Finite Automata With ¢-Transitions
Allow ¢ to be a label on arcs.

e Nothing else changes: acceptance of w is still
the existence of a path from the start state to
an accepting state with label w.

[0 But ¢ can appear on arcs, and means the
empty string (i.e., no visible contribution
to w).

Example

e 001 is accepted by the path ¢,s,r ¢, 7, s, with
label 0e0le = 001.

Elimination of ¢-Transitions

e-transitions are a convenience, but do not increase
the power of FA’s. To eliminate e-transitions:

1. Compute the transitive closure of the € arcs
only.

0 Example:
© OO
€

q—{gt;r—{rst;s —{r,s}.

2. If a state p can reach state ¢ by e-arcs, and
there is a transition from ¢ to r on input a
(not €), then add a transition from p to r on
input a.

3. Make state p an accepting state if p can reach
some accepting state ¢ by e-arcs.

4. Remove all e-transitions.

Example

Start e @ @

0,1

Regular Expressions

An algebraic equivalent to finite automata.

Used in many places as a language for
describing simple but useful patterns in text.

Operators and Operands

If is a regular expression, then L(E) denotes the
language that £ stands for. Expressions are built
as follows:

An operand can be:

1.
2.

A vaniable, standing for a language.

A symbol, standing for itself as a set of
strings, i.e., a stands for the language {a}

(formally, L(a) = {a}).

¢, standing for {¢} (a language).

0, standing for ¢ (the empty language).
operators are:

+, standing for union. L(E+F) = L(FE) U
L(F).

Juxtaposition (i.e., no operator symbol,
as in zy to mean x x y) to stand for
concatenation. L(EF) = L(E)L(F),
where the concatenation of languages L
and M is {2y | z isin L and y is in M}.

* to represent closure. L(E*) = (L(E))*,
where L* = {e} ULULLULLLU -

Parentheses may be used to alter grouping,
which by default is * (highest precedence),
then concatenation, then union (lowest
precedence).

Examples

e L(001) = {001}.
e L(0+10%)=1{0,1,10,100,1000, .. }.

. L((O(O + 1))*) = the set of strings of 0’s
and 1’s, of even length, such that every odd
position has a 0.

Equivalence of FA Languages and RE
Languages

o We'll show an NFA with e-transitions can
accept the language for a RE.

e Then, we show a RE can describe the
language of a DFA (same construction works

for an NFA).
e The languages accepted by DFA, NFA,| e-NFA|
RE are called the regular languages.

RE to e-NFA

e Key idea: construction of an e-NFA with one
accepting state is by induction on the height
of the expression tree for the RE.

e Pictures of the basis and inductive
constructions are in the course reader.

Example

We’ll go over the general construction in class and

work the example of (O(O + 1))*

FA-to-RE Construction

Two algorithms:

1. State elimination: gives smaller expression, in
general, and easier to apply. Covered in course
reader.

2. A simple, inductive construction, which we’ll
do here (also in reader).

e Let A be a FA with states 1,2,...,n.

o Let RE;C) be a RE whose language is the set of
labels of paths that go from state i to state j
without passing through any state numbered
above k.

e Construction, and the proof that the
expressions for these RE’s are correct, are
inductions on k.

Basis: k = 0. Path can’t go through any states.

e Thus, path is either an arc or the null path (a
single node).

e Ifi # j then RE?) is the sum of all symbols
a such that A has a transition from ¢ to j on
symbol a (0 if none).

e Ifi=j, then add ¢ to above.

Induction: Assume we have correctly developed
expressions for the R*~1s. Then for the R(*)’s:

o Ry =RV RETVRSTY) RGTY

Proof it works: A path from ¢ to j that goes
through no state higher than k either:

1. Never goes through k, in which case the path’s

label is (by the TH) in the language of RU-D

ij ’
or

2. Goes through k one or more times. In this
case:

u RE:_I) contains the portion of the path
that goes from ¢ to k for the first time.

O (R;ﬁc_l))* contains the portion of the path
(possibly empty) from the first k visit to
the last.

u Rgﬁ_l) contains the portion of the path
from the last k visit to j.

Final step: The RE for the entire FA is the sum

(union) of the RE’s RE?), where i is the start state

and j is one of the accepting states.

e Note that superscript (n) represents no
restriction on the path at all, since n 1s the
highest-numbered state.

Example

The following is the “clamping” automaton, with
states named by integers:

Some basis expressions:

. R(ﬁ) — €.

o RY=1.

o RY=c+0+1.

o RY=1.

o RY=RY=0

Two inductive examples:

o RY=RY+ROERD)RY =0+101=11.

O Uses algebraic laws: €* = ¢; Re = eR =
R (e is the identity for contatenation);
0+ R=R+0= R (0is the identity for

union).
o Ry =Ry + RYRY)RY = e+0+1+
fe*1=€e+0+1.
O Additional algebraic law used: R =

RB = 0 (0 is the annihilator for
concatenation).

