Finite Automata With ϵ -Transitions

Allow ϵ to be a label on arcs.

- Nothing else changes: acceptance of w is still the existence of a path from the start state to an accepting state with label w.
 - But ϵ can appear on arcs, and means the empty string (i.e., no visible contribution to w).

Example

• 001 is accepted by the path q, s, r, q, r, s, with label $0\epsilon 01\epsilon = 001$.

Elimination of ϵ -Transitions

 ϵ -transitions are a convenience, but do not increase the power of FA's. To eliminate ϵ -transitions:

- 1. Compute the transitive closure of the ϵ arcs only.
 - Example:

 $q \to \{q\}; \ r \to \{r,s\}; \ s \to \{r,s\}.$

- If a state p can reach state q by ε-arcs, and there is a transition from q to r on input a (not ε), then add a transition from p to r on input a.
- 3. Make state p an accepting state if p can reach some accepting state q by ϵ -arcs.
- 4. Remove all ϵ -transitions.

Example

Regular Expressions

An algebraic equivalent to finite automata.

• Used in many places as a language for describing simple but useful patterns in text.

Operators and Operands

If E is a regular expression, then L(E) denotes the language that E stands for. Expressions are built as follows:

- An operand can be:
 - 1. A variable, standing for a language.
 - 2. A symbol, standing for itself as a set of strings, i.e., a stands for the language $\{a\}$ (formally, $L(\mathbf{a}) = \{a\}$).
 - 3. ϵ , standing for $\{\epsilon\}$ (a language).
 - 4. \emptyset , standing for \emptyset (the empty language).
- The operators are:
 - 1. +, standing for union. $L(E+F) = L(E) \cup L(F)$.
 - Juxtaposition (i.e., no operator symbol, as in xy to mean x × y) to stand for concatenation. L(EF) = L(E)L(F), where the concatenation of languages L and M is {xy | x is in L and y is in M}.
 - 3. * to represent closure. $L(E^*) = (L(E))^*$, where $L^* = \{\epsilon\} \cup L \cup LL \cup LLL \cup \cdots$.
- Parentheses may be used to alter grouping, which by default is * (highest precedence), then concatenation, then union (lowest precedence).

Examples

- $L(001) = \{001\}.$
- $L(\mathbf{0} + \mathbf{10}^*) = \{0, 1, 10, 100, 1000, \ldots\}.$
- $L((0(0 + 1))^*)$ = the set of strings of 0's and 1's, of even length, such that every odd position has a 0.

Equivalence of FA Languages and RE Languages

- We'll show an NFA with ε-transitions can accept the language for a RE.
- Then, we show a RE can describe the language of a DFA (same construction works for an NFA).
- The languages accepted by DFA, NFA, ϵ -NFA, RE are called the *regular* languages.

RE to ϵ -NFA

- Key idea: construction of an ε-NFA with one accepting state is by induction on the height of the expression tree for the RE.
- Pictures of the basis and inductive constructions are in the course reader.

Example

We'll go over the general construction in class and work the example of $(0(0+1))^*$.

FA-to-RE Construction

Two algorithms:

- 1. State elimination: gives smaller expression, in general, and easier to apply. Covered in course reader.
- 2. A simple, inductive construction, which we'll do here (also in reader).
- Let A be a FA with states $1, 2, \ldots, n$.
- Let $R_{ij}^{(k)}$ be a RE whose language is the set of labels of paths that go from state *i* to state *j* without passing through any state numbered above *k*.
- Construction, and the proof that the expressions for these RE's are correct, are inductions on k.

Basis: k = 0. Path can't go through any states.

- Thus, path is either an arc or the null path (a single node).
- If i ≠ j, then R⁽⁰⁾_{ij} is the sum of all symbols a such that A has a transition from i to j on symbol a (Ø if none).
- If i = j, then add ϵ to above.

Induction: Assume we have correctly developed expressions for the $R^{(k-1)}$'s. Then for the $R^{(k)}$'s:

•
$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

Proof it works: A path from i to j that goes through no state higher than k either:

- 1. Never goes through k, in which case the path's label is (by the IH) in the language of $R_{ij}^{(k-1)}$, or
- 2. Goes through k one or more times. In this case:
 - $R_{ik}^{(k-1)}$ contains the portion of the path that goes from *i* to *k* for the first time.
 - $(R_{kk}^{(k-1)})^*$ contains the portion of the path (possibly empty) from the first k visit to the last.
 - $R_{kj}^{(k-1)}$ contains the portion of the path from the last k visit to j.

Final step: The RE for the entire FA is the sum (union) of the RE's $R_{ij}^{(n)}$, where *i* is the start state and *j* is one of the accepting states.

• Note that superscript (n) represents no restriction on the path at all, since n is the highest-numbered state.

$\mathbf{Example}$

The following is the "clamping" automaton, with states named by integers:

Some basis expressions:

•
$$R_{11}^{(0)} = \epsilon.$$

- $R_{12}^{(0)} = \mathbf{1}.$
- $R_{22}^{(0)} = \epsilon + \mathbf{0} + \mathbf{1}$.
- $R_{31}^{(0)} = \mathbf{1}.$
- $R_{32}^{(0)} = R_{21}^{(0)} = \emptyset.$

Two inductive examples:

- $R_{32}^{(1)} = R_{32}^{(0)} + R_{31}^{(0)} (R_{11}^{(0)})^* R_{12}^{(0)} = \emptyset + \mathbf{1} \epsilon^* \mathbf{1} = \mathbf{1} \mathbf{1}.$
 - ♦ Uses algebraic laws: ε^{*} = ε; Rε = εR = R (ε is the identity for contatenation);
 Ø + R = R + Ø = R (Ø is the identity for union).
- $R_{22}^{(1)} = R_{22}^{(0)} + R_{21}^{(0)} (R_{11}^{(0)})^* R_{12}^{(0)} = \epsilon + \mathbf{0} + \mathbf{1} + \emptyset \epsilon^* \mathbf{1} = \epsilon + \mathbf{0} + \mathbf{1}.$
 - Additional algebraic law used: $\emptyset R = R\emptyset = \emptyset$ (\emptyset is the annihilator for concatenation).