CHAPTER

0
00 12.1

Boolean algebra

12

Propositional
Logic

In this chapter, we introduce propositional logic, an algebra whose original purpose,
dating back to Aristotle, was to model reasoning. In more recent times, this algebra,
like many algebras, has proved useful as a design tool. For example, Chapter 13
shows how propositional logic can be used in computer circuit design. A third
use of logic is as a data model for programming languages and systems, such as
the language Prolog. Many systems for reasoning by computer, including theorem
provers, program verifiers, and applications in the field of artificial intelligence,
have been implemented in logic-based programming languages. These languages
generally use “predicate logic,” a more powerful form of logic that extends the
capabilities of propositional logic. We shall meet predicate logic in Chapter 14.

What This Chapter Is About

Section 12.2 gives an intuitive explanation of what propositional logic is, and why it
is useful. The next section, 12,3, introduces an algebra for logical expressions with
Boolean-valued operands and with logical operators such as AND, OR, and NOT that
operate on Boolean (true/false) values. This algebra is often called Boolean algebra
after George Boole, the logician who first framed logic as an algebra. We then learn
the following ideas.

O Truth tables are a useful way to represent the meaning of an expression in logic
(Section 12.4).

O We can convert a truth table to a logical expression for the same logical function
(Section 12.5).

0 The Karnaugh map is a useful tabular technique for simplifying logical expres-
sions (Section 12.6).

0 There is a rich set of “tautologies,” or algebraic laws that can be applied to
logical expressions (Sections 12.7 and 12.8).

642

020 12.2
0
Propositional
variable

SEC. 12.2 WHAT IS PROPOSITIONAL LOGIC? 643

O Certain tautologies of propositional logic allow us to explain such common proof
techniques as “proof by contradiction” or “proof by contrapositive” (Section
12.9).

0 Propositional logic is also amenable to “deduction,” that is, the development
of proofs by writing a series of lines, each of which either is given or is justified
by some previous lines (Section 12.10). This is the mode of proof most of us
learned in a plane geometry class in high school.

O A powerful technique called “resolution” can help us find proofs quickly (Sec-
tion 12.11).

What Is Propositional Logic?

Sam wrote a C program containing the if-statement
if (a<b |l (@a>b&& c==4d)) ... (12.1)

Sally points out that the conditional expression in the if-statement could have been
written more simply as

if (@a<b |l c==4d) ... (12.2)

How did Sally draw this conclusion?

She might have reasoned as follows. Suppose a < b. Then the first of the two
OR’ed conditions is true in both statements, so the then-branch is taken in either of
the if-statements (12.1) and (12.2).

Now suppose a < b is false. In this case, we can only take the then-branch
if the second of the two conditions is true. For statement (12.1), we are asking
whether

a>=b && c ==
is true. Now a >= b is surely true, since we assume a < b is false. Thus we take the
then-branch in (12.1) exactly when ¢ == d is true. For statement (12.2), we clearly
take the then-branch exactly when ¢ == d. Thus no matter what the values of a, b,

c, and d are, either both or neither of the if-statements cause the then-branch to be
followed. We conclude that Sally is right, and the simplified conditional expression
can be substituted for the first with no change in what the program does.
Propositional logic is a mathematical model that allows us to reason about the
truth or falsehood of logical expressions. We shall define logical expressions formally
in the next section, but for the time being we can think of a logical expression as
a simplification of a conditional expression such as lines (12.1) or (12.2) above that
abstracts away the order of evaluation contraints of the logical operators in C.

Propositions and Truth Values

Notice that our reasoning about the two if-statements above did not depend on what
a < b or similar conditions “mean.” All we needed to know was that the conditions
a < b and a >= b are complementary, that is, when one is true the other is false
and vice versa. We may therefore replace the statement a < b by a single symbol
p, replace a >= b by the expression NOT p, and replace ¢ == d by the symbol gq.
The symbols p and g are called propositional variables, since they can stand for any

644 PROPOSITIONAL LOGIC

“proposition,” that is, any statement that can have one of the truth values, true or
false.

Logical expressions can contain logical operators such as AND, OR, and NOT.
When the values of the operands of the logical operators in a logical expression are
known, the value of the expression can be determined using rules such as

1. The expression p AND ¢ is true only when both p and ¢ are true; it is false
otherwise.

2. The expression p OR q is true if either p or ¢, or both are true; it is false
otherwise.

3. The expression NOT p is true if p is false, and false if p is true.

The operator NOT has the same meaning as the C operator !. The operators AND and
OR are like the C operators && and | |, respectively, but with a technical difference.
The C operators are defined to evaluate the second operand only when the first
operand does not resolve the matter — that is, when the first operation of && is
true or the first operand of || is false. However, this detail is only important when
the C expression has side effects. Since there are no “side effects” in the evaluation
of logical expressions, we can take AND to be synonymous with the C operator &&
and take OR to be synonymous with | |.

For example, the condition in Equation (12.1) can be written as the logical
expression
p OR ((NOT p) AND gq)

and Equation (12.2) can be written as p OR ¢q. Our reasoning about the two if-
statements (12.1) and (12.2) showed the general proposition that

(p OR ((NOT p) AND q)) = (pOR q) (12.3)

where = means “is equivalent to” or “has the same Boolean value as.” That is,
no matter what truth values are assigned to the propositional variables p and gq,
the left-hand side and right-hand side of = are either both true or both false. We
discovered that for the equivalence above, both are true when p is true or when q is
true, and both are false if p and ¢ are both false. Thus, we have a valid equivalence.

As p and ¢ can be any propositions we like, we can use equivalence (12.3) to
simplify many different expressions. For example, we could let p be

a == b+l && c < d

while gisa == ¢ || b == c. In that case, the left-hand side of (12.3) is

(a ==b+1 & c < 4d) || (12.4)
('(a==Db+tl && c < d) & (a ==c || b == c))

Note that we placed parentheses around the values of p and ¢ to make sure the
resulting expression is grouped properly.

Equivalence (12.3) tells us that (12.4) can be simplified to the right-hand side
of (12.3), which is

(a==b+l & c < d) || (a==c¢c || b == ¢)

Predicate logic

0
= 12.3

SEC. 12.3 LOGICAL EXPRESSIONS 645

What Propositional Logic Cannot Do

Propositional logic is a useful tool for reasoning, but it is limited because it can-
not see inside propositions and take advantage of relationships among them. For
example, Sally once wrote the if-statement

if (a <b&& a<c& b <c)
Then Sam pointed out that it was sufficient to write
if (a < b && b < c)

If we let p, g, and r stand for the propositions (a < b), (a < ¢), and (b < c),
respectively, then it looks like Sam said that

(p AND g AND r) = (p AND 7)

This equivalence, however, is not always true. For example, suppose p and r were
true, but ¢ were false. Then the right-hand side would be true and the left-hand
side false.

It turns out that Sam’s simplification is correct, but not for any reason that
we can discover using propositional logic. You may recall from Section 7.10 that <
is a transitive relation. That is, whenever both p and r, that is, a < band b < ¢,
are true, it must also be that ¢, which is a < ¢, is true.

In Chapter 14, we shall consider a more powerful model called predicate logic
that allows us to attach arguments to propositions. That privilege allows us to
exploit special properties of operators like <. (For our purposes, we can think of
a predicate as the name for a relation in the set-theoretic sense of Chapters 7 and
8.) For example, we could create a predicate It to represent operator <, and write
D, q, and r as lt(a,b), lt(a,c), and lt(b,c). Then, with suitable laws that expressed
the properties of [t, such as transitivity, we could conclude that

(It(a,b) AND lt(a, c) AND lt(b, c)) = (It(a,b) AND It(b,c))

In fact, the above holds for any predicate [t that obeys the transitive law, not just
for the predicate <.

As another example, we could let p be the proposition, “It is sunny,” and ¢ the
proposition, “Joe takes his umbrella.” Then the left-hand side of (12.3) is

“It is sunny, or it is not sunny and Joe takes his umbrella.”
while the right-hand side, which says the same thing, is

“It is sunny or Joe takes his umbrella.”

Logical Expressions

As mentioned in the previous section, logical expressions are defined recursively as
follows.

646 PROPOSITIONAL LOGIC

BASIS. Propositional variables and the logical constants, TRUE and FALSE, are log-
ical expressions. These are the atomic operands.

INDUCTION. If F and F are logical expressions, then so are

a) [FE AND F. The value of this expression is TRUE if both E and F are TRUE and
FALSE otherwise.

b) E OR F. The value of this expression is TRUE if either E or F' or both are TRUE,
and the value is FALSE if both E and F' are FALSE.

¢) NOT E. The value of this expression is TRUE if E is FALSE and FALSE if F is
TRUE.

That is, logical expressions can be built from the binary infix operators AND and
OR, the unary prefix operator NOT. As with other algebras, we need parentheses for
grouping, but in some cases we can use the precedence and associativity of operators
to eliminate redundant pairs of parentheses, as we do in the conditional expressions
of C that involve these logical operators. In the next section, we shall see more
logical operators than can appear in logical expressions.

Example 12.1. Some examples of logical expressions are:

1. TRUE

2. TRUE OR FALSE

3. NOTp

4. pAND (¢ORT)

5. (q AND p) OR (NOT p)

In these expressions, p, g, and r are propositional variables. [

Precedence of Logical Operators

As with expressions of other sorts, we assign a precedence to logical operators,
and we can use this precedence to eliminate certain pairs of parentheses. The
precedence order for the operators we have seen so far is NOT (highest), then AND,
then OR (lowest). Both AND and OR are normally grouped from the left, although
we shall see that they are associative, and that the grouping is therefore irrelevant.
NOT, being a unary prefix operator, can only group from the right.

Example 12.2. NOT NOT p OR g is grouped (NOT (NOT p)) OR g. NOT p OR g AND 7
is grouped (NOT p) OR (¢ AND 7). You should observe that there is an analogy
between the precedence and associativity of AND, OR, and NOT on one hand, and the
arithmetic operators x, 4+, and unary — on the other. For instance, the second of
the above expressions can be compared with the arithmetic expression —p + ¢ x r,
which has the same grouping, (—p) + (¢ x r). O

Truth
assignment

SEC. 12.3 LOGICAL EXPRESSIONS 647

Evaluating Logical Expressions

When all of the propositional variables in a logical expression are assigned truth
values, the expression itself acquires a truth value. We can then evaluate a logical
expression just as we would an arithmetic expression or a relational expression.

The process is best seen in terms of the expression tree for an expression, such
as that shown in Fig. 12.1 for the expression p AND (¢ OR r) OR s. Given a truth
assignment, that is, an assignment of TRUE or FALSE to each variable, we begin at
the leaves, which are atomic operands. Each atomic operand is either one of the
logical constants TRUE or FALSE, or is a variable that is given one of the values TRUE
or FALSE by the truth assignment. We then work up the tree. Once the value of
the children of an interior node v are known, we can apply the operator at v to
these values and produce a truth value for node v. The truth value at the root is
the truth value of the whole expression.

OR
AND s

p/ \OR
q/ \r

Fig. 12.1. Expression tree for the logical expression p AND (g OR r) OR s.

Example 12.3. Suppose we want to evaluate the expression p AND (g OR 7) OR s
with the truth assignment TRUE, FALSE, TRUE, FALSE, for p, ¢, r, and s, respec-
tively. We first consider the lowest interior node in Fig. 12.1, which represents the
expression g OR 7. Since ¢ is FALSE, but r is TRUE, the value of ¢ OR r is TRUE.

We now work on the node with the AND operator. Both its children, represent-
ing expressions p and ¢ OR r, have the value TRUE. Thus this node, representing
expression p AND (g OR r), also has the value TRUE.

Finally, we work on the root, which has operator OR. Its left child, we just
discovered has value TRUE, and its right child, which represents expression s, has
value FALSE according to the truth assignment. Since TRUE OR FALSE evaluates to
TRUE, the entire expression has value TRUE. [

Boolean Functions

The “meaning” of any expression can be described formally as a function from
the values of its arguments to a value for the whole expression. For example, the
arithmetic expression x X (z + y) is a function that takes values for z and y (say
reals) and returns the value obtained by adding the two arguments and multiplying
the sum by the first argument. The behavior is similar to that of a C function
declared

648 PROPOSITIONAL LOGIC

float foo(float x, float y)
{

return x*(x+y);

3

In Chapter 7 we learned about functions as sets of pairs with a domain and
range. We could also represent an arithmetic expression like x X (z+y) as a function
whose domain is pairs of reals and whose range is the reals. This function consists
of pairs of the form ((z,y), z x (z 4+ y)). Note that the first component of each
pair is itself a pair, (z,y). This set is infinite; it contains members like ((3, 4), 21),
or ((10,12.5),225).

Similarly, a logical expression’s meaning is a function that takes truth assign-
ments as arguments and returns either TRUE or FALSE. Such functions are called
Boolean functions. For example, the logical expression

E: p AND (p OR q)

is similar to a C function declared
BOOLEAN foo (BOOLEAN p, BOOLEAN q)
{
return p && (p || q);
}

Like arithmetic expressions, Boolean expressions can be thought of as sets of
pairs. The first component of each pair is a truth assignment, that is, a tuple giving
the truth value of each propositional variable in some specified order. The second
component of the pair is the value of the expression for that truth assignment.

Example 12.4. The expression E = p AND (p OR q) can be represented by a
function consisting of four members. We shall represent truth values by giving the
value for p before the value for q. Then ((TRUE, FALSE), TRUE) is one of the pairs
in the set representing E as a function. It says that when p is true and ¢ is false,
p AND (p OR q) is true. We can determine this value by working up the expression
tree for E, by the process in Example 12.3. The reader can evaluate E for the
other three truth assignments, and thus build the entire Boolean function that F
represents. [

EXERCISES

12.3.1: Evaluate the following expressions for all possible truth values, to express
their Boolean functions as a set-theoretic function.

a) p AND (p OR q)
b) NOT p OR ¢
c¢) (p AND q) OR (NOT p AND NOT q)

12.3.2: Write C functions to implement the logical expressions in Exercise 12.3.1.

0
= 12.4

SEC. 12.4 TRUTH TABLES 649

Truth Tables

It is convenient to display a Boolean function as a truth table, in which the rows
correspond to all possible combinations of truth values for the arguments. There is
a column for each argument and a column for the value of the function.

P g | pANDg p ¢ | pPORg P \ NOT p
00 0 0 0 0 0

01 0 0 1 1 1 0
10 0 10 1

11 1 11 1

Fig. 12.2. Truth tables for AND, OR, and NOT.

Example 12.5. The truth tables for AND, OR, and NOT are shown in Fig. 12.2.
Here, and frequently in this chapter, we shall use the shorthand that 1 stands for
TRUE and 0 stands for FALSE. Thus the truth table for AND says that the result is
TRUE if and only if both operands are TRUE; the second truth table says that the
result of applying the OR operator is TRUE when either of the operands, or both, are
TRUE; the third truth table says that the result of applying the NOT operator is TRUE
if and only if the operand has the value FALSE. [

The Size of Truth Tables

Suppose a Boolean function has k arguments. Then a truth assignment for this
function is a list of k elements, each element either TRUE or FALSE. Counting
the number of truth assignments for k variables is an example of the assignment-
counting problem considered in Section 4.2. That is, we assign one of the two truth
values to each of k items, the propositional variables. That is analogous to painting
k houses with two choices of color. The number of truth assignments is thus 2*.

The truth table for a Boolean function of k arguments thus has 2* rows, one
for each truth assignment. For example, if £ = 2 there are four rows, corresponding
to 00, 01, 10, and 11, as we see in the truth tables for AND and OR in Fig. 12.2.

While truth tables involving one, two, or three variables are relatively small,
the fact that the number of rows is 2* for a k-ary function tells us that & does not
have to get too big before it becomes unfeasible to draw truth tables. For example,
a function with ten arguments has over 1000 rows. In later sections we shall have
to contend with the fact that, while truth tables are finite and in principle tell us
everything we need to know about a Boolean function, their exponentially growing
size often forces us to find other means to understand, evaluate, or compare Boolean
functions.

650 PROPOSITIONAL LOGIC

Understanding “Implies”

The meaning of the implication operator — may appear unintuitive, since we must
get used to the notion that “falsehood implies everything.” We should not confuse
— with causation. That is, p — ¢ may be true, yet p does not “cause” ¢ in any
sense. For example, let p be “it is raining,” and g be “Sue takes her umbrella.” We
might assert that p — ¢ is true. It might even appear that the rain is what caused
Sue to take her umbrella. However, it could also be true that Sue is the sort of
person who doesn’t believe weather forecasts and prefers to carry an umbrella at
all times.

Counting the Number of Boolean Functions

While the number of rows in a truth table for a k-argument Boolean function grows
exponentially in k, the number of different k-ary Boolean functions grows much
faster still. To count the number of k-ary Boolean functions, note that each such
function is represented by a truth table with 2¥ rows, as we observed. Each row
is assigned a value, either TRUE or FALSE. Thus, the number of different Boolean
functions of k& arguments is the same as the number of assignments to 2% items of 2
values. This number is 22°. For example, when k = 2, there are 22" = 16 functions,
and for k = 5 there are 22° = 232 or about four billion functions.

Of the 16 Boolean functions of 2 arguments, we already met two: AND and OR.
Some others are trivial, such as the function that has value 1 no matter what its
arguments are. However, there are a number of other functions of two arguments
that are useful, and we shall meet them later in this section. We have also seen NOT,
a useful function of one argument, and one often uses Boolean functions of three or
more arguments as well.

Additional Logical Operators

There are four other Boolean functions of two arguments that will prove very useful
in what follows.

1. Implication, written —. We write p — ¢ to mean that “if p is true, then ¢ is
true.” The truth table for — is shown in Fig. 12.3. Notice that there is only
one way p — ¢ can be made false: p must be true and ¢ must be false. If p is
false, then p — ¢ is always true, and if ¢ is true, then p — ¢ is always true.

p—4q

N
1
1
0
1

== oo
_= O = O

Fig. 12.3. Truth table for “implies.”

SEC. 12.4 TRUTH TABLES 651

2. Equivalence, written =, means “if and only if”; that is, p = ¢ is true when
both p and ¢ are true, or when both are false, but not otherwise. Its truth
table is shown in Fig. 12.4. Another way of looking at the = operator is that
it asserts that the operands on the left and right have the same truth value.
That is what we meant in Section 12.2 when we claimed, for example, that

(p OR (NOT p AND ¢)) = (p OR g).

3. The NAND, or “not-and,” operator applies AND to its operands and then comple-
ments the result by applying NOT. We write p NAND ¢ to denote NOT (p AND q).

4. Similarly, the NOR, or “not-or,” operator takes the OR of its operands and com-
plements the result; p NOR ¢ denotes NOT (p OR ¢). The truth tables for NAND
and NOR are shown in Fig. 12.4.

P q | P=gq pq\pNANDq pq\pNORq
0 0 1 00 1 0 0 1
0 1 0 0 1 1 0 1 0
10 0 10 1 10 0
11 1 11 0 11 0

Fig. 12.4. Truth tables for equivalence, NAND, and NOR.

Operators with Many Arguments

Some logical operators can take more than two arguments as a natural extension.
For example, it is easy to see that AND is associative [(p AND ¢) AND r is equivalent
to p AND (g AND r)]. Thus an expression of the form p; AND py AND --- AND pj can
be grouped in any order; its value will be TRUE exactly when all of py, po, ..., pi are
TRUE. We may thus write this expression as a function of k arguments,

AND (plaan' .- apk)

Its truth table is suggested in Fig. 12.5. As we see, the result is 1 only when all
arguments are 1.

P1 P2 Pk—1 Dk AND (p1,p2,-.-,Dk)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
1 1 1 0 0
1 1 1 1 1

Fig. 12.5. Truth table for k-argument AND.

652 PROPOSITIONAL LOGIC

The Significance of Some Operators

The reason that we are especially interested in k-ary AND, OR, NAND, and NOR is that
these operators are particularly easy to implement electronically. That is, there
are simple means to build “gates,” which are electronic circuits that take k inputs
and produce the AND, OR, NAND, or NOR of these inputs. While the details of the
underlying electronic technologies are beyond the scope of this book, the general
idea is to represent 1 and 0, or TRUE and FALSE, by two different voltage levels. Some
other operators, such as = or —, are not that easy to implement electronically, and
we generally use several gates of the NAND or NOR type to implement them. The NOT
operator, however, can be thought of as either a 1-argument NAND or a l-argument
NOR, and therefore is also “easy” to implement.

Similarly, OR is associative, and we can denote the logical expression p; OR
p2 OR - - - OR py, as a single Boolean function OR (p1,p2,...,pk). The truth table for
this k-ary OR, which we shall not show, has 2¥ rows, like the table for k-ary AND.
For the OR, however, the first row, where p1, po,...,px are all assigned 0, has the
value 0; the remaining 2* — 1 rows have the value 1.

The binary operators NAND and NOR are commutative, but not associative. Thus
the expression without parentheses, p; NAND po NAND - -- NAND pg, has no intrinsic
meaning. When we speak of k-ary NAND, we do not mean any of the possible
groupings of

p1 NAND po NAND - - - NAND py,
Rather, we define NAND (p1, po, - .., pk) to be equivalent to the expression
NOT (py AND p AND - - - AND py)

That is, NAND (p1,pa,- .., pk) has value 0 if all of py, pe, ..., pr have value 1, and it
has value 1 for all the 2 — 1 other combinations of input values.

Similarly, NOR (p1,pe,...,px) stands for NOT (p; OR pz OR --- OR pg). It has
value 1 if p1, po,...,px all have value 0; it has value 0 otherwise.

Associativity and Precedence of Logical Operators

The order of precedence we shall use is

1. NOT (highest) 5. OR

2. NAND 6. —

3. NOR 7. = (lowest)
4. AND

Thus, for example, p — ¢ = NOT p OR q is grouped (p — ¢) = ((NOT p) OR q).

As we mentioned earlier, AND and OR are associative and commutative; so is =.
We shall assume that they group from the left if it is necessary to be specific. The
other binary operators listed above are not associative. We shall generally show
parentheses around them explicitly to avoid ambiguity, but each of the operators
—, NAND, and NOR will be grouped from the left in strings of two or more of the
same operator.

SEC. 12.4 TRUTH TABLES 653

Using Truth Tables to Evaluate Logical Expressions

The truth table is a convenient way to calculate and display the value of an expres-
sion E for all possible truth assignments, as long as there are not too many variables
in the expression. We begin with columns for each of the variables appearing in
E, and follow with columns for the various subexpressions of F, in an order that
represents a bottom-up evaluation of the expression tree for F.

When we apply an operator to the columns representing the values of some
nodes, we perform an operation on the columns that corresponds to the operator in
a simple way. For example, if we wish to take the AND of two columns, we put 1 in
those rows that have 1 in both columns, and we put 0’s in the other rows. To take
the OR of two columns, we put a 1 in those rows where one or both of the columns
have 1, and we put 0’s elsewhere. To take the NOT of a column, we complement the
column, putting a 1 where the column has a 0 and vice-versa. As a last example,
to apply the operator — to two columns, the result has a 0 only where the first has
1 and the second has 0; other rows have 1 in the result.

The rule for some other operators is left for an exercise. In general, we apply
an operator to columns by applying that operator, row by row, to the values in that
TOwW.

Example 12.6. Consider the expression E: (p AND ¢) — (p OR 7). Figure 12.6
shows the truth table for this expression and its subexpressions. Columns (1), (2),
and (3) give the values of the variables p, ¢, and r in all combinations. Column (4)
gives the value of subexpression p AND ¢, which is computed by putting a 1 wherever
there is a 1 in both columns (1) and (2). Column (5) shows the value of expression
p OR r; it is obtained by putting a 1 in those rows where either column (1) or (3), or
both, has a 1. Finally, column (6) represents the whole expression E. It is formed
from columns (4) and (5); it has a 1 except in those rows where column (4) has 1
and column (5) has 0. Since there is no such row, column (6) is all 1’s, which says
that E has the truth value 1 no matter what its arguments are. Such an expression
is called a “tautology,” as we shall see in Section 12.7. [

H 2 6 (4) (5) (6)
P q r pANDq pORT FE
0 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

Fig. 12.6. Truth table for (p AND ¢) — (p OR r).

654 PROPOSITIONAL LOGIC

Venn Diagrams and Truth Tables

There is a similarity between truth tables and the Venn diagrams for set operations
that we discussed in Section 7.3. First, the operation union on sets acts like OR on
truth values, and intersection of sets acts like AND. We shall see in Section 12.8 that
these two pairs of operations obey the same algebraic laws. Just as an expression
involving k sets as arguments results in a Venn diagram with 2* regions, a logical
expression with k variables results in a truth table with 2¥ rows. Further, there is
a natural correspondence between the regions and the rows. For example, a logical
expression with variables p, ¢, and r corresponds to a set expression involving sets
P, @, and R. Consider the Venn diagram for these sets:

[N

R

Here, the region 0 corresponds to the set of elements that are in none of P, @,
and R, region 1 corresponds to the elements that are in R, but not in P or @. In
general, if we look at the 3-place binary representation of a region number, say abc,
then the elements of the region are in Pifa =1,in Q if b= 1, and in R if ¢ = 1.
Thus the region numbered (abc)y corresponds to the row of the truth table where
p, q, and r have truth values a, b, and ¢, respectively.

When dealing with Venn diagrams, we took the union of two sets of regions to
include the regions in either set. In analogy, when we take the OR of columns in a
truth table, we put 1 in the union of the rows that have 1 in the first column and
the rows that have 1 in the second column. Similarly, we intersect sets of regions
in a Venn diagram by taking only those regions in both sets, and we take the AND
of columns by putting a 1 in the intersection of the set of rows that have 1 in the
first column and the set of rows with 1 in the second column.

The logical NOT operator does not quite correspond to a set operator. However,
if we imagine that the union of all the regions is a “universal set,” then logical
NOT corresponds to taking a set of regions and producing the set consisting of the
remaining regions of the Venn diagram, that is, subtracting the given set from the
universal set.

Exclusive or

0
a=a 12.5

SEC. 12.5 FROM BOOLEAN FUNCTIONS TO LOGICAL EXPRESSIONS 655

EXERCISES

12.4.1: Give the rule for computing the (a) NAND (b) NOR (c¢) = of two columns of
a truth table.

12.4.2: Compute the truth table for the following expressions and their subexpres-
sions.

a) (p—q)=(NOT pORgq)
b) p— (q — (r OR NOT p))
c) (pORgq)— (pAND q)

12.4.3*: To what set operator does the logical expression p AND NOT g correspond?
(See the box comparing Venn diagrams and truth tables.)

12.4.4%*: Give examples to show that —, NAND, and NOR are not associative.

12.4.5*%*: A Boolean function f does not depend on the first argument if
f(TRUE, z2, z3,...,xx) = f(FALSE, 29, x3,...,2k)

for any truth values s, xs,...,zi. Similarly, we can say f does not depend on
its ith argument if the value of f never changes when its ¢th argument is switched
between TRUE and FALSE. How many Boolean functions of two arguments do not
depend on their first or second argument (or both)?

12.4.6*: Construct truth tables for the 16 Boolean functions of two variables. How
many of these functions are commutative?

12.4.7: The binary exclusive-or function, 9, is defined to have value TRUE if and
only if exactly one of its arguments are TRUE.

a) Draw the truth table for &.

b)* Is & commutative? Is it associative?

From Boolean Functions to Logical Expressions

Now, let us consider the problem of designing a logical expression from a truth
table. We start with a truth table as the specification of the logical expression,
and our goal is to find an expression with the given truth table. Generally, there is
an infinity of different expressions we could use; we usually limit our selection to a
particular set of operators, and we often want an expression that is “simplest” in
some sense.

This problem is a fundamental one in circuit design. The logical operators in
the expression may be taken as the gates of the circuit, and so there is a straight-
forward translation from a logical expression to an electronic circuit, by a process
we shall discuss in the next chapter.

656 PROPOSITIONAL LOGIC

Fig. 12.7. A one-bit adder: (dz)2 is the sum z +y + ¢.

Example 12.7. As we saw in Section 1.3, we can design a 32-bit adder out of
one-bit adders of the type shown in Fig. 12.7. The one-bit adder sums two input
bits x and y, and a carry-in bit ¢, to produce a carry-out bit d and a sum bit z.

The truth table in Fig. 12.8 tells us the value of the carry-out bit d and the
sum-bit z, as a function of x, y, and ¢ for each of the eight combinations of input
values. The carry-out bit d is 1 if at least two of x, y, and ¢ have the value 1, and
d = 0 if only zero or one of the inputs is 1. The sum bit z is 1 if an odd number of
x, y, and c are 1, and 0 if not.

W N = O

(S

D
— = O RO O O A

e el == = e
— —_— OO R, OOoO|Iw
—_ O = OO F=O|O
— O O = O = O

~ e~
NSNS NI’

Fig. 12.8. Truth table for the carry-out bit d and the sum-bit z.

We shall present a general way to go from a truth table to a logical expression
momentarily. However, given the carry-out function d of Fig. 12.8, we might reason
in the following manner to construct a corresponding logical expression.

1. From rows 3 and 7, d is 1 if both y and c are 1.
2. From rows 5 and 7, d is 1 if both x and ¢ are 1.

3. From rows 6 and 7, d is 1 if both x and y are 1.

Condition (1) can be modeled by the logical expression y AND ¢, because y AND c is
true exactly when both y and ¢ are 1. Similarly, condition (2) can be modeled by
x AND ¢, and condition (3) by x AND y.

All the rows that have d = 1 are included in at least one of these three pairs
of rows. Thus we can write a logical expression that is true whenever one or more
of the three conditions hold by taking the logical OR of these three expressions:

Product, sum,
conjunction,
disjunction

SEC. 12.5 FROM BOOLEAN FUNCTIONS TO LOGICAL EXPRESSIONS 657

(y AND ¢) OR (z AND c¢) OR (z AND y) (12.5)

The correctness of this expression is checked in Fig. 12.9. The last four columns
correspond to the subexpressions y AND ¢, AND ¢, x AND y, and expression (12.5). O

x Yy c yANDc xANDc xANDy d
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 1 0 0 1
1 0 0 0 0 0 0
1 0 1 0 1 0 1
1 10 0 0 1 1
1 1 1 1 1 1 1

Fig. 12.9. Truth table for carry-out expression (12.5) and its subexpressions.

Shorthand Notation

Before proceeding to describe how we build expressions from truth tables, there are
some simplifications in notation that will prove helpful.

1. We can represent the AND operator by juxtaposition, that is, by no operator at
all, just as we often represent multiplication, and as we represented concatena-
tion in Chapter 10.

2. The OR operator can be represented by +.

3. The NOT operator can be represented by an overbar. This convention is espe-
cially useful when the NOT applies to a single variable, and we shall often write
NOT p as p.

Example 12.8. The expression p AND ¢ OR 7 can be written pg + r. The
expression p AND NOT ¢ OR NOT r can be written pg + 7. We can even mix our
original notation with the shorthand notation. For example, the expression

((p AND q) — r) AND (p — s)

could be written (pg — r) AND (p — s) or even as (pg — 7)(p — s). O

One important reason for the new notation is that it allows us to think of
AND and OR as if they were multiplication and addition in arithmetic. Thus we can
apply such familiar laws as commutativity, associativity, and distributivity, which
we shall see in Section 12.8 apply to these logical operators, just as they do to the
corresponding arithmetic operators. For example, we shall see that p(q+) can be
replaced by pq + pr, and then by rp + gp, whether the operators involved are AND
and OR, or multiplication and addition.

Because of this shorthand notation, it is common to refer to the AND of expres-
sions as a product and to the OR of expressions as a sum. Another name for the

Minterm

Literal

Sum of
products;
disjunctive
normal form

658 PROPOSITIONAL LOGIC

AND of expressions is a conjunction, and for the OR of expressions another name is
disjunction.

Constructing a Logical Expression from a Truth Table

Any Boolean function whatsoever can be represented by a logical expression using
the operators AND, OR, and NOT. Finding the simplest expression for a given Boolean
function is generally hard. However, we can easily construct some expression for
any Boolean function. The technique is straightforward. Starting with the truth
table for the function, we construct a logical expression of the form

m1 OR mo OR --- OR m,,

Each m; is a term that corresponds to one of the rows of the truth table for which
the function has value 1. Thus there are as many terms in the expression as there
are 1’s in the column for that function. Each of the terms m; is called a minterm
and has a special form that we shall describe below.

To begin our explanation of minterms, a literal is an expression that is either
a single propositional variable, such as p, or a negated variable, such as NOT p,
which we shall often write as p. If the truth table has k variable columns, then
each minterm consists of the logical AND, or “product,” of k literals. Let r be a row
for which we wish to construct the minterm. If the variable p has the value 1 in
row r, then select literal p. If p has value 0 in row 7, then select p as the literal.
The minterm for row r is the product of the literals for each variable. Clearly, the
minterm can only have the value 1 if all the variables have the values that appear
in row 7 of the truth table.

Now construct an expression for the function by taking the logical OR, or “sum,”
of those minterms that correspond to rows with 1 as the value of the function. The
resulting expression is in “sum of products” form, or disjunctive normal form. The
expression is correct, because it has the value 1 exactly when there is a minterm
with value 1; this minterm cannot be 1 unless the values of the variables correspond
to the row of the truth table for that minterm, and that row has value 1.

Example 12.9. Let us construct a sum-of-products expression for the carry-
out function d defined by the truth table of Fig. 12.8. The rows with value 1 are
numbered 3, 5, 6, and 7. The minterm for row 3, which hasz =0,y =1, and c =1,
is & AND y AND ¢, which we abbreviate Zyc. Similarly, the minterm for row 5 is xgec,
that for row 6 is xy¢, and that for row 7 is xyc. Thus the desired expression for d
is the logical OR of these expressions, which is

Tyc + xyc + ryc + xyc (12.6)
This expression is more complex than (12.5). However, we shall see in the next

section how expression (12.5) can be derived.
Similarly, we can construct a logical expression for the sum-bit z by taking the
sum of the minterms for rows 1, 2, 4, and 7 to obtain
Tyc + Tyc + xryc + xyc
O

Monotone
function

SEC. 12.5 FROM BOOLEAN FUNCTIONS TO LOGICAL EXPRESSIONS 659

Complete Sets of Operators

The minterm technique for designing sum-of-products expressions like (12.6) shows
that the set of logical operators AND, OR, and NOT is a complete set, meaning that
every Boolean function has an expression using just these operators. It is not hard
to show that the NAND operator by itself is complete. We can express the functions
AND, OR, and NOT, with NAND alone as follows:

1. (p AND q) = ((p NAND ¢) NAND TRUE)
2. (pORq) = ((p NAND TRUE) NAND (g NAND TRUE))
3. (NOT p) = (p NAND TRUE)

We can convert any sum-of-products expression to one involving only NAND,
by substituting the appropriate NAND-expression for each use of AND, OR, and NOT.
Similarly, NOR by itself is complete.

An example of a set of operators that is not complete is AND and OR by them-
selves. For example, they cannot express the function NOT. To see why, note that
AND and OR are monotone, meaning that when you change any one input from 0 to
1, the output cannot change from 1 to 0. It can be shown by induction on the size
of an expression that any expression with operators AND and OR is monotone. But
NOT is not monotone, obviously. Hence there is no way to express NOT by AND’s and
OR’s.

_ =000 ol
=0 OO O
— O RO, OO
== == 0 OO
[l elNeNoNell) il B

Fig. 12.10. Two Boolean functions for exercises.

EXERCISES

12.5.1: Figure 12.10 is a truth table that defines two Boolean functions, a and b, in
terms of variables p, ¢, and r. Write sum-of-products expressions for each of these
functions.

12.5.2: Write product-of-sums expressions (see the box on “Product-of-Sums Ex-
pressions”) for

a) Function a of Fig. 12.10.
b) Function b of Fig. 12.10.
¢) Function z of Fig. 12.8.

Conjunctive
normal form

Maxterm

0
= 12.6

660 PROPOSITIONAL LOGIC

Product-of-Sums Expressions

There is a dual way to convert a truth table into an expression involving AND, OR,
and NOT; this time, the expression will be a product (logical AND) of sums (logical
OR) of literals. This form is called “product-of-sums,” or conjunctive normal form.

For each row of a truth table, we can define a maxterm, which is the sum of
those literals that disagree with the value of one of the argument variables in that
row. That is, if the row has value 0 for variable p, then use literal p, and if the
value of that row for p is 1, then use p. The value of the maxterm is thus 1 unless
each variable p has the value specified for p by that row.

Thus, if we look at all the rows of the truth table for which the value is 0, and
take the logical AND of the maxterms for all those rows, our expression will be 0
exactly when the inputs match one of the rows for which the function is to be 0. It
follows that the expression has value 1 for all the other rows, that is, those rows for
which the truth table gives the value 1. For example, the rows with value 0 for d
in Fig. 12.8 are numbered 0, 1, 2, and 4. The maxterm for row 0 is x + y + ¢, and
that for row 1 is x + y + ¢, for example. The product-of-sums expression for d is

(+y+o)(z+y+o)(z+g+c)(T+y+co
This expression is equivalent to (12.5) and (12.6).

12.5.3**: Which of the following logical operators form a complete set of operators
by themselves: (a) = (b) — (¢) NOR? Prove your answer in each case.

12.5.4**: Of the 16 Boolean functions of two variables, how many are complete by
themselves?

12.5.5*: Show that the AND and OR of monotone functions is monotone. Then show
that any expression with operators AND and OR only, is monotone.

Designing Logical Expressions by Karnaugh Maps

In this section, we present a tabular technique for finding sum-of-products expres-
sions for Boolean functions. The expressions produced are often simpler than those
constructed in the previous section by the expedient of taking the logical OR of all
the necessary minterms in the truth table.

For instance, in Example 12.7 we did an ad hoc design of an expression for
the carry-out function of a one-bit adder. We saw that it was possible to use a
product of literals that was not a minterm; that is, it was missing literals for some
of the variables. For example, we used the product of literals xy to cover the sixth
and seventh rows of Fig. 12.8, in the sense that xy has value 1 exactly when the
variables x, y, and ¢ have the values indicated by one of those two rows.

Similarly, in Example 12.7 we used the expression xc to cover rows 5 and 7,
and we used yc to cover rows 3 and 7. Note that row 7 is covered by all three
expressions. There is no harm in that. In fact, had we used only the minterms for
rows 5 and 3, which are xgc and Tyc, respectively, in place of xc and yc¢, we would
have obtained an expression that was correct, but that had two more occurrences
of operators than the expression zy + xc + yc obtained in Example 12.7.

SEC. 12.6 DESIGNING LOGICAL EXPRESSIONS BY KARNAUGH MAPS 661

The essential concept here is that if we have two minterms differing only by
the negation of one variable, such as zyé¢ and xzyc for rows 6 and 7, respectively,
we can combine the two minterms by taking the common literals and dropping the
variable in which the terms differ. This observation follows from the general law

(rg +pq) =q

To see this equivalence, note that if ¢ is true, then either pq is true, or pq is true,
and conversely, when either pg or pq is true, then it must be that ¢ is true.

We shall see a technique for verifying such laws in the next section, but, for
the moment, we can let the intuitive meaning of our law justify its use. Note also
that use of this law is not limited to minterms. We could, for example, let p be
any propositional variable and ¢ be any product of literals. Thus we can combine
any two products of literals that differ only in one variable (one product has the
variable itself and the other its complement), replacing the two products by the one
product of the common literals.

Karnaugh Maps

There is a graphical technique for designing sum-of-products expressions from truth
tables; the method works well for Boolean functions up to four variables. The
idea is to write a truth table as a two-dimensional array called a Karnaugh map
(pronounced “car-no”) whose entries, or “points,” each represent a row of the truth
table. By keeping adjacent the points that represent rows differing in only one
variable, we can “see” useful products of literals as certain rectangles, all of whose
points have the value 1.

Two-Variable Karnaugh Maps

The simplest Karnaugh maps are for Boolean functions of two variables. The rows
correspond to values of one of the variables, and the columns correspond to values of
the other. The entries of the map are 0 or 1, depending on whether that combination
of values for the two variables makes the function have value 0 or 1. Thus the
Karnaugh map is a two-dimensional representation of the truth table for a Boolean
function.

Example 12.10. In Fig. 12.11 we see the Karnaugh map for the “implies”
function, p — g. There are four points corresponding to the four possible values for
p and g. Note that “implies” has value 1 except when p =1 and ¢ = 0, and so the
only point in the Karnaugh map with value 0 is the entry for p = 1 and ¢ = 0; all
the other points have value 1. [

Implicants

An implicant for a Boolean function f is a product z of literals for which no assign-
ment of values to the variables of f makes x true and f false. For example, every
minterm for which the function f has value 1 is an implicant of f. However, there
are other products that can also be implicants, and we shall learn to read these off
of the Karnaugh map for f.

Covering points
of a Karnaugh
map

662 PROPOSITIONAL LOGIC

q
0 1
0 1 1
p
1 0 1

Fig. 12.11. Karnaugh map for p — q.

Example 12.11. The minterm pq is an implicant for the “implies” function of
Fig. 12.11, because the only assignment of values for p and ¢ that makes pq true,
namely p = 1 and ¢ = 1, also makes the “implies” function true.

As another example, p by itself is an implicant for the “implies” function be-
cause the two assignments of values for p and ¢ that make p true also make p — ¢
true. These two assignments are p=0,¢=0and p=0,¢g=1. O

An implicant is said to cover the points for which it has the value 1. A logical
expression can be constructed for a Boolean function by taking the OR of a set of
implicants that together cover all points for which that function has value 1.

Example 12.12. Figure 12.12 shows two implicants in the Karnaugh map for
the “implies” function. The larger, which covers two points, corresponds to the
single literal, p. This implicant covers the top two points of the map, both of which
have 1’s in them. The smaller implicant, pq, covers the point p = 1 and ¢ = 1.
Since these two implicants together cover all the points that have value 1, their
sum, p + pgq, is an equivalent expression for p — ¢; that is, (p — ¢) = (P + pq). O

q
0 1
0 1 1
p
1 0 1

Fig. 12.12. Two implicants p and pq in the Karnaugh map for p — q.

SEC. 12.6 DESIGNING LOGICAL EXPRESSIONS BY KARNAUGH MAPS 663

Rectangles that correspond to implicants in Karnaugh maps must have a special
“look.” For the simple maps that come from 2-variable functions, these rectangles
can only be

1. Single points,
2. Rows or columns, or
3. The entire map.

A single point in a Karnaugh map corresponds to a minterm, whose expression
we can find by taking the product of the literals for each variable appropriate to
the row and column of the point. That is, if the point is in the row or column for
0, then we take the negation of the variable corresponding to the row, or column,
respectively. If the point is in the row or column for 1, then we take the corre-
sponding variable, unnegated. For instance, the smaller implicant in Fig. 12.12 is
in the row for p = 1 and the column for ¢ = 1, which is the reason that we took the
product of the unnegated literals p and ¢ for that implicant.

A row or column in a two-variable Karnaugh map corresponds to a pair of points
that agree in one variable and disagree in the other. The corresponding “product”
of literals reduces to a single literal. The remaining literal has the variable whose
common value the points share. The literal is negated if that common value is 0,
and unnegated if the shared value is 1. Thus the larger implicant in Fig. 12.12 —
the first row — has points with a common value of p. That value is 0, which justifies
the use of the product-of-literals p for that implicant.

An implicant consisting of the entire map is a special case. In principle, it
corresponds to a product that reduces to the constant 1, or TRUE. Clearly, the
Karnaugh map for the logical expression TRUE has 1’s in all points of the map.

Prime Implicants

A prime implicant x for a Boolean function f is an implicant for f that ceases to
be an implicant for f if any literal in z is deleted. In effect, a prime implicant is an
implicant that has as few literals as possible.

Note that the bigger a rectangle is, the fewer literals there are in its product.
We would generally prefer to replace a product with many literals by one with fewer
literals, which involves fewer occurrences of operators, and thus is “simpler.” We
are thus motivated to consider only those implicants that are prime, when selecting
a set of implicants to cover a map.

Remember that every implicant for a given Karnaugh map consists only of
points with 1’s. An implicant is a prime implicant because expanding it further by
doubling its size would force us to cover a point with value 0.

Example 12.13. In Fig. 12.12, the larger implicant p is prime, since the only
possible larger implicant is the entire map, which cannot be used because it contains
a 0. The smaller implicant pg is not prime, since it is contained in the second
column, which consists only of 1’s, and is therefore an implicant for the “implies”
Karnaugh map. Figure 12.13 shows the only possible choice of prime implicants for
the “implies” map.! They correspond to the products p and ¢, and they give rise
to the expression p + ¢, which we noted in Section 12.3 was equivalent to p — ¢. O

I In general, there may be many sets of prime implicants that cover a given Karnaugh map.

664 PROPOSITIONAL LOGIC

q
0 1
0 1 1
p
1 0 1

Fig. 12.13. Prime implicants p and ¢ for the “implies” function.

Three-Variable Karnaugh Maps

When we have three variables in our truth table, we can use a two-row, four-column
map like that shown in Fig. 12.14, which is a map for the carry-out truth table of
Fig. 12.8. Notice the unusual order in which the columns correspond to pairs of
values for two variables (variables y and ¢ in this example). The reason is that we
want adjacent columns to correspond to assignments of truth values that differ in
only one variable. Had we chosen the usual order, 00, 01, 10, 11, the middle two
columns would differ in both y and ¢. Note also that the first and last columns are
“adjacent,” in the sense that they differ only in variable y. Thus, when we select
implicants, we can regard the first and last columns as a 2 x 2 rectangle, and we
can regard the first and last points of either row as a 1 x 2 rectangle.

yc

00 01 11 10

Fig. 12.14. Karnaugh map for the carry-out function
with prime implicants zc, yc, and xy.

We need to deduce which rectangles of a three-variable map represent possible
implicants. First, a permissible rectangle must correspond to a product of literals.
In any product, each variable appears in one of three ways: negated, unnegated,
or not at all. When a variable appears negated or unnegated, it cuts in half the
number of points in the corresponding implicant, since only points with the proper
value for that variable belong in the implicant. Hence, the number of points in an
implicant will always be a power of 2. Each permissible implicant is thus a collection
of points that, for each variable, either

SEC. 12.6 DESIGNING LOGICAL EXPRESSIONS BY KARNAUGH MAPS 665

Reading Implicants from the Karnaugh Map

No matter how many variables are involved, we can take any rectangle that repre-
sents an implicant and produce the product of literals that is TRUE for exactly the
points in the rectangle. If p is any variable, then

1. If every point in the rectangle has p = 1, then p is a literal in the product.
2. If every point in the rectangle has p = 0, then p is a literal in the product.

3. If the rectangle has points with p = 0 and other points with p = 1, then the
product has no literal with variable p.

a) Includes only points with that variable equal to 0,

b) Includes only points with that variable equal to 1, or

¢) Does not discriminate on the basis of the value of that variable.

For three-variable maps, we can enumerate the possible implicants as follows.

1. Any point.
2. Any column.

3. Any pair of horizontally adjacent points, including the end-around case, that
is, a pair in columns 1 and 4 of either row.

4. Any row.

5. Any 2 x 2 square consisting of two adjacent columns, including the end-around
case, that is, columns 1 and 4.

6. The entire map.

Example 12.14. The three prime implicants for the carry-out function were
indicated in Fig. 12.14. We may convert each to a product of literals; see the box
“Reading Implicants from the Karnaugh Map.” The corresponding products are
xc for the leftmost one, yc for the vertical one, and xy for the rightmost one. The
sum of these three expressions is the sum-of-products that we obtained informally
in Example 12.7; we now see how this expression was obtained. [

Example 12.15. Figure 12.15 shows the Karnaugh map for the three-variable
Boolean function NAND (p, ¢, 7). The prime implicants are

1. The first row, which corresponds to p.
2. The first two columns, which correspond to q.

3. Columns 1 and 4, which correspond to 7.

The sum-of-products expression for this map is p+ g+ 7. U

666 PROPOSITIONAL LOGIC

qr

00 01 11 10

Fig. 12.15. Karnaugh map with prime implicants p, g, and 7 for NAND(p, ¢, 7).

Four-Variable Karnaugh Maps

A four-argument function can be represented by a 4 x 4 Karnaugh map, in which
two variables correspond to the rows, and two variables correspond to the columns.
In both the rows and columns, the special order of the values that we used for
the columns in three-variable maps must be used, as shown in Fig. 12.16. For
four-variable maps, adjacency of both rows and columns must be interpreted in the
end-around sense. That is, the top and bottom rows are adjacent, and the left and
right columns are adjacent. As an important special case, the four corner points
form a 2 x 2 rectangle; they correspond in Fig. 12.16 to the product of literals gs
(which is not an implicant in Fig. 12.16, because the lower right corner is 0).

rs

00 01 11 10

00 1 1 0 1

01 1 0 0 0
bq

11 0 0 0 0

10 1 0 0 0

Fig. 12.16. Karnaugh map with prime implicants for the “at most one 1” function.

The rectangles in a four-variable Karnaugh map that correspond to products
of literals are as follows:

SEC. 12.6 DESIGNING LOGICAL EXPRESSIONS BY KARNAUGH MAPS 667

1. Any point.

2. Any two horizontally or vertically adjacent points, including those that are
adjacent in the end-around sense.

3. Any row or column.

4. Any 2 x 2 square, including those in the end-around sense, such as two adjacent
points in the top row and the two points in the bottom row that are in the same
columns. The four corners is, as we mentioned, a special case of a “square” as
well.

5. Any 2 x 4 or 4 x 2 rectangle, including those in the end-around sense, such as
the first and last columns.

6. The entire map.

Example 12.16. Figure 12.16 shows the Karnaugh map of a Boolean function
of four variables, p, ¢, r, and s, that has the value 1 when at most one of the inputs
is 1. There are four prime implicants, all of size 2, and two of them are end-around.
The implicant consisting of the first and last points of the top row has points that
agree in variables p, ¢, and s; the common value is 0 for each variable. Thus its
product of literals is pgs. Similarly, the other implicants have products pgr, prs,
and ¢rs. The expression for the function is thus
pqr + pqs + prs + qrs
O

rs
00 01 11 10
00 1 1 0 |1
01 0 0 0 1
Pq
11 1 0 0 0
10 1]: 0 1 1

Fig. 12.17. Karnaugh map with an all-corners prime implicant.

Anti-implicant

668 PROPOSITIONAL LOGIC

Example 12.17. The map of Fig. 12.17 was chosen for the pattern of its 1’s,
rather than for any significance its function has. It does illustrate an important
point. Five prime implicants that together cover all the 1 points are shown, in-
cluding the all-corners implicant (shown dashed), for which the product of literals
expression is ¢§; the other four prime implicants have products pgr, prs, pgr, and
prs.

We might think, from the examples seen so far, that to form the logical expres-
sion for this map we should take the logical OR of all five implicants. However, a
moment’s reflection tells us that the largest implicant, ¢s, is superfluous, since all
its points are covered by other prime implicants. Moreover, this is the only prime
implicant that we have the option to eliminate, since each other prime implicant
has a point that only it covers. For example, pgr is the only prime implicant to
cover the point in the first row and second column. Thus

pqr + prs + pqr + prs

is the preferred sum-of-products expression obtained from the map of Fig. 12.17. [
EXERCISES

12.6.1: Draw the Karnaugh maps for the following functions of variables p, ¢, 7,
and s.

a) The function that is TRUE if one, two, or three of p, ¢, r, and s are TRUE, but
not if zero or all four are TRUE.

b) The function that is TRUE if up to two of p, ¢, r, and s are TRUE, but not if
three or four are TRUE.

¢) The function that is TRUE if one, three, or four of p, ¢, v, and s are TRUE, but
not if zero or two are TRUE.

d) The function represented by the logical expression pgr — s.

e) The function that is TRUE if pgrs, regarded as a binary number, has value less
than ten.

12.6.2: Find the implicants — other than the minterms — for each of your Kar-
naugh maps from Exercise 12.6.1. Which of them are prime implicants? For each
function, find a sum of prime implicants that covers all the 1’s of the map. Do you
need to use all the prime implicants?

12.6.3: Show that every product in a sum-of-products expression for a Boolean
function is an implicant of that function.

12.6.4*: One can also construct a product-of-sums expression from a Karnaugh
map. We begin by finding rectangles of the types that form implicants, but with all
points 0, instead of all points 1. Call such a rectangle an “anti-implicant.” We can
construct for each anti-implicant a sum of literals that is 1 on all points but those of
the anti-implicant. For each variable x, this sum has literal z if the anti-implicant
includes only points for which = 0, and it has literal Z if the anti-implicant has
only points for which z = 1. Otherwise, the sum does not have a literal involving
z. Find all the prime anti-implicants for your Karnaugh maps of Exercise 12.6.1.

12.6.5: Using your answer to Exercise 12.6.4, write product-of-sums expressions
for each of the functions of Exercise 12.6.1. Include as few sums as you can.

0
= 12.7

Substitution
of equals for
equals

O

SEC. 12.7 TAUTOLOGIES 669

12.6.6**: How many (a) 1 x 2 (b) 2 x 2 (c) 1 x4 (d) 2 x 4 rectangles that form
implicants are there in a 4 x 4 Karnaugh map? Describe their implicants as products
of literals, assuming the variables are p, ¢, 7, and s.

Tautologies

A tautology is a logical expression whose value is true regardless of the values of its
propositional variables. For a tautology, all the rows of the truth table, or all the
points in the Karnaugh map, have the value 1. Simple examples of tautologies are

TRUE
p+p
(p+4q) = (p+pq)

Tautologies have many important uses. For example, suppose we have an
expression of the form E; = E, that is a tautology. Then, whenever we have an
instance of E; within any expression, we can replace F; by Es, and the resulting
expression will represent the same Boolean function.

Figure 12.18(a) shows the expression tree for a logical expression F' containing
E; as a subexpression. Figure 12.18(b) shows the same expression with F; replaced
by Es. If By = Es, the values of the roots of the two trees must be the same, no
matter what assignment of truth values is made to the variables. The reason is that
we know the nodes marked n in the two trees, which are the roots of the expression
trees for £; and Fs, must get the same value in both trees, because F1 = Fs. The
evaluation of the trees above n will surely yield the same value, proving that the
two trees are equivalent. The ability to substitute equivalent expressions for one
another is colloquially known as the “substitution of equals for equals.” Note that
in other algebras, such as those for arithmetic, sets, relations, or regular expressions
we also may substitute one expression for another that has the same value.

(n) (n)

(a) Expression containing F1 (b) Expression containing Es

Fig. 12.18. Expression trees showing substitution of equals for equals.

Example 12.18. Consider the associative law for the logical operator OR, which
can be phrased as the expression

(p+q)+7)= @+ (g+7)) (12.7)

670 PROPOSITIONAL LOGIC

The truth table for the various subexpressions appears in Fig. 12.19. The final
column, labeled FE, represents the entire expression. Observe that every row has
value 1 for E, showing that the expression (12.7) is a tautology. As a result, any
time we see an expression of the form (p + ¢) + r, we are free to replace it by
p+ (¢ + 7). Note that p, ¢, and r can stand for any expressions, as long as the
same expression is used for both occurrences of p, and ¢ and r are likewise treated
consistently. [

p oq T p+q (@+qo+r q+r p+(g+r) E
0 0 0 0 0 0 0 1
0 0 1 0 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1

Fig. 12.19. Truth table proving the associative law for OR.

The Substitution Principle

As we pointed out in Example 12.18, when we have a law involving a particular set
of propositional variables, the law applies not only as written, but with any substi-
tution of an expression for each variable. The underlying reason is that tautologies
remain tautologies when we make any substitution for one or more of its variables.
This fact is known as the substitution principle.? Of course, we must substitute the
same expression for each occurrence of a given variable.

Example 12.19. The commutative law for the logical operator AND can be
verified by showing that the logical expression pq = gp is a tautology. To get some
instances of this law, we can perform substitutions on this expression. For example,
we could substitute r + s for p and 7 for ¢ to get the equivalence

(r+s)(r) = (F)(r + 5)

Note that we put parentheses around each substituted expression to avoid acci-
dentally changing the grouping of operators because of our operator-precedence
conventions. In this case, the parentheses around r + s are essential, but the paren-
theses around 7 could be omitted.

Some other substitution instances follow. We could replace p by r and not
replace ¢, to get rq = gr. We could leave p alone and replace g by the constant
expression 1 (TRUE), to get p AND 1 = 1 AND p. However, we cannot substitute r
for the first occurrence of p and substitute a different expression, say r + s, for the

2 We should not confuse the substitution principle with the “substitution of equals for equals.”
The substitution principle applies to tautologies only, while we may substitute equals for
equals in any expression.

SEC. 12.7 TAUTOLOGIES 671

second. That is, r¢ = q(r + s) is not a tautology (its value is 0 if s = ¢ = 1 and
r=20). 0

AND AND

/ N

p q q p

PN
AN /

Fig. 12.20. Expression tree for the tautology pg = gp.

The reason the substitution principle holds true can be seen if we think about
expression trees. Imagine the expression tree for some tautology, such as the one
discussed in Example 12.19, which we show in Fig. 12.20. Since the expression is
a tautology, we know that, whatever assignment of truth values we make for the
propositional variables at the leaves, the value at the root is true (as long as we
assign the same value to each leaf that is labeled by a given variable).

Now suppose that we substitute for p an expression with tree 7}, and that we
substitute for ¢ an expression with tree T5; in general, we select one tree for each
variable of the tautology, and replace all leaves for that variable by the tree selected
for that variable.? Then we have a new expression tree similar to that suggested
by Fig. 12.21. When we make an assignment of truth values for the variables of
the new tree, the value of each node that is a root of a tree 7}, gets the same value,
because the same evaluation steps are performed underneath any such node.

PN

RN RN

Ty 1, 1, Ty

ND

Fig. 12.21. A substitution for the variables of Fig. 12.20.

Once the roots of the trees like T}, and T} in Fig. 12.21 are evaluated, we have
a consistent assignment of values to the variables at the leaves of the original tree,
which we illustrated in Fig. 12.20. That is, we take whatever value is computed
for the occurrences of 7}, which must all be the same value, and assign it to all

3 As a special case, the tree selected for some variable = can be a single node labeled x, which
is the same as making no substitution for z.

672 PROPOSITIONAL LOGIC

the leaves labeled p in the original tree. We do the same for ¢, and in general,
for any variable appearing in the original tree. Since the original tree represents a
tautology, we know that evaluating that tree will result in the value TRUE at the
root. But above the substituted trees, the new and original trees are the same, and
so the new tree also produces value TRUE at the root. Since the above reasoning
holds true no matter what substitution of values we make for the variables of the
new tree, we conclude that the expression represented by the new tree is also a
tautology.

The Tautology Problem

The tautology problem is to test whether a given logical expression is equivalent
to TRUE, that is, whether it is a tautology. There is a straightforward way to solve
this problem. Construct a truth table with one row for each possible assignment of
truth values to the variables of the expression. Create one column for each interior
node of the tree, and in a suitable bottom-up order, evaluate each node for each
assignment of truth values to the variables. The expression is a tautology if and
only if the value of the whole expression is 1 (TRUE) for every truth assignment.
Example 12.18 illustrated this process.

Running Time of the Tautology Test

If the expression has k variables and n operator occurrences, then the table has
2% rows, and there are n columns that need to be filled out. We thus expect a
straightforward implementation of this algorithm to take O(2¥n) time. That is not
long for expressions with two or three variables, and even for, say, 20 variables,
we can carry the test out by computer in a few seconds or minutes. However, for
30 variables, there are a billion rows, and it becomes far less feasible to carry out
this test, even using a computer. These observations are typical of what happens
when one uses an exponential-time algorithm. For small instances, we generally see
no problem. But suddenly, as problem instances get larger, we find it is no longer
possible to solve the problem, even with the fastest computers, in an amount of
time we can afford.

NP

Fig. 12.22. P is the family of problems solvable in polynomial time,
NP is the family solvable in nondeterministic polynomial time, and
NPC is the family of NP-complete problems.

EXERCISES

12.7.1: Which of the following expressions are tautologies?

NP-complete
problem

Satisfiability
problem

NP-hard
problem

SEC. 12.7 TAUTOLOGIES 673

Inherent Intractability

The tautology problem, “Is E a tautology,” is an important example of a problem
that appears to be inherently exponential. That is, if k£ is the number of variables
in expression F, all the known algorithms to solve the tautology problem have a
running time that is an exponential function of k.

There is a family of problems, called NP-complete, which includes many impor-
tant optimization problems that no one knows how to solve in less than exponential
time. Many mathematicians and scientists have worked long and hard trying to find
for at least one of these problems an algorithm that runs in less than exponential
time, but no such algorithm has yet been found, and so many people now suspect
that none exists.

One of the classic NP-complete problems is the satisfiability problem: “Is there
a truth assignment that makes logical expression E true?” Satisfiability is closely
related to the tautology problem, and as with that problem, no significantly better
solution to the satisfiability problem is known than cycling through all possible
truth assignments.

Either all the NP-complete problems have less-than-exponential time solutions,
or none do. The fact that each NP-complete problem appears to require exponential
time thus reinforces our belief that all are inherently exponential-time problems.
Thus we have strong evidence that the straightforward satisfiability test is about
the best we can do.

Incidentally, “NP” stands for “nondeterministic polynomial.” “Nondetermin-
istic” informally means “the ability to guess right,” as discussed in Section 10.3.
A problem can be “solved in nondeterministic polynomial time” if, given a guess
at a solution for some instance of size n, we can check that the guess is correct in
polynomial time, that is, in time n° for some constant c.

Satisfiability is an example of such a problem. If someone gave us an assign-
ment of truth values to variables that they claimed, or guessed, made expression F
evaluate to 1, we could evaluate E with that assignment to its operands, and check,
in time at most quadratic in the length of F, that the expression is satisfiable.

The class of problems that — like satisfiability — can be “solved” by guessing
followed by a polynomial time check is called NP. Some problems in NP are
actually quite easy, and can be solved without the guessing, still taking only time
that is polynomial in the length of the input. However, there are many problems in
N P that can be proved to be as hard as any in N P, and these are the NP-complete
problems. (Do not confuse “completeness” in this sense, meaning “hardest in the
class,” with “complete set of operators” meaning “able to express every Boolean
function.”)

The family of problems solvable in polynomial time with no guessing is often
called P. Figure 12.22 shows the relationship between P, N P, and the NP-complete
problems. If any NP-complete problem is in P, then P = N P, something we doubt
very much is the case, because all the known NP-complete problems, and some other
problems in N P, appear not to be in P. The tautology problem is not believed to
be in NP, but it is as hard or harder than any problem in NP (called an NP-hard
problem) and if the tautology problem is in P, then P = NP.

0
a=a 12.8

674 PROPOSITIONAL LOGIC

a) pgr—p+gq

b) (p—a)g—7)—@—r)
c) p—q) —p

d) (p=(g+r) — (@—pr)

12.7.2*: Suppose we had an algorithm to solve the tautology problem for a logical
expression. Show how this algorithm could be used to

a) Determine whether two expressions were equivalent.
b) Solve the satisfiability problem (see the box on “Inherent Intractability”).

Some Algebraic Laws for Logical Expressions

In this section, we shall enumerate some useful tautologies. In each case, we shall
state the law, leaving the tautology test to be carried out by the reader by con-
structing the truth table.

Laws of Equivalence

We begin with some observations about how equivalence works. The reader should
notice the dual role played by equivalence. It is one of a number of operators that
we use in logical expressions. However, it is also a signal that two expressions are
“equal,” and that one can be substituted for the other. Thus a tautology of the
form E; = FE, tells us something about E; and E,, namely that either can be
substituted for the other within larger expressions, using the principle “equals can
be substituted for equals.”

Further, we can use equivalences to prove other equivalences. If we have a
sequence of expressions F1, Fs, ..., E, such that each is derived from the previous
one by a substitution of equals for equals, then each of these expressions gives the
same value when evaluated with the same truth assignment. As a consequence,
FE, = Ei must be a tautology.

12.1. Reflezivity of equivalence: p = p.

As with all the laws we state, the principle of substitution applies, and we
may replace p by any expression. Thus this law says that any expression is
equivalent to itself.

12.2. Commutative law for equivalence: (p = q) = (¢ = p).

Informally, p is equivalent to ¢ if and only if ¢ is equivalent to p. By the principle
of substitution, if any expression F; is equivalent to another expression Es, then
E5 is equivalent to F;. Thus either of E; and F5 may be substituted for the
other.

12.3. Transitive law for equivalence: ((p = q) AND (g =1)) — (p = 7).

Informally, if p is equivalent to ¢, and ¢ is equivalent to r, then p is equivalent to
r. An important consequence of this law is that if we have found both E; = Ey
and Fo = F3 to be tautologies, then F; = Fj3 is a tautology.

12.4. Equivalence of the negations: (p =q) = (p = q).

Two expressions are equivalent if and only if their negations are equivalent.

SEC. 12.8 SOME ALGEBRAIC LAWS FOR LOGICAL EXPRESSIONS 675

Laws Analogous to Arithmetic

There is an analogy between the arithmetic operators +, x, and unary minus on
the one hand, and OR, AND, and NOT on the other. Thus the following laws should
not be surprising.

12.5. The commutative law for AND: pq = gp.
Informally, pq is true exactly when gp is true.
12.6. The associative law for AND: p(qr) = (pq)r.

Informally, we can group the AND of three variables (or expressions) either by
taking the AND of the first two initially, or by taking the AND of the last two
initially. Moreover, with law 12.5, we can show that the AND of any collection of
propositions or expressions can be permuted and grouped any way we wish —
the result will be the same.

12.7. The commutative law for OR: (p + q) = (¢ + p).
12.8. The associative law for OR: (p+ (¢+71)) = ((p+4q) + 7).

This law and law 12.7 tell us the OR of any set of expressions can be grouped
as we like.

12.9. The distributive law of AND over OR: p(q + r) = (pqg + pr).

That is, if we wish to take the AND of p and the OR of two propositions or
expressions, we can either take the OR first, or take the AND of p with each
expression first; the result will be the same.

12.10. 1 (TRUE) is the identity for AND: (p AND 1) = p.

Notice that (1 AND p) = p is also a tautology. We did not need to state it,
because it follows from the substitution principle and previous laws. That is,
we may substitute simultaneously 1 for p and p for ¢ in 12.5, the commutative
law for AND, to get the tautology (1 AND p) = (p AND 1). Then, an application
of 12.3, the transitivity of equivalence, tells us that (1 AND p) = p.

12.11. 0 (FALSE) is the identity for OR: p OR 0 = p.

Similarly, we can deduce that (0 OR p) = p, using the same argument as for
12.10.

12.12. 0 is the annihilator for AND: (p AND 0) = 0.4

Recall from Section 10.7 that an annihilator for an operator is a constant
such that the operator, applied to that constant and any value, produces the
annihilator as value. Note that in arithmetic, 0 is an annihilator for x, but +
has no annihilator. However, we shall see that 1 is an annihilator for OR.

12.13. Elimination of double negations: (NOT NOT p) = p.

4 Of course, (0 AND p) = 0 holds as well. We shall not, in the future, mention all the conse-
quences of the commutative laws.

676 PROPOSITIONAL LOGIC

Exploiting Analogies for Arithmetic and Logical Operators

When we use the shorthand notation for AND and OR, we can often pretend that
we are dealing with multiplication and addition, as we use laws 12.5 through 12.12.
That is an advantage, since we are quite familiar with the corresponding laws for
arithmetic. Thus, for example, the reader should be able to replace (p + ¢)(r + s)
by pr + ps + gr + gs or by q(s + 1) + (r 4+ s)p quickly.

What is more difficult, and what requires practice, is applying the laws that are
not analogous to arithmetic. Examples are DeMorgan’s laws and the distribution
of OR over AND. For example, replacing pg+1s by (p+7r)(p+s)(g+r)(g+s) is valid,
but requires some thought to see how it follows from three applications of 12.14,
the distributive law of OR over AND, and commutative and associative laws.

Ways in Which av and or Differ from Plus and Times

There are also a number of laws that show the difference between AND and OR on
the one hand, and the arithmetic operators x and + on the other. We enumerate
some of them here.

12.14. The distributive law for OR over AND: (p+qr) = ((p+ q)(p +1)).

Just as AND distributes over OR, OR distributes over AND. Note that the analogous
arithmetic identity, = + yz = (x + y)(x + 2), is false in general.

12.15. 1 is the annihilator for OR: (1 0R p) = 1.
Note that the arithmetic analog 1 + z = 1 is false in general.
12.16. Idempotence of AND: pp = p.

Recall that an operator is idempotent if, when applied to two copies of the
same value, it produces that value as result.

12.17. Idempotence of OR: p+ p = p.

Note that neither x nor + is idempotent. That is, neither x X z = x nor
x + 2 = z is true in general.

12.18 Subsumption.

There are two versions of this law, depending on whether we remove a super-
fluous product or sum.

a) (p+pq) =p.
b) pp+q) =p.

Note that if we substitute an arbitrary product of literals for p and another
product of literals for ¢ in (a), we are saying that in a sum of products, we can
eliminate any product that has a superset of the literals of some other product.
The smaller set is said to subsume the superset. In part (b) we are saying an
analogous thing about a product of sums; we can eliminate a sum that is a
superset of the literals of some other sum in the product.

SEC. 12.8 SOME ALGEBRAIC LAWS FOR LOGICAL EXPRESSIONS 677

12.19. Elimination of certain negations.

a) p(p+q) = py.
b) p+pg=p+q.

Notice that (b) is the law that we used in Section 12.2 to explain why Sally’s
condition could replace Sam’s.

DeMorgan’s Laws

There are two laws that allow us to push NOT’s through an expression of AND’s and
OR’s, resulting in an expression in which all the negations apply to propositional
variables. The resulting expression is an AND-OR expression applied to literals. In-
tuitively, if we negate an expression with AND’s and OR’s, we can push the negation
down the expression tree, “flipping” operators as we go. That is, each AND becomes
an OR, and vice versa. Finally, the negations reach the leaves, where they stay, un-
less they meet a negated literal, in which case we can remove two negations by law
12.13. We must be careful, when we construct the new expression, to place paren-
theses properly, because the precedence of operators changes when we exchange
AND’s and OR’s.

The basic rules are called “DeMorgan’s laws.” They are the following two
tautologies.

12.20. DeMorgan’s laws.

a) NOT (pg) =p+q.

b) NOT (p+q) = pq.

Part (a) says that p and ¢ are not both true exactly when at least one of them
is false, and (b) says that neither p nor ¢ is true if and only if they are both
false. We can generalize these two laws to allow any number of propositional
variables as follows.

¢) (NOT (pip2---px)) = (p1 + P2 + - + D)
d) (NOT (p1 +p2+ - +pk) = (Prp2- - Di)-

For example, (d) says that none of some collection of expressions is true if and
only if all of them are false.

Example 12.20. We have seen in Sections 12.5 and 12.6 how to construct sum-
of-products expressions for arbitrary logical expressions. Suppose we start with an
arbitrary such expression E, which we may write as E1 + F2 + - - - + Ej, where each
E; is the AND of literals. We can construct a product-of-sums expression for NOT F,
by starting with

NOT (Ey + Eo+---+ Ey)
and applying DeMorgan’s law (d) to get
(NOT (Ey)) (NOT (E3)) - - - (NOT (Ey)) (12.8)

Now let E; be the product of literals X;; X2 --- X;j,, where each X is either a
variable or its negation. Then we can apply (c) to NOT (E;) to turn it into

678 PROPOSITIONAL LOGIC

X+ Xip+ -+ Xy,

If some literal X is a negated variable, say ¢, then X should be replaced by g itself,
using law 12.13, which says that double negations can be eliminated. When we
make all these changes, (12.8) becomes a product of sums of literals.

For example, rs + 7§ is a sum-of-products expression that is true exactly when
r = s; that is, it can be thought of as a definition of equivalence using AND, OR, and
NOT. The following formula, the negation of the one above, is true when r and s are
inequivalent, that is, exactly one of r and s is true.

NOT (rs + 75) (12.9)

Now let us apply a substitution to DeMorgan’s law (b), in which p is replaced by rs
and ¢ is replaced by 75. Then the left-hand side of (b) becomes exactly (12.9), and
we know by the principle of substitution that (12.9) is equivalent to the right-hand
side of (b) with the same substitution, namely

NOT (rs) AND NOT (75) (12.10)

Now we can apply (a), with the substitution of r for p and s for ¢, replacing NOT (rs)
by 7 + 5. Similarly, (a) tells us that NOT (73) is equivalent to NOT (7)+ NOT (5).
But NOT (7) is the same as NOT (NDT (7“)), which is equivalent to 7, since double
negations can be eliminated. Similarly, NOT (5) can be replaced by s. Thus (12.10)
is equivalent to (7+ §)(r +s). This is a product-of-sums expression for “exactly one
of r and s is true.” Informally, it says, “At least one of r and s is false and at least
one of r and s is true.” FEvidently, the only way that could happen is for exactly
one of r and s to be true. O

The Principle of Duality

As we scan the laws of this section, we notice a curious phenomenon. The equiva-
lences seem to come in pairs, in which the roles of AND and OR are interchanged. For
example, parts (a) and (b) of law 12.19 are such a pair, and laws 12.9 and 12.14 are
such a pair; the latter are the two distributive laws. When the constants 0 and 1
are involved, these two must be interchanged, as in the pair of laws about identities,
12.10 and 12.11.

The explanation for this phenomenon is found in DeMorgan’s laws. Suppose
we start with a tautology Fy = F>, where E; and F, are expressions involving
operators AND, OR, and NOT. By law 12.4, NOT (E) = NOT (FE2) is also a tautology.
Now we apply DeMorgan’s laws to push the negations through AND’s and OR’s. As
we do, we “flip” each AND to an OR and vice versa, and we move the negation down
to each of the operands. If we meet a NOT operator, we simply move the “traveling”
NOT below it, until we come to another AND or OR. The exception occurs when we
come to a negated literal, say p. Then, we combine the traveling NOT with the
one already there to leave operand p. As a special case, if a traveling NOT meets a
constant, 0 or 1, we negate the constant; that is, (NOT 0) = 1 and (NOT 1) = 0.

Example 12.21. Let us consider the tautology 12.19(b). We begin by negating
both sides, which gives us the tree of Fig. 12.23(a). Then, we push the negations
through the OR’s on each side of the equivalence, changing them to AND’s; NOT signs
appear above each of the arguments of the two OR’s, as shown in Fig. 12.23(b).
Three of the new NOT’s are above variables, and so their travels end. The one that

SEC. 12.8 SOME ALGEBRAIC LAWS FOR LOGICAL EXPRESSIONS 679

is above an AND flips it to an OR, and causes NOT’s to appear on its two arguments.
The right-hand argument becomes NOT ¢, while the left-hand argument, which was
NOT p, becomes NOT NOT p, or simply p. The resulting tree is shown in Fig. 12.23(c).

The tree of Fig. 12.23(c) represents the expression p(p + @) = pg. To get the
expression into the form of law 12.19(a), we must negate the variables. That is, we
substitute expression p for p and ¢ for ¢. When we eliminate the double negations,
we are left with exactly 12.19(a). O

Laws Involving Implication
There are several useful tautologies that give us properties of the — operator.
12.21. ((p — q) AND (¢ — p)) = (p =)
That is, two expressions are equivalent if and only if they each imply the other.
12.22. (p=q) — (p —).
The equivalence of two expressions tells us that either one implies the other.
12.23. Transitivity of implication: ((p — q) AND (¢ — 1)) — (p — 7).
That is, if p implies ¢, which implies r, then p implies r.
12.24. Tt is possible to express implication with AND and OR. The simplest form is:
a) (p—q)={m+aq).

We shall see that there are many situations in which we deal with an expres-
sion of the form “if this and this and - - -, then that.” For example, the pro-
gramming language Prolog, and many “artificial intelligence” languages depend
upon “rules” of that form. These rules are written formally as (p1p2 - - pn) — ¢.
They may be expressed with only AND and OR, by the equivalence

b) (pip2--pn—q) = @1 +D2+ -+ D0+).

That is, both the left-hand and the right-hand sides of the equivalence are
true whenever ¢ is true or one or more of the p’s are false; both sides are false
otherwise.

EXERCISES

12.8.1: Check, by constructing the truth tables, that each of the laws 12.1 to 12.24
are tautologies.

12.8.2: We can substitute expressions for any propositional variable in a tautology
and get another tautology. Substitute z+y for p, yz for ¢, and Z for r in each of the
tautologies 12.1 to 12.24, to get new tautologies. Do not forget to put parentheses
around the substituted expressions if needed.

12.8.3: Prove that

a) p1+p2+---+py is equivalent to the sum (logical OR) of the p;’s in any order.
b) pip2---py is equivalent to the product (logical AND) of the p;’s in any order.

Hint: A similar result was shown for addition in Section 2.4.

680 PROPOSITIONAL LOGIC

T T

NOT NOT
I I
OR OR
RN RN
p AND p q
RN
NOT q
I
p

(a) Initial expression tree

T T

AND AND
VRN VRN
NOT NOT NOT NOT
I I I I
P AND D q
VRN
NOT q
I
P

(b) First “pushes” of the negations

AND AND
VRN VRN
NOT OR NOT NOT
| AN | |
p p NOT p q
|
q

(c) Final expression

Fig. 12.23. Constructing the dual expression.

SEC. 12.8 SOME ALGEBRAIC LAWS FOR LOGICAL EXPRESSIONS 681

12.8.4*: Use laws given in this section to transform the first of each pair of ex-
pressions into the second. To save effort, you may omit steps that use laws 12.5
through 12.13, which are analogous to arithmetic. For example, commutativity and
associativity of AND and OR may be assumed.

a) Transform pg + rs into (p 4+ r)(p + s)(g + r)(q + s).

b) Transform pq + pgr into p(q + r).

¢) Transform pq + pg + pg + pq into 1. (This transformation requires law 12.25
from the next section.)

d) Transform pg — r into (p — r) + (¢ — 7).

e) Transform NOT (pg — r) into pqr.

12.8.5%: Show that the subsumption laws, 12.18(a) and (b), follow from previously
given laws, in the sense that it is possible to transform p + pq into p and transform
p(p + q) into p using only laws 12.1 through 12.17.

12.8.6: Apply DeMorgan’s laws to turn the following expressions into expressions
where the only NOT’s are applied to propositional variables (i.e., the NOT’s appear
in literals only).

a) NOT (pq + pr)
b) NOT (NOT p + ¢(NOT (r + 3)))

12.8.7*: Prove the generalized DeMorgan’s laws 12.20(c) and (d) by induction
on k, using the basic laws 12.20(a) and (b). Then, justify the generalized laws
informally by describing what the 2¥-row truth tables for each expression and their
subexpressions look like.

12.8.8*: Find the pairs of laws in this section that are duals of one another.
12.8.9*: Prove law 12.24(b) by induction on n.

12.8.10%: Show that law 12.24(b) holds by describing the 2" rows of the truth
table for the expression and each of its subexpressions.

12.8.11: Simplify the following by using the subsumption laws and the commutative
and associative laws for AND and OR.

a) WI + wIky + ZTw
b) (w+Z)(w+y+2)(w+T+7)(T)

12.8.12*: Show that the arithmetic analogs of laws 12.14 through 12.20 are false,
by giving specific numbers for which the analogous equalities to not hold.

12.8.13*: If we start with logical expression whose only operators are AND, OR, and
NOT, we can push all the NOT’s down the tree until the only NOT’s are immediately
above propositions; that is, the expression is the AND and OR of literals. Prove that
we can do so. Hint: Whenever we see a NOT, either it is immediately above another
NOT (in which case we can eliminate them both by rule 12.13), or above a proposition
(in which case the statement is satisfied), or it is above an AND and OR (in which case
we can use DeMorgan’s laws to push it down one level). However, a proof that we
eventually reach an equivalent expression with all NOT’s above propositions cannot
proceed by induction on an obvious “size” measure such as the sum of the heights
of the nodes labeled NOT. The reason is that when we use DeMorgan’s laws to push
one NOT down, it is replaced by two NOT’s, and this sum might increase. In order

0
= 12.9

682 PROPOSITIONAL LOGIC

to prove that we eventually reach an expression with all NOT’s above propositions,
you need to find a suitable “size” measure that always decreases when DeMorgan’s
laws are applied in the direction where a NOT is pushed down below an AND or OR.
Find such a size measure and prove the claim.

Tautologies and Methods of Proof

In the past three sections, we have seen one aspect of logic: its use as a design
theory. In Section 12.6 we saw how to use Karnaugh maps to design expressions
given a Boolean function, and in Chapter 13 we shall see how this methodology
helps design the switching circuits from which computers and other digital devices
are built. Sections 12.7 and 12.8 introduced us to tautologies, which can be used
to simplify expressions, and therefore serve as another important tool when good
expressions must be designed for a given Boolean function.

A second important use of logic will be seen in this section. When people reason
or prove statements of mathematics, they use a variety of techniques to further their
arguments. Examples of these techniques are

1. Case analysis,

2. Proof of the contrapositive,

3. Proof by contradiction, and

4. Proof by reduction to truth.

In this section we shall define these techniques, showing how each can be used in

proofs. We also show how these techniques are justified by certain tautologies of
propositional logic.

The Law of Excluded Middle

We begin with several tautologies that represent basic facts about how one reasons.
12.25. The law of the excluded middle: (p+ p) =1 is a tautology.

That is, something is either true or false; there is no middle ground.

Example 12.22. As an application of law 12.25, as well as several of the other
laws seen so far, we can prove the law (pg + pg) = ¢ used in Section 12.6. Begin
with

(1 AND ¢) = (1 AND q)
which follows from law 12.1, reflexivity of equivalence, by substituting 1 AND ¢ for

p. Now, by law 12.25, we may replace 1 by p + p in the left-hand side above,
substituting “equals for equals.” Thus

((p+ D)) = (1 AND g)

is a tautology. On the right-hand side of the equivalence, use law 12.10 to replace
1 AND ¢ by ¢g. Then, on the left-hand side, we use 12.9, the distributivity of AND over
OR, preceded and followed by law 12.5, the commutativity of AND, to show that the
left-hand side is equivalent to pg + pg. Thus we have

SEC. 12.9 TAUTOLOGIES AND METHODS OF PROOF 683

(rq +pq) =q

as desired. O

A generalization of the law of the excluded middle is a technique of proof called
“case analysis,” in which we wish to prove an expression E. We take some other
expression F' and its negation, NOT F', and prove that both F' and NOT F' imply FE.
Since F' must be either true or false, we can conclude . The formal basis for case
analysis is the following tautology.

12.26. Case analysis: ((p — q) AND (p — q)) =q.

That is, the two cases occur when p is true and when p is false. If ¢ is implied
in both cases, then g must be true. We leave it as an exercise to show that
12.26 follows from 12.25 and other laws we have proved.

12.27. pp = 0.

A proposition and its negation cannot both be true simultaneously. This law
is vital when we make a “proof by contradiction.” We discuss this technique of
proof shortly, in law 12.29, and also in Section 12.11, when we cover resolution
proofs.

Proving the Contrapositive

Sometimes we want to prove an implication, like p — ¢, but we find it easier to
prove § — p, which is an equivalent expression called the contrapositive of p — q.
This principle is formalized in the following law.

12.28. The contrapositive law: (p — q) = (@ — P).

Example 12.23. Let us consider a simple example of a proof that shows how
the contrapositive law may be used. This example also shows the limitations of
propositional logic in proofs. Logic takes us part of the way, allowing us to reason
about statements without reference to what the statements mean. However, to
get a complete proof, we normally have to make some argument that refers to the
meaning of our terms. For this example, we need to know what concepts about
integers, like “prime,” “odd,” and “greater than” mean.

We shall consider three propositions about a positive integer x:

(éx > 2”
b “r is a prime”
c “z is odd”

The theorem we want to prove is ab — ¢, that is,

STATEMENT “If x is greater than 2 and a prime, then z is odd.”

684 PROPOSITIONAL LOGIC

We begin by applying some of the laws we have studied to turn the expression
ab — c¢ into an equivalent expression that is more amenable to proof. First, we use
law 12.28 to turn it into its contrapositive, ¢ — NOT (ab). Then we use DeMorgan’s
law 12.20(a) to turn NOT (ab) into @+ b. That is, we have transformed the theorem

to be proved into ¢ — (@ + b). Put another way, we need to prove that

STATEMENT “If x is not odd, then x is not greater than 2 or z is not prime.”

W

We can replace “not odd” by “even,” “not greater than 2” by “equal to or less than
2,” and “not prime” by “composite.” Thus we want to prove

STATEMENT “If x is even, then x < 2 or x is composite.”

Now we have gone as far as we can go with propositional logic, and we must
start talking about the meaning of our terms. If x is even, then z = 2y for some
integer y; that is what it means for = to be even. Since z is assumed through this
proof to be a positive integer, y must be 1 or greater.

Now we use case analysis, considering the cases where y is 1, and y is greater
than 1, which are the only possibilities, since we just argued that y > 1. If y = 1,
then z = 2, and so we have proved x < 2. If y > 1, then z is the product of two
integers, 2 and y, both greater than 1, which means that x is composite. Thus we
have shown that if z is even, then either < 2 (in the case y = 1) or x is composite
(in the case y > 1). O

Proof by Contradiction

Frequently, rather than make a “direct” proof of an expression F, we find it easier
to start by assuming NOT F and proving from that a contradiction, that is, the
expression FALSE. The basis for such proofs is the following tautology.

12.29. Proof by contradiction: (p — 0) = p.

Informally, if starting with p we can conclude 0, that is, conclude FALSE or
derive a contradiction, then that is the same as proving p. This law actually
follows from others we have stated. Start with law 12.24 with p in place of p,
and 0 in place of g, to get the equivalence

(p — 0) = (NOT (p) + 0)

Law 12.13, the elimination of double negatives, lets us replace NOT (p) by p,
and so

(P—0)=(p+0)
Now law 12.11 tells us that (p 4+ 0) = p, and so a further substitution gives us
P—0)=p

SEC. 12.9 TAUTOLOGIES AND METHODS OF PROOF 685

Example 12.24. Let us reconsider the propositions a, b, and ¢ from Example
12.23, which talk about a positive integer x and assert, respectively, that x > 2, x is
a prime, and z is odd. We want to prove the theorem ab — ¢, and so we substitute
this expression for p in 12.29. Then p — 0 becomes (NOT (ab — ¢)) — 0.

If we use 12.24 on the first of these implications, we get

(NOT (NOT (ab) + c)) —0

DeMorgan’s law applied to the inner NOT gives (NOT (@ + b+ c)) — 0. Another use
of DeMorgan’s law followed by 12.13 twice to eliminate the double negatives turns
this expression into (abc) — 0.

That is as far as propositional logic takes us; now we must reason about integers.
We must start with a, b, and ¢ and derive a contradiction. In words, we start by
assuming that = > 2, z is a prime, and x is even, and from these we must derive a
contradiction.

Since z is even, we can say x = 2y for some integer y. Since x > 2, it must
be that y > 2. But then x, which equals 2y, is the product of two integers, each
greater than 1, and therefore = is composite. Thus we have proven that x is not a
prime, that is, the statement b. Since we were given b, that z is a prime, and we
now have b as well, we have bb, which by 12.27 is equivalent to 0, or FALSE.

We have thus proved (NOT (ab — c)) — 0, which is equivalent to ab — ¢ by
12.29. That completes our proof by contradiction. O

Equivalence to Truth

Our next proof method allows us to prove an expression to be a tautology by
transforming it by substitution of equals for equals until the expression is reduced
to 1 (TRUE).

12.30. Proof by equivalence to truth: (p =1) = p.

Example 12.25. The expression s — 7 says the AND of two expressions implies
the first of them (and by commutativity of AND, also implies the second). We can
show that rs — r is a tautology by the following sequence of equivalences.

rs —r
1) = NOT (rs)+r
2) = (F+3)+r
3) = 145

4) = 1

(1) follows by applying law 12.24, the definition of — in terms of AND and OR.
(2) is an application of DeMorgan’s law. (3) follows when we use 12.7 and 12.8 to
reorder terms and then replace r + 7 by 1 according to law 12.25. Finally, (4) is an
application of law 12.12, the fact that 1 is an annihilator for OR. O

EXERCISES

12.9.1: Show that laws 12.25 and 12.27 are duals of each other.

12.9.2*: We would like to prove the theorem “If x is a perfect square and x is even,
then z is divisible by 4.”

0
00 12.10

Hypothesis and
conclusion

Inference rule

686 PROPOSITIONAL LOGIC

a) Designate propositional variables to stand for the three conditions about z
mentioned in the theorem.

b) Write the theorem formally in terms of these propositions.

¢) State the contrapositive of your answer to (b), both in terms of your proposi-
tional variables and in colloquial terms.

d) Prove the statement from (c). Hint: It helps to notice that if « is not divisible
by 4, then either z is odd, or x = 2y and y is odd.

12.9.3*: Give a proof by contradiction of the theorem from Exercise 12.9.2.

12.9.4%: Repeat Exercises 12.9.2 and 12.9.3 for the statement “If 23 is odd, then z
is odd” about integers x. (But in 12.9.2(a) there are only two conditions discussed.)

12.9.5*: Prove the following are tautologies by showing they are equivalent to 1
(TRUE).

a) pq+r+qr+pr
b) p+qr+pr+qr

12.9.6*: Prove law 12.26, case analysis, by substitution of equals for equals in
(instances of) previously proved laws.

12.9.7*: Generalize the case analysis law to the situation where the cases are de-
fined by k propositional variables, which may be true or false in all 2¥ combinations.
What is the justifying tautology for the case k = 27 For general k7 Show why this
tautology must be true.

Deduction

We have seen logic as a design theory in Sections 12.6 to 12.8, and as a formalization
of proof techniques in Section 12.9. Now, let us see a third side of the picture: the use
of logic in deduction, that is, in sequences of statements that constitute a complete
proof. Deduction should be familiar to the reader from the study of plane geometry
in high school, where we learn to start with certain hypotheses (the “givens”), and
to prove a conclusion by a sequence of steps, each of which follows from previous
steps by one of a limited number of reasons, called inference rules. In this section,
we explain what constitutes a deductive proof and give a number of examples.

Unfortunately, discovering a deductive proof for a tautology is difficult. As we
mentioned in Section 12.7, it is an example of an “inherently intractable” problem,
in the NP-hard class. Thus we cannot expect to find deductive proofs except by
luck or by exhaustive search. In Section 12.11, we shall discuss resolution proofs,
which appear to be a good heuristic for finding proofs, although in the worst case
this technique, like all others, must take exponential time.

What Constitutes a Deductive Proof?

Suppose we are given certain logical expressions E1, Fs, ..., Ej as hypotheses, and
we wish to draw a conclusion in the form of another logical expression E. In general,
neither the conclusion nor any of the hypotheses will be tautologies, but what we
want to show is that

(Ey AND Ey AND - - - AND Ey) — E (12.11)

Automated
theorem
proving

SEC. 12.10 DEDUCTION 687

Applications of Deduction

In addition to being the stuff of which all proofs in mathematics are ultimately made,
deduction or formal proof has many uses in computer science. One application is
automated theorem proving. There are systems that find proofs of theorems by
searching for sequences of steps that proceed from hypotheses to conclusion. Some
systems search for proofs on their own, and others work interactively with the user,
taking hints and filling in small gaps in the sequence of steps that form a proof. Some
believe that these systems will eventually be useful for proving the correctness of
programs, although much progress must be made before such facilities are practical.

A second use of deductive proofs is in programming languages that relate de-
duction to computation. As a very simple example, a robot finding its way through
a maze might represent its possible states by a finite set of positions in the centers
of hallways. We could draw a graph in which the nodes represent the positions, and
an arc u — v means that it is possible for the robot to move from position u to
position v by a simple move because u and v represent adjacent hallways.

We could also think of the positions as propositions, where u stands for “The
robot can reach position w.” Then u — v can be interpreted not only as an arc,
but as a logical implication, that is, “If the robot can reach wu, then it can reach
v.” (Note the “pun”; the arrow can represent an arc or an implication.) A natural
question to ask is: “What positions can the robot reach from position a.”

We can phrase this question as a deduction if we take the expression a, and
all expressions u — v for adjacent positions u and v, as hypotheses, and see which
propositional variables x we can prove from these hypotheses. In this case, we
don’t really need a tool as powerful as deduction, because depth-first search works,
as discussed in Section 9.7. However, there are many related situations where graph-
theoretic methods are not effective, yet the problem can be couched as a deduction
and a reasonable solution obtained.

is a tautology. That is, we want to show that if we assume FE1, Es, ..., E} are true,
then it follows that E is true.

One way to show (12.11) is to construct its truth table and test whether it has
value 1 in each row — the routine test for a tautology. However, that may not be
sufficient for two reasons.

1. As we mentioned, tautology testing becomes infeasible if there are too many
variables in the expression.

2. More importantly, while tautology testing works for propositional logic, it can-
not be used to test tautologies in more complex logical systems, such as pred-
icate logic, discussed in Chapter 14.

We can often show that (12.11) is a tautology by presenting a deductive proof. A
deductive proof is a sequence of lines, each of which is either a given hypothesis or
is constructed from one or more previous lines by a rule of inference. If the last line
is F/, then we say that we have a proof of E from Fy, Fs, ..., Ff.

There are many rules of inference we might use. The only requirement is that
if an inference rule allows us to write expression F' as a line whenever expressions
Py, Fy, ... F, are lines, then

Modus ponens

688 PROPOSITIONAL LOGIC

The Sound of No Hands Clapping

Frequently, we need to understand the limiting case of an operator applied to no
operands, as we did in inference rule (a). We asserted that it makes sense to regard
the AND of zero expressions (or lines of a proof) as having truth value 1. The
motivation is that I} AND F5 AND --- AND F,, is true unless there is at least one of
the F’s that is false. But if n = 0, that is, there are no F’s, then there is no way the
expression could be false, and thus it is natural to take the AND of zero expressions
to be 1.

We adopt the convention that whenever we apply an operator to zero operands,
the result is the identity for that operator. Thus we expect the OR of zero expressions
to be 0, since an OR of expressions is true only if one of the expressions is true; if
there are no expressions, then there is no way to make the OR true. Likewise, the
sum of zero numbers is taken to be 0, and the product of zero numbers is taken to
be 1.

(Fy AND F, AND - -- AND F,) — F
must be a tautology. For example,

a) Any tautology may be used as a line in a proof, regardless of previous lines.
The justification for this rule is that if F' is a tautology, then the logical AND
of zero lines of the proof implies F'. Note that the AND of zero expressions is 1,
conventionally, and 1 — F' is a tautology when F' is a tautology.

b) The rule of modus ponens says that if E and E — F are lines of a proof, then F’
may be added as a line of the proof. Modus ponens follows from the tautology
(p AND (p — q)) — @; here expression E is substituted for p and F for q. The
only subtlety is that we do not need a line with £ AND (E — F), but rather
two separate lines, one with E and one with £ — F.

¢) If E and F are two lines of a proof, then we can add the line £ AND F'. The
justification is that (p AND ¢q) — (p AND q) is a tautology; we may substitute
any expression E for p and F for gq.

d) If we have lines E and E = F, then we may add line F. The justification is
similar to modus ponens, since £ = F implies £ — F. That is,

(pAND (p=¢q)) — ¢

is a tautology, and inference rule (d) is a substituted instance of this tautology.

Example 12.26. Suppose we have the following propositional variables, with
intuitive meanings as suggested.

r | “It is raining.”
u | “Joe brings his umbrella.”

w | “Joe gets wet.”

We are given the following hypotheses.

SEC. 12.10 DEDUCTION 689

r —w | “If it rains, Joe brings his umbrella.”
u— w | “If Joe has an umbrella, he doesn’t get wet.”
7 —w | “If it doesn’t rain, Joe doesn’t get wet.”

We are asked to prove w, that is, Joe never gets wet. In a sense, the matter is
trivial, since the reader may check that

((r — w) AND (u — w) AND (F — @)) — @

is a tautology. However, it is also possible to prove w from the hypotheses, using
some of the algebraic laws from Section 12.8 and some of the inference rules just
discussed. The approach of finding a proof is the one that we would have to take if
we were dealing with a more complex form of logic than propositional calculus or
with a logical expression involving many variables. One possible proof, along with
the justification for each step, is shown in Fig. 12.24.

The rough idea of the proof is that we use case analysis, considering both the
cases where it is raining and it is not raining. By line (5) we have proved that if it
is raining, Joe doesn’t get wet, and line (6), a given hypothesis, says that if it is not
raining Joe doesn’t get wet. Lines (7) through (9) combine the two cases to draw
the desired conclusion. [J

1) r—u Hypothesis

2) u—w Hypothesis

3) (r — u) AND (u — @) (c) applied to (1) and (2)

4) ((r — u) AND (u — w)) — (r — @) Substitution into law (12.23)

5 r—w Modus ponens, with (3) and (4)
6) F—ow Hypothesis

7) (r — w) AND (7 — @) (c) applied to (5) and (6)

8) ((r — w) AND (7 — w)) = w Substitution into law (12.26)

9) w (d) with (7) and (8)

Fig. 12.24. Example of a deductive proof.

Why a Deductive Proof “Works”

A deductive proof, recall, starts with hypotheses F1, Fs, ..., Ex and adds additional
lines (i.e., expressions), each of which is implied by Ey AND FEy AND - - - AND Ej. Fach
line we add is implied by the AND of zero or more previous lines or is one of the
hypotheses. We can show that E; AND FE, AND --- AND FEj implies each line of
the proof, by induction on the number of lines added so far. To do so, we need
two families of tautologies involving implication. The first family is a generalized
transitive law for —. For any n:

((0— a) AND (p — g2) AND - AND (p — g,) (12.12)

AND ((q1g2 -+ qn) — 7“)) —(p—r)

690 PROPOSITIONAL LOGIC

That is, if p implies each of the ¢;’s, and the ¢;’s together imply r, then p implies 7.
We find that (12.12) is a tautology by the following reasoning. The only way
that (12.12) could be false is if p — r were false and the left-hand side true. But
p — r can only be false if p is true and r is false, and so in what follows we shall
assume p and 7. We must show that the left-hand side of (12.12) is then false.

If the left-hand side of (12.12) is true, then each of its subexpressions connected
by AND is true. For example, p — ¢; is true. Since we assume p is true, the only
way p — q1 can be true is if ¢; is true. Similarly, we can conclude that g, ..., g,
are all true. Thus ¢1qs - - - g, — r, must be false, since we assume r is false and we
have just discovered that all the ¢;’s are true.

We started by assuming that (12.12) was false and observed that the right-hand
side must therefore be true, and thus p and 7 must be true. We then concluded that
the left-hand side of (12.12) is false when p is true and r is false. But if the left-hand
side of (12.12) is false, then (12.12) itself is true, and we have a contradiction. Thus
(12.12) can never be false and is therefore a tautology.

Note that if n = 1 in (12.12), then we have the usual transitive law of —,
which is law 12.23. Also, if n = 0, then (12.12) becomes (1 — r) — r, which is
a tautology. Recall that when n = 0, q1¢2 - - - q,, is conventionally taken to be the
identity for AND, which is 1.

We also need a family of tautologies to justify the fact that we can add the
hypotheses to the proof. It is a generalization of a tautology discussed in Example
12.25. We claim that for any m and ¢ such that 1 < i < m,

(p1p2- - pm) — pi (12.13)

is a tautology. That is, the AND of one or more propositions implies any one of them.
The expression (12.13) is a tautology because the only way it could be false is
if the left-hand side is true and the right-hand side, p;, is false. But if p; is false,
then the AND of p; and other p’s is surely false, so the left-hand side of (12.13) is
false. But (12.13) is true whenever its left-hand side is false.
Now we can prove that, given

1. Hypotheses E1, Es, ..., E, and

2. A set of inference rules such that, whenever they allow us to write a line F,
this line is either one of the F;’s, or there is a tautology

(Fy AND F, AND --- AND F,)) — F
for some set of previous lines FY, Fy, ..., F,,

it must be that (Eq AND E5 AND --- AND Ej) — F' is a tautology for each line F.
The induction is on the number of lines added to the proof.

BASIS. For a basis, we take zero lines. The statement holds, since it says something
about every line F' of a proof, and there are no such lines to discuss. That is, our
inductive statement is really of the form “if F' is a line then --- ,” and we know such
an if-then statement is true if the condition is false.

INDUCTION. For the induction, suppose that for each previous line G,
(Ey AND E, AND - - - AND E},) — G

SEC. 12.10 DEDUCTION 691

Deductive Proofs Versus Equational Proofs

The kinds of proofs we saw in Sections 12.8 and 12.9 differ in flavor from the
deductive proofs studied in Section 12.10. However, proofs of both kinds involve
the creation of a sequence of tautologies, leading to the desired tautology.

In Sections 12.8 and 12.9 we saw equational proofs, where starting with one
tautology we made substitutions to derive other tautologies. All the tautologies de-
rived have the form E = F for some expressions E and F'. This style of proof is used
in high-school trigonometry, for example, where we learn to prove “trigonometric
identities.”

Deductive proofs also involve discovery of tautologies. The only difference is
that each is of the form F — F', where FE is the AND of the hypotheses, and F' is
the line of the proof that we actually right down. The fact that we do not write
the full tautology is a notational convenience, not a fundamental distinction. This
style of proof should also be familiar from high-school; it is the style of proofs in
plane geometry, for example.

is a tautology. Let F' be the next line added. There are two cases.

Case 1: F is one of the hypotheses. Then (E; AND Eo AND --- AND Ej) — Fis
a tautology because it comes from (12.13) with m = k when we substitute E; for
each p;, for j =1,2,...,k.

Case 2: I is added because there is a rule of inference

(F) AND F, AND - -- AND F,) — F

where each of the F}’s is one of the previous lines. By the inductive hypothesis,

(Ey AND E5 AND - - - AND E},) — Fj

is a tautology for each j. Thus, if we substitute F; for ¢; in (12.12), substitute
FE, AND E5 AND - - - AND E,

for p, and substitute F' for r, we know that any substitution of truth values for the
variables of the E’s and F’s makes the left-hand side of (12.12) true. Since (12.12)
is a tautology, every assignment of truth values must also make the right-hand side
true. But the right-hand side is (F; AND E5 AND --- AND Fj) — F. We conclude
that this expression is true for every assignment of truth values; that is, it is a
tautology.

We have now concluded the induction, and we have shown that

(Ey AND Eo AND - - - AND Ey) — F

for every line F of the proof. In particular, if the last line of the proof is our goal
E, we know (El AND EQ AND - - - AND Ek) — F.

0
00 12.11

Clause

692 PROPOSITIONAL LOGIC

EXERCISES

12.10.1*: Give proofs of the following conclusions from the following hypotheses.
You may use inference rules (a) through (d). For tautologies you may use only the
laws stated in Sections 12.8 and 12.9 and tautologies that follow by using instances
of these laws to “substitute equals for equals.”

a) Hypotheses: p — ¢, p — r; conclusion: p — gr.
b) Hypotheses: p — (¢ + 1), p — (¢ + 7); conclusion: p — g.
¢) Hypotheses: p — ¢, gr — s; conclusion: pr — s.

12.10.2: Justify why the following is a rule of inference. If £ — F'is a line, and G
is any expression whatsoever, then we can add E — (F OR G) as a line.

Proofs by Resolution

As we mentioned earlier in this chapter, finding proofs is a hard problem, and since
the tautology problem is very likely to be inherently exponential, there is no general
way to make finding proofs easy. However, there are many techniques known that
for “typical” tautologies appear to help with the exploration needed in the search for
a proof. In this section we shall study a useful inference rule, called resolution, that
is perhaps the most basic of these techniques. Resolution is based on the following
tautology.

(p+a)B+7) = (g+7) (12.14)

The validity of this rule of inference is easy to check. The only way it could be false
is if ¢ + r were false, and the left-hand side were true. If ¢ + r is false, then both
q and r are false. Suppose p is true, so that p is false. Then p + r is false, and the
left-hand side of (12.14) must be false. Similarly, if p is false, then p + ¢ is false,
which again tells us that the left-hand side is false. Thus it is impossible for the
right-hand side to be false while the left-hand side is true, and we conclude that
(12.14) is a tautology.

The usual way resolution is applied is to convert our hypotheses into clauses,
which are sums (logical OR’s) of literals. We convert each of our hypotheses into
a product of clauses. Our proof begins with each of these clauses as a line of the
proof, and the justification is that each is “given.” We then apply the resolution
rule to construct additional lines, which will always turn out to be clauses. That
is, if ¢ and r in (12.14) are each replaced by any sum of literals, then ¢ + r will also
be a sum of literals.

In practice, we shall simplify clauses by removing duplicates. That is, both ¢
and 7 could include a literal X, in which case we shall remove one copy of X from
q + r. The justification is found in laws 12.17, 12.7, and 12.8, the idempotence,
commutativity, and associativity of OR. In general, a useful point of view is that a
clause is a set, rather than a list, of literals. The associative and commutative laws
allow us to order the literals any way we please, and the idempotent law allows us
to eliminate duplicates.

We also eliminate clauses that contain contradictory literals. That is, if both X
and X are found in one clause, then by laws 12.25, 12.7, 12.8, and 12.15, the clause

O

SEC. 12.11 PROOFS BY RESOLUTION 693

is equivalent to 1, and there is no need to include it in a proof. That is, by law
12.25, (X + X) = 1, and by the annihilator law 12.15, 1 OR anything is equivalent
to 1.

Example 12.27. Consider the clauses (a 4+ b+ c) and (d +a +b+e). We may
let b play the role of p in (12.14). Then q is d + a + e, and 7 is a + c. Notice that
we have done some rearrangement to match our clauses with (12.14). First, our
second clause has been matched with the first, p + ¢ in (12.14), and our first clause
is matched with the second of (12.14). Moreover, the variable that plays the role
of p does not appear first in our two clauses, but that is no matter, because the
commutative and associative laws for OR justify our rearranging the clauses in any
order we choose.

The new clause g + r, which may appear as a line in a proof if our two clauses
are already in that proof, is (d + a 4 e + a + ¢). We may simplify this clause by
eliminating the duplicate a, leaving (d + a + e + c).

As another example, consider the clauses (a + b) and (@ + b). We may let a
play the roll of p in (12.14); ¢ is b, and r is b, giving us the new clause (b+b). That
clause is equivalent to 1, and therefore need not be generated. [

Putting Logical Expressions in Conjunctive Normal Form

In order to make resolution work, we need to put all hypotheses, and the conclu-
sion, into product-of-sums form, or “conjunctive normal form.” There are several
approaches that may be taken. Perhaps the simplest is the following.

1. First, we get rid of any operators except AND, OR, and NOT. We replace F = F
by (E — F)(F — E), by law 12.21. Then, we replace G — H by

NOT (G) + (H)

according to law 12.24. NAND and NOR are easily replaced by AND or OR, respec-
tively, followed by NOT. In fact, since AND, OR, and NOT are a complete set of
operators, we know that any logical operator whatsoever, including those not
introduced in this book, can be replaced by expressions involving only AND, OR,
and NOT.

2. Next, apply DeMorgan’s laws to push all negations down until they either
cancel with other negations by law 12.13 in Section 12.8, or they apply only to
propositional variables.

3. Now we apply the distributive law for OR over AND to push all OR’s below all
AND’s. The result is an expression in which there are literals, combined by OR’s,
which are then combined by AND’s; this is a conjunctive normal form expression.

Example 12.28. Let us consider the expression

P+ (q AND NOT (7 AND (s — t)))

694 PROPOSITIONAL LOGIC

Note that to balance conciseness and clarity, we are using overbar, 4, and juxtapo-
sition mixed with their equivalents — NOT, OR, and AND — in this and subsequent
expressions.

Step (1) requires us to replace s — ¢ by §+t, giving the AND-OR-NOT expression

p+ (q AND NOT (r(5 + t)))

In step (2), we must push the first NOT down by DeMorgan’s laws. The sequence of
steps, in which the NOT reaches the propositional variables is

bt (q(F + NOT (§+t)))
p+ (q(F + (NOT 5)(¢)))
p+ (a(r+ (1))
Now we apply law 12.14 to push the first OR below the first AND.

(p+a)(p+ (7 + (D))

Next, we regroup, using law 12.8 of Section 12.8, so that we can push the second
and third OR’s below the second AND.

(p+a)((p+7)+ (st))

Finally, we use law 12.14 again, and all OR’s are below all AND’s. The resulting
expression,

P+a)p+7+s)p+7+1)

is in conjunctive normal form. [

Inference Using Resolution

We now see the outline of a way to find a proof of F from hypotheses E1, Es, ..., Ef.
Convert F and each of Ey, ..., Ej into conjunctive normal form expressions F' and
Fy, Fy, ... Fy, respectively. Our proof is a list of clauses, and we start by writing
down all the clauses of the hypotheses F1, Fs, ..., F;. We apply the resolution rule
to pairs of clauses, and thus we add new clauses as lines of our proof. Then, if we
add all the clauses of F' to our proof, we have proved F', and we therefore have also
proved E.

Example 12.29. Suppose we take as our hypothesis the expression
(r —u)(u — w)(F — W)

Note that this expression is the AND of the hypotheses used in Example 12.26.% Let
the desired conclusion be w, as in Example 12.26. We convert the hypothesis to
conjunctive normal form by replacing the —’s according to law 12.24. At this point,
the result is already in conjunctive normal form and needs no further manipulation.
The desired conclusion, w, is already in conjunctive normal form, since any single

5 You should have observed by now that it doesn’t matter whether we write many hypotheses
or connect them all with AND’s and write one hypothesis.

Complete proof
procedure

SEC. 12.11 PROOFS BY RESOLUTION 695

Why Resolution is Effective

In general, the discovery of a proof requires luck or skill to put together the sequence
of lines that lead from hypotheses to conclusion. You will by now have noted, while
it is easy to check that the proofs given in Sections 12.10 and 12.11 are indeed
valid proofs, solving exercises that require the discovery of a proof is much harder.
Guessing the sequence of resolutions to perform in order to produce some clause or
clauses, as in Example 12.29, is not significantly easier than discovering a proof in
general.

However, when we combine resolution with proof by contradiction, as in Exam-
ple 12.30, we see the magic of resolution. Since our goal clause is 0, the “smallest”
clause, we suddenly have a notion of a “direction” in which to search. That is, we
try to prove progressively smaller clauses, hoping thereby to prove 0 eventually. Of
course, this heuristic does not guarantee success. Sometimes, we must prove some
very large clauses before we can start shrinking clauses and eventually prove 0.

In fact, resolution is a complete proof procedure for propositional calculus.
Whenever E1FEs--- E, — FE is a tautology, we can derive 0 from Fi, Es, ..., Fy
and NOT E, expressed in clause form. (Yes, this is a third meaning that logicians
give to the word “complete.” Recall the others are “a set of operators capable of
expressing any logical function,” and “a hardest problem within a class of problems,”
as in “NP-complete”.) Again, just because the proof exists doesn’t mean it is easy
to find the proof.

literal is a clause, and a single clause is a product of clauses. Thus we begin with
clauses

(7 +u)(u+w)(r+ o)

Now, suppose we resolve the first and third clauses, using r in the role of p.
The resulting clause is (v +). This clause may be resolved with the second clause
in the hypothesis, with « in the role of p, to get clause (w). Since this clause is the
desired conclusion, we are done. Figure 12.25 shows the proof as a series of lines,
each of which is a clause. O

1) (F+uw) Hypothesis
2) (a+w) Hypothesis
3) (r+w) Hypothesis
4) (u+w) Resolution of (1) and (3)
5) (w) Resolution of (2) and (4)

Fig. 12.25. Resolution proof of w.

Resolution Proofs by Contradiction

The usual way resolution is used as a proof mechanism is somewhat different from
that in Example 12.29. Instead of starting with the hypothesis and trying to prove
the conclusion, we start with both the hypotheses and the negation of the conclusion
and try to derive a clause with no literals. This clause has the value 0, or FALSE.

696 PROPOSITIONAL LOGIC

For example, if we have clauses (p) and (p), we may apply (12.14) with ¢ = r =0,
to get the clause 0.

The reason this approach is valid stems from the contradiction law 12.29 of
Section 12.9, or (p — 0) = p. Here, let p be the statement we want to prove:
(E1Ey--- E) — E, for some hypotheses Eq, Fs, ..., E), and conclusion E. Then p
is NOT (E1Ey -+ Ep, — E), or NOT (NOT (E1Ey--- Ey) —I—E), using law 12.24. Several
applications of DeMorgan’s laws tell us that p is equivalent to E1FEs - - - Ex E. Thus,
to prove p we can instead prove p — 0, or (E1Ey---ERE) — 0. That is, we
prove that the hypotheses and the negation of the conclusion together imply a
contradiction.

Example 12.30. Let us reconsider Example 12.29, but start with both the
three hypothesis clauses and the negation of the desired conclusion, that is, with
clause (w) as well. The resolution proof of 0 is shown in Fig. 12.26. Using the law
of contradiction, we can conclude that the hypotheses imply w, the conclusion. 0

1) (F+u) Hypothesis

2) (a+w) Hypothesis

3) (r+w) Hypothesis

4) (w) Negation of conclusion
5) (u+w) Resolution of (1) and (3)
6) (w) Resolution of (2) and (5)
70 Resolution of (4) and (6)

Fig. 12.26. Resolution proof by contradiction.

EXERCISES

12.11.1: Use the truth table method to check that expression (12.14) is a tautology.

A person has blood type A.

A person has blood type B.

A person has blood type AB.

A person has blood type O.

Test T is positive on a person’s blood sample.

»w <+~ O O <O 2

Test S is positive on a person’s blood sample.

Fig. 12.27. Propositions for Exercise 12.11.2.

12.11.2: Let the propositions have the intuitive meanings given in Fig. 12.27. Write
a clause or product of clauses that express the following ideas.

0
00 12.12

SEC. 12.12 SUMMARY OF CHAPTER 12 697

5
~

If test T is positive, then that person has blood type A or AB.

If test S is positive, then that person has blood type B or AB.

If a person has type A, then test T' will be positive.

If a person has type B, then test S will be positive.

If a person has type AB, then both tests T and S will be positive. Hint: Note
that (¢ + st) is not a clause.

f) A person has type A, B, AB, or O blood.

cecg

12.11.3: Use resolution to discover all nontrivial clauses that follow from your
clauses in Exercise 12.11.2. You should omit trivial clauses that simplify to 1 (TRUE),
and also omit a clause C' if its literals are a proper superset of the literals of some
other clause D.

12.11.4: Give proofs using resolution and proof by contradiction for the implica-
tions in Exercise 12.10.1.

Summary of Chapter 12

In this chapter, we have seen the elements of propositional logic, including:
(0 The principal operators, AND, OR, NOT, —, =, NAND, and NOR.

O The use of truth tables to represent the meaning of a logical expression, includ-
ing algorithms to construct a truth table from an expression and vice versa.

O Some of the many algebraic laws that apply to the logical operators.
We also discussed logic as a design theory, seeing:

0 How Karnaugh maps help us design simple expressions for logical functions
that have up to four variables.

0 How algebraic laws can be used sometimes to simplify expressions of logic.

Then, we saw that logic helps us express and understand the common proof tech-
niques such as:

O Proof by case analysis,

[0 Proof of the contrapositive,

O Proof by contradiction, and

O Proof by reduction to truth.

Finally, we studied deduction, that is, the construction of line-by-line proofs, seeing:

O There are a number of inference rules, such as “modus ponens,” that allow us
to construct one line of a proof from previous lines.

0 The resolution technique often helps us find proofs quickly by representing lines
of a proof as sums of literals and combining sums in useful ways.

O However, there is no known algorithm that is guaranteed to find a proof of an
expression in time less than an exponential in the size of the expression.

0
00 12.13

698 PROPOSITIONAL LOGIC

[0 Moreover, since the tautology problem is “NP-hard,” it is strongly believed
that no less-than-exponential algorithm for this problem exists.

Bibliographic Notes for Chapter 12

The study of deduction in logic dates back to Aristotle. Boole [1854] developed the
algebra of propositions, and it is from this work that Boolean algebra comes.

Lewis and Papadimitriou [1979] is a somewhat more advanced treatment of
logic. Enderton [1972] and Mendelson [1987] are popular treatments of mathemat-
ical logic. Manna and Waldinger [1990] present the subject from the point of view
of proving correctness of programs.

Genesereth and Nilsson [1987] treat logic from the point of view of applications
to artificial intelligence. There, you can find more on the matter of heuristics
for discovering proofs, including resolution-like techniques. The original paper on
resolution as a method of proof is Robinson [1965].

For more on the theory of intractable problems, read Garey and Johnson [1979].
The concept of NP-completeness is by Cook [1971], and the paper by Karp [1972]
made clear the importance of the concept for commonly encountered problems.

Boole, G. [1854]. An Investigation of the Laws of Thought, McMillan; reprinted by
Dover Press, New York, in 1958.

Cook, S. A. [1971]. “The complexity of theorem proving procedures,” Proc. Third
Annual ACM Symposium on the Theory of Computing, pp. 151-158.

Enderton, H. B. [1972]. A Mathematical Introduction to Logic, Academic Press,
New York.

Garey, M. R. and D. S Johnson [1979]. Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, New York.

Genesereth, M. R. and N. J. Nilsson [1987]. Logical Foundations for Artificial
Intelligence, Morgan-Kaufmann, San Mateo, Calif.

Karp, R. M. [1972]. “Reducibility among combinatorial problems,” in Complexity
of Computer Computations (R. E. Miller and J. W. Thatcher, eds.), Plenum, New
York, pp. 85-103.

Lewis, H. R. and C. H. Papadimitriou [1981]. Elements of the Theory of Compu-
tation, Prentice-Hall, Englewood Cliffs, New Jersey.

Manna, Z. and R. Waldinger [1990]. The Logical Basis for Computer Programming
(two volumes), Addison-Wesley, Reading, Mass.

Mendelson, E. [1987]. Introduction to Mathematical Logic, Wadsworth and Brooks,
Monterey, Calif.

Robinson, J. A. [1965]. “A machine-oriented logic based on the resolution principle,”
J. ACM 12:1, pp. 23-41.

