Ambiguous Grammars

A CFG is ambiguous if one or more terminal strings have multiple leftmost derivations from the start symbol.

- Equivalently: multiple rightmost derivations, or multiple parse trees.

Example

Consider \(S \rightarrow AS | \epsilon \), \(A \rightarrow A1 | 0A1 | 01 \). The string 00111 has the following two leftmost derivations from \(S \):

1. \[S \Rightarrow AS \Rightarrow \text{im} 0A1 \Rightarrow \text{im} 0A11 \Rightarrow \text{im} 00111 \]
2. \[S \Rightarrow AS \Rightarrow A1S \Rightarrow 0A11S \Rightarrow \text{im} 00111 \]

- Intuitively, we can use \(A \rightarrow A1 \) first or second to generate the extra 1.

Inherently Ambiguous Languages

A CFL \(L \) is inherently ambiguous if every CFG for \(L \) is ambiguous.

- Such things exist; see course reader.

Example

The language of our example grammar is not inherently ambiguous, even though the grammar is ambiguous.

- Change the grammar to force the extra 1’s to be generated last.

\[
\begin{align*}
S & \rightarrow AS | \epsilon \\
A & \rightarrow 0A1 | B \\
B & \rightarrow B1 | 01
\end{align*}
\]

Why Care?

- Ambiguity of the grammar implies that at least some strings in its language have different structures (parse trees).
 - Thus, such a grammar is unlikely to be useful for a programming language, because two structures for the same string (program) implies two different meanings (executable equivalent programs) for this program.
 - Common example: the easiest grammars for arithmetic expressions are ambiguous and need to be replaced by more complex,
unambiguous grammars (see course reader).

- An inherently ambiguous language would be absolutely unsuitable as a programming language, because we would not have any way of fixing a unique structure for all its programs.

Pushdown Automata

- Add a stack to a FA.
- Typically nondeterministic.
- An automaton equivalent to CFG’s.

Example

Notation for “transition diagrams”: $a, Z/X_1X + 2\cdots X_k = \text{“on input } a, \text{ with } Z \text{ on top of the stack, consume the } a, \text{make this state transition, and replace the } Z \text{ on top of the stack by } X_1X_2\cdots X_k$ (with X_1 at the top).

```
0, X/XX 1, X/ε
```

- $p = \text{starting to see a group of } 0\text{’s and } 1\text{’s}; q = \text{reading } 0\text{’s and pushing } X\text{’s onto the stack}; r = \text{reading } 1\text{’s and popping } X\text{’s until the } X\text{’s are all popped}.$
- We can start a new group (transition from r to p) only when all X’s (which count the 0’s) have been matched against 1’s.

Formal PDA

$P = (Q, \Sigma, \delta, q_0, Z_0, F)$, where $Q, \Sigma, q_0, \text{ and } F$ have their meanings from FA.

- Σ = stack alphabet.
- Z_0 in Σ = start symbol = the one symbol on the stack initially.
- δ = transition function takes a state, an input symbol (or ϵ), and a stack symbol and gives you a finite number of choices of:
1. A new state (possibly the same).
2. A string of stack symbols to replace the top stack symbol.

Instantaneous Descriptions (ID’s)

For a FA, the only thing of interest about the FA is its state. For a PDA, we want to know its state and the entire content of its stack.

- It is also convenient to maintain a fiction that there is an input string waiting to be read.
- Represented by an ID \((q, w, \alpha)\), where \(q = \) state, \(w = \) waiting input, and \(\alpha = \) stack, top left.

Moves of the PDA

If \(\delta(q, a, X)\) contains \((p, \alpha)\), then \((q, aw, X\beta) \vdash (p, w, \alpha\beta)\).

- Extend to \(\vdash^*\) to represent 0, 1, or many moves.
- Subscript by name of the PDA, if necessary.
- Input string \(w\) is accepted if \((q_0, w, Z_0) \vdash (p, \epsilon, \gamma)\) for any accepting state \(p\) and any stack string \(\gamma\).
- \(L(P) = \) set of strings accepted by \(P\).

Example

\((p, 0110011, Z_0) \vdash (q, 110011, XZ_0) \vdash \)
\((r, 0111, Z_0) \vdash (r, 0011, Z_0) \vdash (p, 0011, Z_0) \vdash (q_0, 011, XZ_0) \vdash (q, 11, XXZ_0) \vdash (r, 1, XZ_0) \vdash (r, \epsilon, Z_0) \vdash (p, \epsilon, Z_0)\)

Acceptance by Empty Stack

Another one of those technical conveniences: when we prove that PDA’s and CFG’s accept the same languages, it helps to assume that the stack is empty whenever acceptance occurs.

- \(N(P) = \) set of strings \(w\) such that \((q_0, w, Z_0) \vdash^* (p, \epsilon, \epsilon)\) for some state \(p\).
 - Note \(p\) need not be in \(F\).
 - In fact, if we talk about \(N(P)\) only, then we need not even specify a set of accepting states.

Example

For our previous example, to accept by empty stack:
1. Add a new transition $\delta(p, \epsilon, Z_0) = \{(p, \epsilon)\}$.
 \[\checkmark\] That is, when starting to look for a new 0-1 block, the PDA has the option to pop the last symbol off the stack instead.

2. p is no longer an accepting state; in fact, there are no accepting states.

Equivalence of Acceptance by Final State and Empty Stack

A language is $L(P_1)$ for some PDA P_1 if and only if it is $N(P_2)$ for some PDA P_2.

- Given $P_1 = (Q, \Sigma, \delta, q_0, Z_0, F)$, construct P_2:
 1. Introduce new start state p_0 and new bottom-of-stack marker X_0.
 2. First move of P_2: replace X_0 by Z_0X_0 and go to state q_0. The presence of X_0 prevents P_2 from “accidentally” emptying its stack and accepting when P_1 did not accept.
 3. Then, P_2 simulates P_1; i.e., give P_2 all the transitions of P_1.
 4. Introduce a new state r that keeps popping the stack of P_2 until it is empty.
 5. If the simulated P_1 is in an accepting state, give P_2 the additional choice of going to state r on ϵ input, and thus emptying its stack without reading any more input.

- Given $P_2 = (Q, \Sigma, \delta, q_0, Z_0, F)$, construct P_1:
 1. Introduce new start state p_0 and new bottom-of-stack marker X_0.
 2. First move of P_1: replace X_0 by Z_0X_0 and go to state q_0.
 3. Introduce new state r for P_1; it is the only accepting state.
 4. P_1 simulates P_2.
 5. If the simulated P_1 ever sees X_0, it knows P_2 accepts, so P_1 goes to state r on ϵ input.