Decision Properties of Regular Languages

Given a (representation, e.g., RE, FA, of a) regular language \(L \), what can we tell about \(L \)?
- Since there are algorithms to convert between any two representations, we can choose the rep that makes the test easiest.

Membership

Is string \(w \) in regular language \(L \)?
- Choose DFA representation for \(L \).
- Simulate the DFA on input \(w \).

Emptiness

Is \(L = \emptyset \)?
- Use DFA representation.
- Use a graph-reachability algorithm to test if at least one accepting state is reachable from the start state.

Finiteness

Is \(L \) a finite language?
- Note every finite language is regular (why?), but a regular language is not necessarily finite.

DFA method:
- Given a DFA for \(L \), eliminate all states that are not reachable from the start state and all states that do not reach an accepting state.
- Test if there are any cycles in the remaining DFA; if so, \(L \) is infinite, if not, then \(L \) is finite.

RE method: Almost, we can look for a * in the RE and say its language is infinite if there is one, finite if not. However, there are exceptions, e.g. \(0*1 \) or \(0^* \). Thus:

1. Find subexpressions equivalent to \(\emptyset \) by:
 - (Basis) \(\emptyset \) is; \(\epsilon \) and \(a \) are not.
 - (Induction) \(E + F \) is iff both \(E \) and \(F \) are;
 \(EF \) is if either \(E \) or \(F \) are; \(E* \) never is.

2. Eliminate subexpressions equivalent to \(\emptyset \) by:
 - Replace \(E + F \) or \(F + E \) by \(F \) whenever \(E \) is and \(F \) isn’t.
 - Replace \(E* \) by \(\epsilon \) whenever \(E \) is equivalent to \(\emptyset \).
3. Now, find subexpressions that are equivalent to ϵ by:

- **(Basis)** ϵ is; a isn’t.
- **(Induction)** $E + F$ is iff both E and F are; ditto EF; E^* is iff E is.

4. Now, we can tell if $L(R)$ is infinite by looking for a subexpression E^* such that E is not equivalent to ϵ.

Example

Consider $(0 + 1)^* + 1\emptyset^*$.

- **Step 1**: \emptyset (twice) and $1\emptyset$ are subexpressions equivalent to \emptyset.
- **Step 2**: $0^* + 1\epsilon$ remains.
- **Step 3**: only subexpression ϵ is equivalent to ϵ.
- **Since 0 is starred, language is infinite.**

Minimization of States

- Real goal is testing equivalence of (reps of) two regular languages.
- Interesting fact: DFA’s have unique (up to state names) minimum-state equivalents.
 - But proof in course reader doesn’t quite get to that point.

Distinguishable States

Key idea: find states p and q that are distinguishable because there is some input w that takes exactly one of p and q to an accepting state.

- **Basis**: any nonaccepting state is distinguishable from any accepting state ($w = \epsilon$).
- **Induction**: p and q are distinguishable if there is some input symbol a such that $\delta(p, a)$ is distinguishable from $\delta(q, a)$.
 - All other pairs of states are indistinguishable, and can be merged into one state.

Example (Very Simple)

Consider:
• p is distinguishable from q and r by basis.

Can we distinguish q from r?

• No string beginning with 0 works, because both states go to p, and therefore any string of the form $0x$ takes q and r to the same state.

• No string beginning with 1 works.
 ♦ Technically, $\delta(q, 1) = r$ and $\delta(r, 1) = q$ are not distinguishable. Thus, induction does not tell us q and r are distinguishable.

 ♦ What happens is that, starting in either q or r, as long as we have inputs 1, we are in one of the accepting states, and when a 0 is read, we go to the same state forever after.

Constructing the Minimum-State DFA

• For each group of indistinguishable states, pick a “representative.”
 ♦ Note a group can be large, e.g., q_1, q_2, \ldots, q_k, if all pairs are indistinguishable.

 ♦ Indistinguishability is transitive (why?) so indistinguishability partitions states.

• If p is a representative, and $\delta(p, a) = q$, in minimum-state DFA the transition from p on a is to the representative of q’s group (to q itself if q is either alone in a group or a representative).

• State state is representative of the original start state.

• Accepting states are representatives of groups of accepting states.
 ♦ Notice we could not have a “mixed” (accepting + nonaccepting) group (why?).
- Delete any state that is not reachable from the start state.

Example

For the DFA above, p is in a group by itself; $\{q, r\}$ is the other group.

![Diagram]

Why Above Minimization Can't be Beaten

Suppose we have a DFA A, and we minimize it to construct a DFA M. Yet there is another DFA N that accepts the same language as A and M, yet has fewer states than M. Proof contradiction that this can't happen:

- Run the state-distinguishability process on the states of M and N together.
- Start states of M and N are indistinguishable because $L(M) = L(N)$.
- If $\{p, q\}$ are indistinguishable, then their successors on any one input symbol are also indistinguishable.
- Thus, since neither M nor N could have an inaccessible state, every state of M is indistinguishable from at least one state of N.
- Since N has fewer states than M, there are two states of M that are indistinguishable from the same state of N, and therefore indistinguishable from each other.
- But M was designed so that all its states are distinguishable from each other.
- We have a contradiction, so the assumption that N exists is wrong, and M in fact has as few states as any equivalent DFA for A.
- In fact (stronger), there must be a 1-1 correspondence between the states of any other minimum-state N and the DFA M, showing that the minimum-state DFA for A is unique up to renaming of the states.