have a sum
of digits that is divisible by 3, so we can write a recursive algorithm to test for
divisibility by 3 that is only a tiny bit slower than linear in the number of digits.
However, the problem is still tricky for many numbers. For example, one of 377,
383, and 391 is prime. Which?

There is a Monte-Carlo algorithm that tests for composite numbers. On each
iteration, it has at least probability 1/2 of saying “true” if the number is compos-
ite, and never says “true” if the number is prime. The following is not the exact
algorithm, but it works except for a small fraction of the composite numbers. The
complete algorithm is beyond the scope of this book.

The algorithm is based on Fermat’s theorem, which states that if p is a prime,Fermat’s

theorem and a is any integer between 1 and p − 1, then ap−1 leaves a remainder of 1 when
divided by p. Moreover, it happens, except for that small number of “bad” compos-
ite numbers, that if a is chosen at random between 1 and p−1, then the probability
is at least 1/2 that ap−1 will have a remainder other than 1 when divided by p. For
example, let p = 7. Then 16, 26, . . . , 66 are respectively 1, 64, 729, 4096, 15625, and
46656. Their remainders when divided by 7 are all 1. However, if p = 6, a compos-
ite number, we have 15, 25, . . . , 55 equal to 1, 32, 243, 1024, and 3125, respectively,
whose remainders when divided by 6 are 1, 2, 3, 4, and 5. Only 20% are 1.

Thus, the “algorithm” for testing whether a number p is a prime is to select
k integers from 1 to p − 1, independently and at random. If for any selected a we
find the remainder of ap−1/p to be other than 1, we say p is composite; otherwise,
we say it is prime. If it weren’t for the “bad” composites, we could say that the
probability of failure is at most 2−k, since composites meet the test for a given
a with probability at least 1/2. If we make k something like 40, we have only a
one in a trillion chance of accepting a composite as prime. To handle the “bad”
composites, a more complex test is needed, however. This test is still polynomial
in the number of digits in p, as is the simple test given above.

220 COMBINATORICS AND PROBABILITY

A[0]<A[2], the test would not be independent, since knowing the first two hold we
can be sure the third holds.

4.13.6**: Suppose we are given an array of size n filled with integers in the range
1 to n. These integers were either selected to be different, or they were selected at
random and independently, so we can expect some equalities among entries in the
array. Give a Monte-Carlo algorithm that has running time O(

√
n) and has at most

a probability of 10−6 of saying the array was filled with distinct integers when in
fact it was filled at random.

✦
✦ ✦

✦
4.14 Summary of Chapter 4

The reader should remember the following formulas and paradigm problems for
counting.

✦ The number of assignments of k values to n objects is kn. The paradigm
problem is painting n houses, each in any of k colors.

✦ We can arrange n distinct items in n! different ways.

✦ We can select k items out of n and arrange the k selected items in any order in
n!/(n − k)! different ways. The paradigm problem is choosing the win, place,
and show horses (k = 3) in a race with n horses.

✦ The number of ways to select m objects out of n, without order, is
(

n
m

)

, or

n!/
(

m!(n−m)!
)

. The paradigm problem is dealing poker hands, where n = 52
and m = 5.

✦ If we want to order n items, some of which are identical, the number of ways to
do so is computed as follows. Start with n!. Then, if one value appears k > 1
times among the n items, divide by k!. Perform this division for each value
that appears more than once. The paradigm problem is counting anagrams of
a word of length n, where we must divide n! by k! for each letter that appears
k times in the word and k > 1.

✦ If we want to distribute n identical objects into m bins, we can do so in
(

n+m−1

n

)

ways. The paradigm problem is distributing apples to children.

✦ If as above, some of the objects are not identical, we count the number of ways
to distribute them to bins as follows. Start with (n + m− 1)!/(m− 1)!. Then,
if there is a group of k identical objects, and k > 1, divide by k!. Perform the
division for each value that appears more than once. The paradigm problem is
distributing fruits of various kinds to children.

In addition, the reader should remember the following points about probability.

✦ A probability space consists of points, each of which is the outcome of an
experiment. Each point x has associated with it a nonnegative number called
the probability of x. The sum of the probabilities of the points in a probability
space is 1.

SEC. 4.15 BIBLIOGRAPHIC NOTES FOR CHAPTER 4 221

✦ An event is a subset of the points in a probability space. The probability of an
event is the sum of the probabilities of the points in the event. The probability
of any event lies between 0 and 1.

✦ If all points are equally likely, the conditional probability of event F given event
E is the fraction of the points in event E that are also in event F .

✦ Event E is independent of event F if the conditional probability of E given
F is the same as the probability of E. If E is independent of F , then F is
independent of E.

✦ The rule of sums says that the probability that one of two events E and F
occurs is at least the larger of their probabilities and no greater than the sum
of their probabilities (or no greater than 1 if the sum is above 1).

✦ The rule of products says that the probability that the outcome of an experi-
ment is both in event E and in event F is no greater than the smaller of their
probabilities and at least the sum of their probabilities minus 1 (or at least 0
if the latter is negative).

Finally, there are a number of applications to computer science of principles we
learned in this chapter.

✦ Any sorting algorithm that works on arbitrary types of data that can be com-
pared by “less than” requires time at least proportional to n log n to sort n
items.

✦ The number of bit strings of length n is 2n.

✦ Random number generators are programs that produce sequences of numbers
that appear to be the result of independent experiments, although of course
they are completely determined by the program.

✦ Systems for probabilistic reasoning need a way to express the probabilities
of compound events that are formed from the occurrence of several events.
The rules of sums and products sometimes help. We also learned some other
simplifying assumptions that let us put bounds on the probability of compound
events.

✦ Monte-Carlo algorithms use random numbers to produce either a desired result
(“true”) or no result at all. By repeating the algorithm a constant number of
times, we can solve the problem at hand by concluding the answer is (“false”)
if none of the repetitions produces the answer “true.” By selecting the number
of repetitions, we can adjust the probability of incorrectly concluding “false”
to be as low as we like, but not 0.

✦
✦ ✦

✦
4.15 Bibliographic Notes for Chapter 4

A venerable and excellent introduction to combinatorics is Liu [1968]. Graham,
Knuth, and Patashnik [1989] is a deeper discussion of the subject. Feller [1968] is
the classic book on probability theory and its applications.

The Monte-Carlo algorithm for testing whether a number is a prime is from
Rabin [1976]. A discussion of this algorithm and other interesting issues involving

222 COMBINATORICS AND PROBABILITY

computer security and algorithms that use randomness in an important way can be
found in Dewdeney [1993]. A more advanced discussion of these topics is presented
in Papadimitriou [1994].

Dewdeney, A. K. [1993]. The Turing Omnibus, Computer Science Press, New York.

Feller, W. [1968]. An Introduction to Probability Theory and Its Applications,
Third Edition, Wiley, New York.

Graham, R. L., D. E. Knuth, and O. Patashnik [1989]. Concrete Mathematics: A

Foundation for Computer Science, Addison-Wesley, Reading, Mass.

Liu, C.-L. [1968]. An Introduction to Combinatorial Mathematics, McGraw-Hill,
New York.

Papadimitriou, C. H. [1994]. Computational Complexity, Addison-Wesley, Reading,
Mass.

Rabin, M. O. [1976]. “Probabilistic algorithms,” in Algorithms and Complexity:

New Directions and Recent Trends (J. F. Traub, ed.), pp. 21–39, Academic Press,
New York.

