Context-Free Grammars

Notation for recursive description of languages.
Example:

\[
\begin{align*}
\text{Roll} & \rightarrow \text{ROLL} \mid \text{Class Studs} \mid \text{ROLL} \\
\text{Class} & \rightarrow \text{CLASS} \mid \text{Text} \mid \text{CLASS} \\
\text{Text} & \rightarrow \text{Char Text} \\
\text{Text} & \rightarrow \text{Char} \\
\text{Char} & \rightarrow a \cdots \text{(other chars)} \\
\text{Studs} & \rightarrow \text{Stud Studs} \\
\text{Studs} & \rightarrow \epsilon \\
\text{Stud} & \rightarrow \text{STUD} \mid \text{Text} \mid \text{STUD} \\
\end{align*}
\]

- Generates “documents” such as:
 \[
 \langle \text{ROLL} \rangle \langle \text{CLASS} \rangle \text{cs154} \langle \text{CLASS} \rangle \\
 \langle \text{STUD} \rangle \text{Sally} \langle \text{STUD} \rangle \\
 \langle \text{STUD} \rangle \text{Fred} \langle \text{STUD} \rangle \\
 \cdots \\
 \langle \text{ROLL} \rangle
 \]

- Variables (e.g., Studs) represent sets of strings (i.e., languages).
 - In sensible grammars, these strings share some common characteristic or roll.
- Terminals (e.g., a or \(<\text{ROLL}\>) = symbols of which strings are composed.
 - “Tags” like \(<\text{ROLL}\>) could be considered either a single terminal or the concatenation of 6 terminals.
- Productions = rules of the form \(\text{Head} \rightarrow \text{Body}\).
 - \(\text{Head}\) is a variable.
 - \(\text{Body}\) is a string of zero or more variables and/or terminals.
- Start Symbol = variable that represents “the language.”
- Notation: \(G = (V, \Sigma, P, S) = (\text{variables, terminals, productions, start symbol})\).

Example

A simpler example generates strings of 0’s and 1’s such that each block of 0’s is followed by at least as many 1’s.

\[
\begin{align*}
S & \rightarrow \text{AS} | \epsilon \\
A & \rightarrow 0A1 | A1 | 01
\end{align*}
\]

- Note vertical bar separates different bodies for the same head.
Derivations

- $aA\beta \Rightarrow a\gamma\beta$ whenever there is a production $A \rightarrow \gamma$.
 - Subscript with name of grammar, e.g., \Rightarrow, if necessary.
 - Example: $011AS \Rightarrow 0110A1S$.
- $a \Rightarrow* \beta$ means string a can become β in zero or more derivation steps.
 - Examples: $011AS \Rightarrow* 011AS$ (zero steps); $011AS \Rightarrow* 0110A1S$ (one step); $011AS \Rightarrow 0110011$ (three steps).

Language of a CFG

$L(G) = \text{set of terminal strings } w \text{ such that } S \Rightarrow* w$, where S is the start symbol.

Aside: Notation

- a, b, \ldots are terminals; \ldots, y, z are strings of terminals.
- Greek letters are strings of variables and/or terminals, often called sentential forms.
- A, B, \ldots are variables.
- \ldots, Y, Z are variables or terminals.
- S is typically the start symbol.

Leftmost/Rightmost Derivations

- We have a choice of variable to replace at each step.
 - Derivations may appear different only because we make the same replacements in a different order.
 - To avoid such differences, we may restrict the choice.
- A leftmost derivation always replaces the leftmost variable in a sentential form.
 - Yields left-sentential forms.
- Rightmost defined analogously.
- \Rightarrow, $\Rightarrow*$, etc., used to indicate derivations are leftmost or rightmost.
Example

- \(S \Rightarrow AS \Rightarrow A1S \Rightarrow 011S \Rightarrow 011AS \Rightarrow 01101A1S \Rightarrow 0110011S \Rightarrow 0110011 \)
- \(S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow A0A1 \Rightarrow A0011 \Rightarrow A10011 \Rightarrow 0110011 \)

Derivation Trees

- Nodes = variables, terminals, or \(\epsilon \).
 - Variables at interior nodes; terminals and \(\epsilon \) at leaves.
 - A leaf can be \(\epsilon \) only if it is the only child of its parent.
- A node and its children from the left must form the head and body of a production.

Example

![Derivation Tree]

Equivalence of Parse Trees, Leftmost, and Rightmost Derivations

The following about a grammar \(G = (V, \Sigma, P, S) \) and a terminal string \(w \) are all equivalent:

1. \(S \Rightarrow^* w \) (i.e., \(w \) is in \(L(G) \)).
2. \(S \Rightarrow^l_m w \)
3. \(S \Rightarrow^r_m w \)
4. There is a parse tree for \(G \) with root \(S \) and \(yidd \) (labels of leaves, from the left) \(w \).

- Obviously (2) and (3) each imply (1).
Parse Tree Implies LM/RM Derivations

- Generalize all statements to talk about an arbitrary variable A in place of S.
 - Except now (1) no longer means w is in $L(G)$.
- Induction on the height of the parse tree.

 Basis: Height 1: Tree is root A and leaves $w = a_1, a_2, \ldots, a_k$.
 - $A \rightarrow w$ must be a production, so $A \Rightarrow_{lm} w$ and $A \Rightarrow_{rm} w$.
 - Those X_i’s that are variables are roots of shorter trees.
 - Thus, the IH says that they have LM derivations of their yields.
 - Construct a LM derivation of w from A by starting with $A \Rightarrow_{lm} X_1 X_2 \cdots X_k$, then using LM derivations from each X_i that is a variable, in order from the left.
- RM derivation analogous.

Derivations to Parse Trees

Induction on length of the derivation.

Basis: One step. There is an obvious parse tree.

Induction: More than one step.

- Let the first step be $A \Rightarrow X_1 X_2 \cdots X_k$.
- Subsequent changes can be reordered so that all changes to X_1 and the sentential forms that replace it are done first, then those for X_2, and so on (i.e., we can rewrite the derivation as a LM derivation).
- The derivations from those X_i’s that are variables are all shorter than the given deriviation, so the IH applies.
- By the IH, there are parse trees for each of these derivations.
- Make the roots of these trees be children of a new root labeled A.

Example

Consider derivation $S \Rightarrow AS \Rightarrow AAS \Rightarrow AA \Rightarrow A1A \Rightarrow A10A1 \Rightarrow 0110A1 \Rightarrow 0110011$
• Subderivation from A is: $A \Rightarrow A1 \Rightarrow 011$

• Subderivation from S is: $S \Rightarrow AS \Rightarrow A \Rightarrow 0A1 \Rightarrow 0011$

• Each has a parse tree; put them together with new root S.