Finite Automata With ϵ-Transitions

Allow ϵ to be a label on arcs.

- Nothing else changes: acceptance of w is still the existence of a path from the start state to an accepting state with label w.
 - But ϵ can appear on arcs, and means the empty string (i.e., no visible contribution to w).

Example

![Diagram of a finite automaton with ϵ-transitions]

- 001 is accepted by the path q, r, q, r, s, with label $0\epsilon0\epsilon = 001$.

Elimination of ϵ-Transitions

ϵ-transitions are a convenience, but do not increase the power of FA’s. To eliminate ϵ-transitions:

1. Compute the transitive closure of the ϵ arcs only.
 - Example:

 ![Diagram of transitive closure]

 $q \rightarrow \{q\}; r \rightarrow \{r, s\}; s \rightarrow \{r, s\}$.

2. If a state p can reach state q by ϵ-arcs, and there is a transition from q to r on input a (not ϵ), then add a transition from p to r on input a.

3. Make state p an accepting state if p can reach some accepting state q by ϵ-arcs.

4. Remove all ϵ-transitions.
Example

Regular Expressions
An algebraic equivalent to finite automata.
- Used in many places as a language for
describing simple but useful patterns in text.

Operators and Operands
If E is a regular expression, then $L(E)$ denotes the
language that E stands for. Expressions are built
as follows:

- An operand can be:
 1. A variable, standing for a language.
 2. A symbol, standing for itself as a set of
 strings, i.e., a stands for the language \{a\}
 (formally, $L(a) = \{a\}$).
 3. ϵ, standing for \{\epsilon\} (a language).
 4. \emptyset, standing for \emptyset (the empty language).

- The operators are:
 1. $+${, standing for union. $L(E+F) = L(E) \cup L(F)$.
 2. Juxtaposition (i.e., no operator symbol,
as in xy to mean $x \times y$) to stand for
concatenation. $L(EF) = L(E)L(F)$, where the concatenation of languages L
and M is \{xy | x is in L and y is in M\}.
 3. $*$ to represent closure. $L(E^*) = (L(E))^*$,
 where $L^* = \{\epsilon\} \cup L \cup LL \cup LLL \cup \cdots$.

- Parentheses may be used to alter grouping,
 which by default is $*$ (highest precedence),
 then concatenation, then union (lowest
 precedence).

2
Examples

- \(L(001) = \{001\} \).
- \(L(0 + 10^*) = \{0, 1, 10, 100, 1000, \ldots\} \).
- \(L\left((0(0 + 1))^*\right) = \) the set of strings of 0’s and 1’s, of even length, such that every odd position has a 0.

Equivalence of FA Languages and RE Languages

- We’ll show an NFA with \(\epsilon \)-transitions can accept the language for a RE.
- Then, we show a RE can describe the language of a DFA (same construction works for an NFA).
- The languages accepted by DFA, NFA, \(\epsilon \)-NFA, RE are called the regular languages.

RE to \(\epsilon \)-NFA

- Key idea: construction of an \(\epsilon \)-NFA with one accepting state is by induction on the height of the expression tree for the RE.
- Pictures of the basis and inductive constructions are in the course reader.

Example

We’ll go over the general construction in class and work the example of \((0(0 + 1))^* \).

FA-to-RE Construction

Two algorithms:

2. A simple, inductive construction, which we’ll do here (also in reader).
- Let \(A \) be a FA with states 1, 2, \ldots, \(n \).
- Let \(R_{ij}^{(k)} \) be a RE whose language is the set of labels of paths that go from state \(i \) to state \(j \) without passing through any state numbered above \(k \).
- Construction, and the proof that the expressions for these RE’s are correct, are inductions on \(k \).

Basis: \(k = 0 \). Path can’t go through any states.
• Thus, path is either an arc or the null path (a single node).

• If \(i \neq j \), then \(R_{ij}^{(k)} \) is the sum of all symbols \(a \) such that \(A \) has a transition from \(i \) to \(j \) on symbol \(a \) (\(\emptyset \) if none).

• If \(i = j \), then add \(\epsilon \) to above.

Induction: Assume we have correctly developed expressions for the \(R^{(k-1)} \)'s. Then for the \(R^{(k)} \)'s:

\[
R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)}(R_{kk}^{(k-1)})^*R_{kj}^{(k-1)}
\]

Proof it works: A path from \(i \) to \(j \) that goes through no state higher than \(k \) either:

1. Never goes through \(k \), in which case the path’s label is (by the IH) in the language of \(R_{ij}^{(k-1)} \), or
2. Goes through \(k \) one or more times. In this case:
 - \(R_{ik}^{(k-1)} \) contains the portion of the path that goes from \(i \) to \(k \) for the first time.
 - \((R_{ik}^{(k-1)})^* \) contains the portion of the path (possibly empty) from the first \(k \) visit to the last.
 - \(R_{kj}^{(k-1)} \) contains the portion of the path from the last \(k \) visit to \(j \).

Final step: The RE for the entire FA is the sum (union) of the RE’s \(R_{ij}^{(n)} \), where \(i \) is the start state and \(j \) is one of the accepting states.

• Note that superscript \((n) \) represents no restriction on the path at all, since \(n \) is the highest-numbered state.

Example

The following is the “clamping” automaton, with states named by integers:

![Diagram of the automaton](image)

Some basis expressions:

• \(R_{11}^{(n)} = \epsilon \).
\begin{itemize}
 \item $R^{(0)}_{12} = 1$.
 \item $R^{(0)}_{22} = \varepsilon + 0 + 1$.
 \item $R^{(0)}_{31} = 1$.
 \item $R^{(0)}_{32} = R^{(0)}_{21} = \emptyset$.
\end{itemize}

Two inductive examples:
\begin{itemize}
 \item $R^{(1)}_{32} = R^{(0)}_{32} + R^{(0)}_{31} (R^{(0)}_{11})^* R^{(0)}_{12} = \emptyset + 1\varepsilon 1 = 11$.
 \begin{itemize}
 \item Uses algebraic laws: $\varepsilon^* = \varepsilon$; $R\varepsilon = \varepsilon R = R$ (ε is the identity for concatenation);
 $\emptyset + R = R + \emptyset = R$ (\emptyset is the identity for union).
 \end{itemize}
 \item $R^{(1)}_{22} = R^{(0)}_{22} + R^{(0)}_{21} (R^{(0)}_{11})^* R^{(0)}_{12} = \varepsilon + 0 + 1 + \emptyset\varepsilon 1 = \varepsilon + 0 + 1$.
 \begin{itemize}
 \item Additional algebraic law used: $\emptyset R = R\emptyset = \emptyset$ (\emptyset is the annihilator for concatenation).
 \end{itemize}
\end{itemize}