
Preface

This book was motivated by the desire we and others have had to further the evolu-
tion of the core course in computer science. Many departments across the country
have revised their curriculum in response to the introductory course in the science
of computing discussed in the “Denning Report,” (Denning, P. J., D. E. Comer, D.
Gries, M. C. Mulder, A. Tucker, J. Turner, and P. R. Young, “Computing as a Dis-
cipline,” Comm. ACM 32:1, pp. 9–23, January 1989.). That report draws attention
to three working methodologies or processes — theory, abstraction, and design —
as fundamental to all undergraduate programs in the discipline. More recently,
the Computing Curricula 1991 report of the joint ACM/IEEE-CS Curriculum Task
Force echoes the Denning Report in identifying key recurring concepts which are
fundamental to computing, especially: conceptual and formal models, efficiency,
and levels of abstraction. The themes of these two reports summarize what we have
tried to offer the student in this book.

This book developed from notes for a two-quarter course at Stanford — called
CS109: Introduction to Computer Science — that serves a number of goals. The
first goal is to give beginning computer science majors a solid foundation for fur-
ther study. However, computing is becoming increasingly important in a much
wider range of scientific and engineering disciplines. Therefore, a second goal is
to give those students who will not take advanced courses in computer science the
conceptual tools that the field provides. Finally, a more pervasive goal is to expose
all students not only to programming concepts but also to the intellectually rich
foundations of the field.

Our first version of this book was based on programming in Pascal and appeared
in 1992. Our choice of Pascal as the language for example programs was motivated
by that language’s use in the Computer Science Advanced Placement Test as well
as in a plurality of college introductions to programming. We were pleased to see
that since 1992 there has been a significant trend toward C as the introductory
programming language, and we accordingly developed a new version of the book
using C for programming examples. Our emphasis on abstraction and encapsulation
should provide a good foundation for subsequent courses covering object-oriented
technology using C++.

At the same time, we decided to make two significant improvements in the
content of the book. First, although it is useful to have a grounding in machine
architecture to motivate how running time is measured, we found that almost all
curricula separate architecture into a separate course, so the chapter on that subject
was not useful. Second, many introductory courses in the theory of computing
emphasize combinatorics and probability, so we decided to increase the coverage
and cluster the material into a chapter of its own.

Foundations of Computer Science covers subjects that are often found split
between a discrete mathematics course and a sophomore-level sequence in computer
science in data structures. It has been our intention to select the mathematical
foundations with an eye toward what the computer user really needs, rather than
what a mathematician might choose. We have tried to integrate effectively the
mathematical foundations with the computing. We thus hope to provide a better
feel for the soul of computer science than might be found in a programming course,

ix



x PREFACE

a discrete mathematics course, or a course in a computer science subspecialty. We
believe that, as time goes on, all scientists and engineers will take a foundational
course similar to the one offered at Stanford upon which this book is based. Such a
course in computer science should become as standard as similar courses in calculus
and physics.

Prerequisites

Students taking courses based on this book have ranged from first-year undergrad-
uates to graduate students. We assume only that students have had a solid course
in programming. They should be familiar with the programming language ANSI
C to use this edition. In particular, we expect students to be comfortable with C
constructs such as recursive functions, structures, pointers, and operators involving
pointers and structures such as dot, ->, and &.

Suggested Outlines for Foundational Courses in CS

In terms of a traditional computer science curriculum, the book combines a first
course in data structures — that is, a “CS2” course — with a course in discrete
mathematics. We believe that the integration of these subjects is extremely desir-
able for two reasons:

1. It helps motivate the mathematics by relating it more closely to the computing.

2. Computing and mathematics can be mutually reinforcing. Some examples
are the way recursive programming and mathematical induction are related in
Chapter 2 and the way the free/bound variable distinction for logic is related
to the scope of variables in programming languages in Chapter 14. Suggestions
for instructive programming assignments are presented throughout the book.

There are a number of ways in which this book can be used.

A Two-Quarter or Two-Semester Course

The CS109A-B sequence at Stanford is typical of what might be done in two quar-
ters, although these courses are rather intensive, being 4-unit, 10-week courses each.
These two courses cover the entire book, the first seven chapters in CS109A and
Chapters 8 through 14 in CS109B.

A One-Semester “CS2” Type Course

It is possible to use the book for a one-semester course covering a set of topics similar
to what would appear in a “CS2” course. Naturally, there is too much material in
the book to cover in one semester, and so we recommend the following:

1. Recursive algorithms and programs in Sections 2.7 and 2.8.

2. Big-oh analysis and running time of programs: all of Chapter 3 except for
Section 3.11 on solving recurrence relations.

3. Trees in Sections 5.2 through 5.10.



PREFACE xi

4. Lists : all of Chapter 6. Some may wish to cover lists before trees, which
is a more traditional treatment. We regard trees as the more fundamental
notion, but there is little harm in switching the order. The only significant
dependency is that Chapter 6 talks about the “dictionary” abstract data type
(set with operations insert, delete, and lookup), which is introduced in Section
5.7 as a concept in connection with binary search trees.

5. Sets and relations. Data structures for sets and relations are emphasized in
Sections 7.2 through 7.9 and 8.2 through 8.6.

6. Graph algorithms are covered in Sections 9.2 through 9.9.

A One-Semester Discrete Mathematics Course

For a one-semester course emphasizing mathematical foundations, the instructor
could choose to cover:

1. Mathematical induction and recursive programs in Chapter 2.

2. Big-oh analysis, running time, and recurrence relations in Sections 3.4 through
3.11.

3. Combinatorics in Sections 4.2 through 4.8.

4. Discrete probability in Sections 4.9 through 4.13.

5. Mathematical aspects of trees in Sections 5.2 through 5.6.

6. Mathematical aspects of sets in Sections 7.2, 7.3, 7.7, 7.10, and 7.11.

7. The algebra of relations in Sections 8.2, 8.7, and 8.9.

8. Graph algorithms and graph theory in Chapter 9.

9. Automata and regular expressions in Chapter 10.

10. Context-free grammars in Sections 11.2 through 11.4.

11. Propositional and predicate logic in Chapters 12 and 14, respectively.

Features of This Book

To help the student assimilate the material, we have added the following study aids:

1. Each chapter has an outline section at the beginning and a summary section
at the end highlighting the main points.

2. Marginal notes mark important concepts and definitions. However, items men-
tioned in section or subsection headlines are not repeated in the margin.

3. “Sidebars” are separated from the text by double lines. These short notes serve
several purposes:

✦ Some are elaborations on the text or make some fine points about program
or algorithm design.

✦ Others are for summary or emphasis of points made in the text nearby.
These include outlines of important kinds of proofs, such as the various
forms of proof by induction.

✦ A few are used to give examples of fallacious arguments, and we hope that
the separation from the text in this way will eliminate possible miscon-
struction of the point.



xii PREFACE

✦ A few give very brief introductions to major topics like undecidability or
the history of computers to which we wish we could devote a full section.

4. Most of the sections end with exercises. There are more than 1000 exercises
or parts spread among the sections. Of these roughly 30% are marked with a
single star, which indicates that they require more thought than the unstarred
exercises. Approximately another 10% of the exercises are doubly starred, and
these are the most challenging.

5. Chapters end with bibliographic notes. We have not attempted to be exhaus-
tive, but offer suggestions for more advanced texts on the subject of the chapter
and mention the relevant papers with the most historical significance.

About the Cover

It is a tradition for computer science texts to have a cover with a cartoon or drawing
symbolizing the content of the book. Here, we have drawn on the myth of the world
as the back of a turtle, but our world is populated with representatives of some of
the other, more advanced texts in computer science that this book is intended to
support. They are:

The teddy bear: R. Sethi, Programming Languages: Concepts and Constructs,
Addison-Wesley, Reading, Mass., 1989.

The baseball player: J. D. Ullman, Principles of Database and Knowledge-Base

Systems, Computer Science Press, New York, 1988.

The column: J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quan-

titative Approach, Morgan-Kaufmann, San Mateo, Calif., 1990.

The dragon: A. V. Aho, R. Sethi, and J. D. Ullman, Compiler Design: Principles,

Techniques, and Tools, Addison-Wesley, Reading, Mass., 1986.

The triceratops: J. L. Peterson and A. Silberschatz, Operating Systems Concepts,
second edition, Addison-Wesley, Reading, Mass., 1985.

Acknowledgments

We are deeply indebted to a number of colleagues and students who have read this
material and given us many valuable suggestions for improving the presentation.
We owe a special debt of gratitude to Brian Kernighan, Don Knuth, Apostolos
Lerios, and Bob Martin who read the original Pascal manuscript in detail and
gave us many perceptive comments. We have received, and gratefully acknowledge,
reports of course testing of the notes for the Pascal edition of this book by Michael
Anderson, Margaret Johnson, Udi Manber, Joseph Naor, Prabhakar Ragde, Rocky
Ross, and Shuky Sagiv.

There are a number of other people who found errors in earlier editions, both
the original notes and the various printings of the Pascal edition. In this regard,
we would like to thank: Susan Aho, Michael Anderson, Aaron Edsinger, Lonnie
Eldridge, Todd Feldman, Steve Friedland, Christopher Fuselier, Mike Genstil, Paul
Grubb III, Barry Hayes, John Hwang, Hakan Jakobsson, Arthur Keller, Dean Kelley,
James Kuffner Jr., Steve Lindell, Richard Long, Mark MacDonald, Simone Mar-
tini, Hugh McGuire, Alan Morgan, Monnia Oropeza, Rodrigo Philander, Andrew
Quan, Stuart Reges, John Stone, Keith Swanson, Steve Swenson, Sanjai Tiwari,
Eric Traut, and Lynzi Ziegenhagen.



PREFACE xiii

We acknowledge helpful advice from Geoff Clem, Jon Kettenring, and Brian
Kernighan during the preparation of the C edition of Foundations of Computer

Science.
Peter Ullman produced a number of the figures used in this book. We are grate-

ful to Dan Clayton, Anthony Dayao, Mat Howard, and Ron Underwood for help
with TEX fonts, and to Hester Glynn and Anne Smith for help with the manuscript
preparation.

On-Line Access to Code, Errata, and Notes

You can obtain copies of the major programs in this book by anonymous ftp to host
ftp-cs.stanford.edu. Login with user name anonymous and give your name and
host as a password. You may then execute

cd fcsc

where you will find programs from this book. We also plan to keep in this directory
information about errata and what course notes we can provide.

A. V. A.
Chatham, NJ

J. D. U.
Stanford, CA

July, 1994


