Finite Automata With ϵ-Transitions

Allow ϵ to be a label on arcs.

- Nothing else changes: acceptance of w is still the existence of a path from the start state to an accepting state with label w.
- But ϵ can appear on arcs, and means the empty string (i.e., no visible contribution to w).

Example

- $\quad 001$ is accepted by the path q, s, r, q, r, s, with label $0 \epsilon 01 \epsilon=001$.

Elimination of ϵ-Transitions

ϵ-transitions are a convenience, but do not increase the power of FA's. To eliminate ϵ-transitions:

1. Compute the transitive closure of the ϵ arcs only.

- Example:

$$
q \rightarrow\{q\} ; r \rightarrow\{r, s\} ; s \rightarrow\{r, s\} .
$$

2. If a state p can reach state q by ϵ-arcs, and there is a transition from q to r on input a (not ϵ), then add a transition from p to r on input a.
3. Make state p an accepting state if p can reach some accepting state q by ϵ-arcs.
4. Remove all ϵ-transitions.

Example

Regular Expressions

An algebraic equivalent to finite automata.

- Used in many places as a language for describing simple but useful patterns in text.

Operators and Operands

If E is a regular expression, then $L(E)$ denotes the language that E stands for. Expressions are built as follows:

- An operand can be:

1. A variable, standing for a language.
2. A symbol, standing for itself as a set of strings, i.e., a stands for the language $\{a\}$ (formally, $L(\mathbf{a})=\{a\}$).
3. ϵ, standing for $\{\epsilon\}$ (a language).
4. \emptyset, standing for \emptyset (the empty language).

- The operators are:

1. $\quad+$, standing for union. $L(E+F)=L(E) \cup$ $L(F)$.
2. Juxtaposition (i.e., no operator symbol, as in $x y$ to mean $x \times y$) to stand for concatenation. $L(E F)=L(E) L(F)$, where the concatenation of languages L and M is $\{x y \mid x$ is in L and y is in $M\}$.
3. * to represent closure. $L\left(E^{*}\right)=(L(E))^{*}$, where $L^{*}=\{\epsilon\} \cup L \cup L L \cup L L L \cup \cdots$.

- Parentheses may be used to alter grouping, which by default is $*$ (highest precedence), then concatenation, then union (lowest precedence).

Examples

- $\quad L(\mathbf{0 0 1})=\{001\}$.
- $L\left(\mathbf{0}+\mathbf{1 0}^{*}\right)=\{0,1,10,100,1000, \ldots\}$.
- $\quad L\left((\mathbf{0}(\mathbf{0}+\mathbf{1}))^{*}\right)=$ the set of strings of 0 's and 1's, of even length, such that every odd position has a 0 .

Equivalence of FA Languages and RE Languages

- We'll show an NFA with ϵ-transitions can accept the language for a RE.
- Then, we show a RE can describe the language of a DFA (same construction works for an NFA).
- The languages accepted by DFA, NFA, ϵ-NFA, RE are called the regular languages.

RE to ϵ-NFA

- Key idea: construction of an ϵ-NFA with one accepting state is by induction on the height of the expression tree for the RE.
- Pictures of the basis and inductive constructions are in the course reader.

Example

We'll go over the general construction in class and work the example of $(\mathbf{0}(\mathbf{0}+\mathbf{1}))^{*}$.

FA-to-RE Construction

Two algorithms:

1. State elimination: gives smaller expression, in general, and easier to apply. Covered in course reader.
2. A simple, inductive construction, which we'll do here (also in reader).

- Let A be a FA with states $1,2, \ldots, n$.
- Let $R_{i j}^{(k)}$ be a RE whose language is the set of labels of paths that go from state i to state j without passing through any state numbered above k.
- Construction, and the proof that the expressions for these RE's are correct, are inductions on k.
Basis: $k=0$. Path can't go through any states.
- Thus, path is either an arc or the null path (a single node).
- If $i \neq j$, then $R_{i j}^{(0)}$ is the sum of all symbols a such that A has a transition from i to j on symbol a (\emptyset if none).
- If $i=j$, then add ϵ to above.

Induction: Assume we have correctly developed expressions for the $R^{(k-1)}$'s. Then for the $R^{(k)}$'s:

- $R_{i j}^{(k)}=R_{i j}^{(k-1)}+R_{i k}^{(k-1)}\left(R_{k k}^{(k-1)}\right)^{*} R_{k j}^{(k-1)}$

Proof it works: A path from i to j that goes through no state higher than k either:

1. Never goes through k, in which case the path's label is (by the IH) in the language of $R_{i j}^{(k-1)}$, or
2. Goes through k one or more times. In this case:

- $\quad R_{i k}^{(k-1)}$ contains the portion of the path that goes from i to k for the first time.
- $\quad\left(R_{k k}^{(k-1)}\right)^{*}$ contains the portion of the path (possibly empty) from the first k visit to the last.
- $\quad R_{k j}^{(k-1)}$ contains the portion of the path from the last k visit to j.

Final step: The RE for the entire FA is the sum (union) of the RE's $R_{i j}^{(n)}$, where i is the start state and j is one of the accepting states.

- Note that superscript (n) represents no restriction on the path at all, since n is the highest-numbered state.

Example

The following is the "clamping" automaton, with states named by integers:

0

Some basis expressions:

- $R_{11}^{(0)}=\epsilon$.
- $\quad R_{12}^{(0)}=\mathbf{1}$.
- $R_{22}^{(0)}=\epsilon+\mathbf{0}+\mathbf{1}$.
- $\quad R_{31}^{(0)}=1$.
- $\quad R_{32}^{(0)}=R_{21}^{(0)}=\emptyset$.

Two inductive examples:

- $\quad R_{32}^{(1)}=R_{32}^{(0)}+R_{31}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{12}^{(0)}=\emptyset+\mathbf{1} \epsilon^{*} \mathbf{1}=\mathbf{1 1}$.
- Uses algebraic laws: $\epsilon^{*}=\epsilon ; R \epsilon=\epsilon R=$ R (ϵ is the identity for contatenation); $\emptyset+R=R+\emptyset=R(\emptyset$ is the identity for union).
- $R_{22}^{(1)}=R_{22}^{(0)}+R_{21}^{(0)}\left(R_{11}^{(0)}\right)^{*} R_{12}^{(0)}=\epsilon+\mathbf{0}+\mathbf{1}+$ $\emptyset \epsilon^{*} \mathbf{1}=\epsilon+\mathbf{0}+\mathbf{1}$.
- Additional algebraic law used: $\emptyset R=$ $R \emptyset=\emptyset(\emptyset$ is the annihilator for concatenation).

