
Finite Automata With �-Transitions

Allow � to be a label on arcs.

� Nothing else changes: acceptance of w is still
the existence of a path from the start state to
an accepting state with label w.

✦ But � can appear on arcs, and means the
empty string (i.e., no visible contribution
to w).

Example

Start
q r s

1

0

0

1

�

�

� 001 is accepted by the path q; s; r; q; r; s, with
label 0�01� = 001.

Elimination of �-Transitions

�-transitions are a convenience, but do not increase
the power of FA's. To eliminate �-transitions:

1. Compute the transitive closure of the � arcs
only.

✦ Example:

q r s
�

�

q ! fqg; r ! fr; sg; s ! fr; sg.

2. If a state p can reach state q by �-arcs, and
there is a transition from q to r on input a
(not �), then add a transition from p to r on
input a.

3. Make state p an accepting state if p can reach
some accepting state q by �-arcs.

4. Remove all �-transitions.

1

Example

Start
q r s

1

0

0,1

0,1

Regular Expressions

An algebraic equivalent to �nite automata.

� Used in many places as a language for
describing simple but useful patterns in text.

Operators and Operands

If E is a regular expression, then L(E) denotes the
language that E stands for. Expressions are built
as follows:

� An operand can be:

1. A variable, standing for a language.

2. A symbol, standing for itself as a set of

strings, i.e., a stands for the language fag
(formally, L(a) = fag).

3. �, standing for f�g (a language).

4. ;, standing for ; (the empty language).

� The operators are:

1. +, standing for union. L(E+F) = L(E) [
L(F).

2. Juxtaposition (i.e., no operator symbol,
as in xy to mean x � y) to stand for
concatenation. L(EF) = L(E)L(F),
where the concatenation of languages L
and M is fxy j x is in L and y is in Mg.

3. � to represent closure. L(E�) =
�
L(E)

�
�

,
where L� = f�g [L [LL [LLL [� � �.

� Parentheses may be used to alter grouping,
which by default is � (highest precedence),
then concatenation, then union (lowest
precedence).

2

Examples

� L(001) = f001g.

� L
�
0+ 10�) = f0; 1; 10; 100;1000; : : :g.

� L
��
0(0 + 1)

�
�

�
= the set of strings of 0's

and 1's, of even length, such that every odd
position has a 0.

Equivalence of FA Languages and RE

Languages

� We'll show an NFA with �-transitions can
accept the language for a RE.

� Then, we show a RE can describe the
language of a DFA (same construction works
for an NFA).

� The languages accepted by DFA, NFA, �-NFA,
RE are called the regular languages.

RE to �-NFA

� Key idea: construction of an �-NFA with one
accepting state is by induction on the height
of the expression tree for the RE.

� Pictures of the basis and inductive
constructions are in the course reader.

Example

We'll go over the general construction in class and
work the example of

�
0(0+ 1)

�
�

.

FA-to-RE Construction

Two algorithms:

1. State elimination: gives smaller expression, in
general, and easier to apply. Covered in course
reader.

2. A simple, inductive construction, which we'll
do here (also in reader).

� Let A be a FA with states 1; 2; : : :; n.

� Let R(k)
ij be a RE whose language is the set of

labels of paths that go from state i to state j
without passing through any state numbered
above k.

� Construction, and the proof that the
expressions for these RE's are correct, are
inductions on k.

Basis: k = 0. Path can't go through any states.

3

� Thus, path is either an arc or the null path (a
single node).

� If i 6= j, then R
(0)
ij is the sum of all symbols

a such that A has a transition from i to j on
symbol a (; if none).

� If i = j, then add � to above.

Induction: Assume we have correctly developed
expressions for the R(k�1)'s. Then for the R(k)'s:

� R
(k)
ij = R

(k�1)
ij +R

(k�1)
ik (R(k�1)

kk)�R(k�1)
kj

Proof it works: A path from i to j that goes
through no state higher than k either:

1. Never goes through k, in which case the path's

label is (by the IH) in the language of R
(k�1)
ij ,

or

2. Goes through k one or more times. In this
case:

✦ R
(k�1)
ik contains the portion of the path

that goes from i to k for the �rst time.

✦ (R
(k�1)
kk)� contains the portion of the path

(possibly empty) from the �rst k visit to
the last.

✦ R
(k�1)
kj contains the portion of the path

from the last k visit to j.

Final step: The RE for the entire FA is the sum

(union) of the RE's R
(n)
ij , where i is the start state

and j is one of the accepting states.

� Note that superscript (n) represents no
restriction on the path at all, since n is the
highest-numbered state.

Example

The following is the \clamping" automaton, with
states named by integers:

1 1

0

0 0,1

Start

3 1 2

Some basis expressions:

� R
(0)
11 = �.

4

� R
(0)
12 = 1.

� R
(0)
22 = �+ 0+ 1.

� R
(0)
31 = 1.

� R
(0)
32 = R

(0)
21 = ;.

Two inductive examples:

� R
(1)
32 = R

(0)
32 +R

(0)
31 (R

(0)
11)

�R
(0)
12 = ;+1��1 = 11.

✦ Uses algebraic laws: �� = �; R� = �R =
R (� is the identity for contatenation);
; + R = R + ; = R (; is the identity for
union).

� R
(1)
22 = R

(0)
22 + R

(0)
21 (R

(0)
11)

�R
(0)
12 = � + 0 + 1 +

;��1 = �+ 0+ 1.

✦ Additional algebraic law used: ;R =
R; = ; (; is the annihilator for
concatenation).

5

