Closure Properties of CFL’s — Substitution

If a substitution s assigns a CFL to every symbol in the alphabet of a CFL L, then $s(L)$ is a CFL.

Proof

- Take a grammar for L and a grammar for each language $L_a = s(a)$.
- Make sure all the variables of all these grammars are different.
 - We can always rename variables whatever we like, so this step is easy.
- Replace each terminal a in the productions for L by S_a, the start symbol of the grammar for L_a.
- A proof that this construction works is in the reader.
 - Intuition: this replacement allows any string in L_a to take the place of any occurrence of a in any string of L.

Example

- $L = \{0^n 1^n \mid n \geq 1\}$, generated by the grammar $S \rightarrow 0S1 \mid 01$.
- $s(0) = \{a^n b^m \mid m \leq n\}$, generated by the grammar $S \rightarrow aSb \mid A; A \rightarrow aA \mid ab$.
- $s(1) = \{ab, abc\}$, generated by the grammar $S \rightarrow abA; A \rightarrow c \mid \epsilon$.

1. Rename second and third S’s to S_0 and S_1, respectively. Rename second A to B.
 Resulting grammars are:
 $$S \rightarrow 0S1 \mid 01$$
 $$S_0 \rightarrow aS_0 b \mid A; A \rightarrow aA \mid ab$$
 $$S_1 \rightarrow abB; B \rightarrow c \mid \epsilon$$

2. In the first grammar, replace 0 by S_0 and 1 by S_1. The combined grammar:
 $$S \rightarrow S_0 S S_1 \mid S_0 S_1$$
 $$S_0 \rightarrow aS_0 b \mid A; A \rightarrow aA \mid ab$$
 $$S_1 \rightarrow abB; B \rightarrow c \mid \epsilon$$

Consequences of Closure Under Substitution

1. Closed under union, concatenation, star.
 - Proofs are the same as for regular languages, e.g. for concatenation of CFL’s L_1, L_2, use $L = \{ab\}$, $s(a) = L_1$, and $s(b) = L_2$.

2. Closure of CFL’s under homomorphism.

Nonclosure Under Intersection

- The reader shows the following language \(L = \{0^i1^j2^k3^l \mid i = k \text{ and } j = l \} \) not to be a CFL.
 - Intuitively, you need a variable and productions like \(A \rightarrow 0A2 \mid 02 \) to generate the matching 0’s and 2’s, while you need another variable to generate matching 1’s and 3’s. But these variables would have to generate strings that did not interleave.
 - However, the simpler language \(\{0^i1^j2^k3^l \mid i = k \} \) is a CFL.
 - A grammar:
 \[
 S \rightarrow S3 \mid A \\
 A \rightarrow 0A2 \mid B \\
 B \rightarrow 1B \mid \epsilon
 \]
 - Likewise the CFL \(\{0^i1^j2^k3^l \mid j = l \} \).
 - Their intersection is \(L \).

Nonclosure of CFL’s Under Complement

- Proof 1: Since CFL’s are closed under union, if they were also closed under complement, they would be closed under intersection by DeMorgan’s law.
- Proof 2: The complement of \(L \) above is a CFL. Here is a PDA \(P \) recognizing it:
 - Guess whether to check \(i \neq k \) or \(j \neq l \).
 - Say we want to check \(i \neq k \).
 - As long as 0’s come in, count them on the stack.
 - Ignore 1’s.
 - Pop the stack for each 2.
 - As long as we have not just exposed the bottom-of-stack marker when the first 3 comes in, accept, and keep accepting as long as 3’s come in.
 - But we also have to accept, and keep accepting, as soon as we see that the input is not in \(L(0^11^22^3^3) \).

Closure of CFL’s Under Reversal

Just reverse the body of every production.
Closure of CFL’s Under Inverse Homomorphism

PDA-based construction.

- Keep a “buffer” in which we place \(h(a) \) for some input symbol \(a \).
- Read inputs from the front of the buffer (\(\epsilon \) OK).
- When the buffer is empty, it may be reloaded with \(h(b) \) for the next input symbol \(b \), or we may continue making \(\epsilon \)-moves.

Testing Emptiness of a CFL

As for regular languages, we really take a representation of some language and ask whether it represents \(\emptyset \).

- In this case, the representation can be a CFG or PDA.
 - Our choice, since there are algorithms to convert one to the other.
- The test: Use a CFG; check if the start symbol is useless?

Testing Finiteness of a CFL

- Let \(L \) be a CFL. Then there is some pumping-lemma constant \(n \) for \(L \).
- Test all strings of length between \(n \) and \(2n - 1 \) for membership (as in next section).
- If there is any such string, it can be pumped, and the language is infinite.
- If there is no such string, then \(n - 1 \) is an upper limit on the length of strings, so the language is finite.
 - Trick: If there were a string \(z = uvwxy \) of length \(2n \) or longer, you can find a shorter string \(uv \) in \(L \), but it’s at most \(n \) shorter. Thus, if there are any strings of length \(2n \) or more, you can repeatedly cut out \(vx \) to get, eventually, a string whose length is in the range \(n \) to \(2n - 1 \).

Testing Membership of a String in a CFL

Simulating a PDA for \(L \) on string \(w \) doesn’t quite work, because the PDA can grow its stack indefinitely on \(\epsilon \) input, and we never finish, even if the PDA is deterministic.
There is an $O(n^3)$ algorithm ($n =$ length of w) that uses a “dynamic programming” technique.

▶ Called Cocke-Younger-Kasami (CYK) algorithm.

• Start with a CNF grammar for L.

• Build a two-dimensional table:

▶ Row = length of a substring of w.

▶ Column = beginning position of the substring.

▶ Entry in row i and column j = set of variables that generate the substring of w beginning at position j and extending for i positions.

▶ In reader, these entries are denoted $X_{j,i+j-1}$, i.e., the subscripts are the first and last positions of the string represented, so the first row is $X_{11},X_{12},...,X_{nn}$, the second row is $X_{12},X_{23},...,X_{n-1,n}$, and so on.

Basis: (row 1) $X_{i,i} =$ the set of variables A such that $A \rightarrow a$ is a production, and a is the symbol at position i of w.

Induction: Assume the rows for substrings of length up to $m - 1$ have been computed, and compute the row for substrings of length m.

• We can derive $a_ia_{i+1}...a_j$ from A if there is a production $A \rightarrow BC$, B derives any prefix of $a_ia_{i+1}...a_j$, and C derives the rest.

• Thus, we must ask if there is any value of k such that

▶ $i \leq k < j$.

▶ B is in X_{ik}.

▶ C is in $X_{k+1,j}$.

Example

In class, we’ll work the table for the grammar:

$$
S \rightarrow AS \mid SB \mid AB \\
A \rightarrow a \\
B \rightarrow b
$$

and the string $aabb$.

4